Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 13
325
Views
36
CrossRef citations to date
0
Altmetric
SYNTHETIC COMMUNICATIONS REVIEWS

Based on MFe2O4 (M=Co, Cu, and Ni): Magnetically recoverable nanocatalysts in synthesis of heterocyclic structural scaffolds

ORCID Icon
Pages 1899-1935 | Received 27 Nov 2019, Published online: 19 Feb 2020

References

  • Kazemi, M.; Mohammadi, M. Magnetically Recoverable Catalysts: Catalysis in Synthesis of Polyhydroquinolines. Appl. Organomet. Chem. In press. DOI: 10.1002/aoc.5400.
  • Climent, M. J.; Corma, A.; Iborra, S. Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chem. Rev. 2011, 111, 1072–1133. DOI: 10.1021/cr1002084.
  • Bailey, D. C.; Langer, S. H. Immobilized Transition-Metal Carbonyls and Related Catalysts. Chem. Rev. 1981, 81, 109–148. DOI: 10.1021/cr00042a001.
  • Astruc, D.; Chardac, F. Dendritic Catalysts and Dendrimers in Catalysis. Chem. Rev. 2001, 101, 2991–3023. DOI: 10.1021/cr010323t.
  • Okuhara, T. Water-Tolerant Solid Acid Catalysts. Chem. Rev. 2002, 102, 3641–3666. DOI: 10.1021/cr0103569.
  • Busca, G. Acid Catalysts in Industrial Hydrocarbon Chemistry. Chem. Rev. 2007, 107, 5366–5410. DOI: 10.1021/cr068042e.
  • Petrone, D. A.; Ye, J.; Lautens, M. Modern Transition-Metal-Catalyzed Carbon-Halogen Bond Formation. Chem. Rev. 2016, 116, 8003–8104. DOI: 10.1021/acs.chemrev.6b00089.
  • Chen, M. N.; Mo, L. P.; Cui, Z. S.; Zhang, Z. H. Magnetic Nanocatalysts: Synthesis and Application in Multicomponent Reactions. Curr. Opin. Green Sustain. Chem. 2019, 15, 27–37. DOI: 10.1016/j.cogsc.2018.08.009.
  • Torborg, C.; Beller, M. Recent Applications of Palladium-Catalyzed Coupling Reactions in the Pharmaceutical, Agrochemical, and Fine Chemical Industries. Adv. Synth. Catal. 2009, 351, 3027–3043. DOI: 10.1002/adsc.200900587.
  • Chen, L.; Noory Fajer, A.; Yessimbekov, Z.; Kazemi, M.; Mohammadi, M. Diaryl Sulfides Synthesis: Copper Catalysts in C–S Bond Formation. J. Sulfur Chem. 2019, 40, 451–468. DOI: 10.1080/17415993.2019.1596268.
  • Ardakani, A. A.; Kargar, H.; Feizi, N.; Tahir, M. N. Synthesis, Characterization, Crystal Structures and Antibacterial Activities of Some Schiff Bases with N2O2 Donor Sets. J. Iran. Chem. Soc. 2018, 15, 1495–1504. DOI: 10.1007/s13738-018-1347-6.
  • Lima, C. G. S.; Moreira, N. M.; Paixão, M. W.; Corrêa, A. G. Heterogenous Green Catalysis: Application of Zeolites on Multicomponent Reactions. Curr. Opin. Green Sustain. Chem. 2019, 15, 7–12. DOI: 10.1016/j.cogsc.2018.07.006.
  • Zolfigol, M. A.; Khazaei, A.; Karimitabar, F.; Hamidi, M. Alum as a Catalyst for the Synthesis of Bispyrazole Derivatives. Appl. Sci. 2016, 6, 1–9.
  • Klosowski, D. W.; Hethcox, J. C.; Paull, D. H.; Fang, C.; Donald, J. R.; Shugrue, C. R.; Pansick, A. D.; Martin, S. F. Enantioselective Halolactonization Reactions Using BINOL-Derived Bifunctional Catalysts: Methodology, Diversification, and Applications. J. Org. Chem. 2018, 83, 5954–5968. DOI: 10.1021/acs.joc.8b00490.
  • Rostami, A.; Rostami, A.; Ghaderi, A. Copper-Catalyzed Thioetherification Reactions of Alkyl Halides, Triphenyltin Chloride, and Arylboronic Acids with Nitroarenes in the Presence of Sulfur Sources. J. Org. Chem. 2015, 80, 8694–8704. DOI: 10.1021/acs.joc.5b01248.
  • Zhou, J.; Berthel, J. H. J.; Kuntze-Fechner, M. W.; Friedrich, A.; Marder, T. B.; Radius, U. NHC Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions of Aryl Boronate Esters with Perfluorobenzenes. J. Org. Chem. 2016, 81, 5789–5794. DOI: 10.1021/acs.joc.6b01041.
  • Kong, W.; Romo, D. Diastereo- and Enantioselective Synthesis of Bi- and Tricyclic N-Heterocycle-Fused β-Lactones. J. Org. Chem. 2017, 82, 13161–13170. DOI: 10.1021/acs.joc.7b02235.
  • Ghorbani-Choghamarani, A.; Mohammadi, M.; Tamoradi, T.; Ghadermazi, M. Covalent Immobilization of Co Complex on the Surface of SBA-15: Green, Novel and Efficient Catalyst for the Oxidation of Sulfides and Synthesis of Polyhydroquinoline Derivatives in Green Condition. Polyhedron 2019, 158, 25–35. DOI: 10.1016/j.poly.2018.10.054.
  • Pu, Q.; Kazemi, M.; Mohammadi, M. Application of Transition Metals in Sulfoxidation Reactions. Mini. Rev. Org. Chem. 2019, 16, 5775–5791.
  • Ghorbani-Choghamarani, A.; Mohammadi, M.; Taherinia, Z. (ZrO)2Fe2O5 as an Efficient and Recoverable Nanocatalyst in C–C Bond Formation. J. Iran. Chem. Soc. 2019, 16, 411–421. DOI: 10.1007/s13738-018-1522-9.
  • Ghorbani‐Choghamarani, A.; Mohammadi, M.; Hudson, R. H. E.; Tamoradi, T. Boehmite@Tryptophan‐Pd Nanoparticles: A New Catalyst for C–C Bond Formation. Appl. Organomet. Chem. 2019, 33, e4977.
  • Kazemi, M.; Nasr, S. M.; Chen, Z.; Mohammadi, M. A Mini-Review: Achievements in the Thiolysis of Epoxides. Mini. Rev. Org. Chem. 2020, 17, 1–11. DOI: 10.2174/1570193X166661907.
  • Tadjarodi, A.; Dehghani, M.; Imani, M. Green Synthesis and Characterization of Palladium Nanoparticles Supported on Zeolite Y by Sonochemical Method, Powerful and Efficient Catalyst for Suzuki-Miyaura Coupling of Aryl Halides with Phenylboronic Acid. Appl. Organomet. Chem. 2018, 32, e4594.
  • Massaro, M.; Colletti, C. G.; Fiore, B.; La Parola, V.; Lazzara, G.; Guernelli, S.; Zaccheroni, N.; Riela, S. Gold Nanoparticles Stabilized by Modified Halloysite Nanotubes for Catalytic Applications. Appl. Organomet. Chem. 2019, 33, e4665.
  • Motevalizadeh, S. F.; Alipour, M.; Ashori, F.; Samzadeh-Kermani, A.; Hamadi, H.; Ganjali, M. R.; Aghahosseini, H.; Ramazani, A.; Khoobi, M.; Gholibegloo, E. Heck and Oxidative Boron Heck Reactions Employing Pd(II) Supported Amphiphilized Polyethyleneimine-Functionalized MCM-41 (MCM-41@aPEI-Pd) as an Efficient and Recyclable Nanocatalyst. Appl. Organomet. Chem. 2018, 32, e4123.
  • Ashraf, M. A.; Liu, Z.; Peng, W.-X. Trisaminomethane–Cobalt Complex Supported on Fe3O4 Magnetic Nanoparticles as an Efficient Recoverable Nanocatalyst for Oxidation of Sulfides and C–S Coupling Reactions. Appl. Organomet. Chem. 2019, 34, e5260.
  • Mohammadi, M.; Ghorbani-Choghamarani, A. The First Report of Hercynite as a Solid Support, L-Methionine-Pd Complex Supported on Hercynite as Highly Efficient Reusable Nanocatalyst for C–C Cross Coupling Reactions. New J. Chem. In press. DOI: 10.1039/C9NJ05325E.
  • Ghorbani-Choghamarani, A.; Mohammadi, M.; Shiri, L.; Taherinia, Z. Synthesis and Characterization of Spinel FeAl2O4 (Hercynite) Magnetic Nanoparticles and Their Application in Multicomponent Reactions. Res. Chem. Intermed. 2019, 45, 5705–5723. DOI: 10.1007/s11164-019-03930-0.
  • Tamoradi, T.; Mousavi, S. M.; Mohammadi, M. Praseodymium (III) Anchored on the CoFe2O4 MNPs: An Efficient Heterogeneous Magnetic Nanocatalyst for One-Pot, Multi-Component Domino Synthesis of Polyhydroquinoline and 2,3-Dihydroquinazolin-4(1H)-One Derivatives. New J. Chem. In press. DOI: 10.1039/C9NJ05468E.
  • Nikoorazm, M.; Khanmoradi, M.; Mohammadi, M. Guanine‐La Complex Supported onto SBA‐15: A Novel Efficient Heterogeneous Mesoporous Nanocatalyst for One‐Pot, Multi‐Component Tandem Knoevenagel Condensation–Michael Addition–Cyclization Reactions. Appl. Organomet. Chem. In press. DOI: 10.1002/aoc.5504.
  • Abdel-Rahman, L. H.; Abu-Dief, A. M.; Adam, M. S. S.; Hamdan, S. K. Some New Nano-Sized Mononuclear Cu(II) Schiff Base Complexes: Design, Characterization, Molecular Modeling and Catalytic Potentials in Benzyl Alcohol Oxidation. Catal. Lett. 2016, 146, 1373–1396. DOI: 10.1007/s10562-016-1755-0.
  • Hariss, L.; Ibrahim, R.; Jaber, N.; Roisnel, T.; Grée, R.; Hachem, A. A General Approach to Various Five- and Six-Membered Gem-Difluoroheterocycles: Application to the Synthesis of Fluorinated Analogues of Sedamine. Eur. J. Org. Chem. 2018, 2018, 3782–3791. DOI: 10.1002/ejoc.201800371.
  • Ghorbani-Choghamarani, A.; Azadi, G. Polyvinylpolypyrrolidone-Supported Hydrogen Peroxide (PVP-H2O2), Silica Sulfuric Acid and Catalytic Amounts of Ammonium Bromide as Green, Mild and Metal-Free Oxidizing Media for the Efficient Oxidation of Alcohols and Sulfides. JICS 2011, 8, 1082–1090. DOI: 10.1007/BF03246566.
  • Mumladze, T.; Yousef, S.; Tatariants, M.; Kriūkienė, R.; Makarevicius, V.; Lukošiūtė, S.-I.; Bendikiene, R.; Denafas, G. Sustainable Approach to Recycling of Multilayer Flexible Packaging Using Switchable Hydrophilicity Solvents. Green Chem. 2018, 20, 3604–3618. DOI: 10.1039/C8GC01062E.
  • Chen, J.; Xie, F.; Li, X.; Chen, L. Ionic Liquids for the Preparation of Biopolymer Materials for Drug/Gene Delivery: A Review. Green Chem. 2018, 20, 4169–4200. DOI: 10.1039/C8GC01120F.
  • Kazemi, M.; Shiri, L.; Kohzadi, H. Synthesis of Pyrano [2,3,d] Pyrimidines under Green Chemistry. J. Mater. Environ. Sci. 2017, 8, 3410–3422.
  • Shiri, L.; Kazemi, M. Fe3O4 MNPs-DETA/Benzyl-Br3: A New Magnetically Reusable Catalyst for the Oxidative Coupling of Thiols. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 1171–1176. DOI: 10.1080/10426507.2017.1347654.
  • Kazemi, M.; Kohzadi, H.; Abdi, O. Alkylation of Thiols in Green Mediums. J. Mater. Environ. Sci. 2015, 6, 1451–1456.
  • Shiri, L.; Narimani, H.; Kazemi, M. Synthesis and Characterization of Sulfamic Acid Supported on Fe3O4 Nanoparticles: A Green, Versatile and Magnetically Separable Acidic Catalyst for Oxidation Reactions and Knoevenagel Condensation. Appl. Organomet. Chem. 2018, 32, e3927.
  • Kazemi, M.; Shiri, L.; Kohzadi, H. Recent Achievements in Organic Trithiocarbonates Synthesis. Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 1398–1409. DOI: 10.1080/10426507.2014.993035.
  • Kazemi, M.; Shiri, L.; Kohzadi, H. Recent Advances in Aryl Alkyl and Dialkyl Sulfide Synthesis. Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 978–1003. DOI: 10.1080/10426507.2014.974754.
  • Shiri, L.; Ghorbani-Choghamarani, A.; Kazemi, M. Sulfides Synthesis: Nanocatalysts in C-S Cross-Coupling Reactions. Aust. J. Chem. 2016, 69, 585–600. DOI: 10.1071/CH15528.
  • Kazemi, M.; Ghobadi, M. Magnetically Recoverable Nano-Catalysts in Sulfoxidation Reactions. Nanotechnol. Rev. 2017, 6, 549–571.
  • Shiri, L.; Kazemi, M. Deoxygenation of Sulfoxides. Res. Chem. Intermed. 2017, 43, 6007–6041. DOI: 10.1007/s11164-017-2976-6.
  • Shiri, L.; Ghorbani-Choghamarani, A.; Kazemi, M. Synthesis and Characterization of DETA/Cu(NO3)2 Supported on Magnetic Nanoparticles: A Highly Active and Recyclable Catalyst for the Solvent-Free Synthesis of Polyhydroquinolines. Monatsh. Chem. 2017, 148, 1131–1139. DOI: 10.1007/s00706-016-1906-4.
  • Shiri, L.; Heidari, L.; Kazemi, M. Magnetic Fe3O4 Nanoparticles Supported Imine/Thiophene-Nickel (II) Complex: A New and Highly Active Heterogeneous Catalyst for the Synthesis of Polyhydroquinolines and 2, 3-Dihydroquinazoline-4(1H)-Ones. Appl. Organomet. Chem. 2018, 32, 1–11.
  • Shiri, L.; Ghorbani-Choghamarani, A.; Kazemi, M. Synthesis and Characterization of Tribenzyl Ammonium-Tribromide Supported on Magnetic Fe3O4 Nanoparticles: A Robust Magnetically Recoverable Catalyst for the Oxidative Coupling of Thiols and Oxidation of Sulfides. Res. Chem. Intermed. 2017, 43, 2707–2724. DOI: 10.1007/s11164-016-2790-6.
  • Kazemi, M.; Shiri, L. Recoverable Bromine-Containing Nano-Catalysts in Organic Synthesis. Mini Rev. Org. Chem. 2018, 15, 86–104. DOI: 10.2174/1570193X14666170518114613.
  • Shiri, L.; Ghorbani-Choghamarani, A.; Kazemi, M. Synthesis and Characterization of Bromine Source Supported on Magnetic Fe3O4 Nanoparticles: A New, Versatile and Efficient Magnetically Separable Catalyst for Organic Synthesis. Appl. Organomet. Chem. 2017, 31, 1–12.
  • Soleiman-Beigi, M.; Kazemi, M.; Aryan, R.; Shiri, L. TBAOH Mediated: An Efficient and Simple Procedure for Alkylation of Alcohols, Phenols and Thiols under Neat Aqueous Conditions. LOC 2014, 11, 321–326. DOI: 10.2174/15701786113106660077.
  • Li, F.; Liu, J.; Evans, D. G.; Duan, X. Stoichiometric Synthesis of Pure MFe2O4 (M=Mg, Co, and Ni) Spinel Ferrites from Tailored Layered Double Hydroxide (Hydrotalcite-Like) Precursors. Chem. Mater. 2004, 16, 1597–1602. DOI: 10.1021/cm035248c.
  • Sutka, A.; Millers, M.; Vanags, M.; Joost, U.; Maiorov, M.; Kisand, V.; Pärna, R.; Juhnevica, I. Comparison of Photocatalytic Activity for Different Co-Precipitated Spinel Ferrites. Res. Chem. Intermed. 2015, 41, 9439–9449. DOI: 10.1007/s11164-015-1969-6.
  • Zolfigol, M. A.; Madrakian, E.; Ghaemi, E.; Niknam, K. PEG-N2O4: An Efficient Nitrating Agent for the Selective Mono- and Dinitration of Phenols under Mild Conditions. Synth. Commun. 2008, 38, 3366–3374. DOI: 10.1080/00397910802136706.
  • Abbasi, A.; Sardroodi, J. J. Structural and Electronic Properties of Nitrogen-Doped TiO2 nanocrystals and Their Effects on the Adsorption of CH2O and SO2 molecules Investigated by DFT. J. Iran. Chem. Soc. 2018, 15, 1431–1448. DOI: 10.1007/s13738-018-1343-x.
  • Miraki, M. K.; Yazdani, E.; Ghandi, L.; Azizi, K.; Heydari, A. Mild and Eco-Friendly Chemoselective Acylation of Amines in Aqueous Medium Using a Green Superparamagnetic, Recoverable Nanocatalyst. Appl. Organomet. Chem. 2017, 31, e3744.
  • Chehardoli, G.; Zolfigol, M. A. Melamine-(H2SO4)3/Melamine-(HNO3)3 instead of H2SO4/HNO3: A Safe System for the Fast Oxidation of Thiols and Sulfides under Solvent-Free Conditions. J. Sulfur Chem. 2015, 36, 606–612. DOI: 10.1080/17415993.2015.1074688.
  • Lodya, J. A. L.; Seda, T.; Strydom, A. M.; Manzini, S. S. Characterization of Fe/C Catalysts Supported on Al2O3, SiO2 and TiO2. J. Phys. Conf. Ser. 2010, 200, 8–12.
  • Falamarzi, M.; Akbarzadeh, E.; Gholami, M. R. Zeolitic Imidazolate Framework-Derived Ag/C/ZnO for Rapid Reduction of Organic Pollutant. J. Iran. Chem. Soc. 2019, 16, 1105–1111. DOI: 10.1007/s13738-018-01584-0.
  • Zolfigol, M. A.; Yarie, M.; Baghery, S. [4,4′-Bipyridine]-1,1′-Diium Tricyanomethanide as a Nanostructured Molten Salt and Its Catalytic Application in the Synthesis of Tetrahydrobenzo[b]Pyrans, Amido and Aminoalkyl Naphthol Derivatives. J. Mol. Liq. 2016, 222, 923–932. DOI: 10.1016/j.molliq.2016.07.132.
  • Kharisov, B. I.; Dias, H. V. R.; Kharissova, O. V. Mini-Review: Ferrite Nanoparticles in the Catalysis. Arab. J. Chem. 2014, 12, 1234–1246.
  • Koukabi, N.; Kolvari, E.; Khazaei, A.; Zolfigol, M. A.; Shirmardi-Shaghasemi, B.; Khavasi, H. R. Hantzsch Reaction on Free Nano-Fe2O3 Catalyst: Excellent Reactivity Combined with Facile Catalyst Recovery and Recyclability. Chem. Commun. (Camb.) 2011, 47, 9230–9232. DOI: 10.1039/c1cc12693h.
  • Hamidinasab, M.; Mobinikhaledi, A. Green One-Pot Synthesis of 2H-Indazolo[2,1-b]Phthalazine-Triones: A Comparative Study of Heterogeneous Solid Acid Catalysts with Magnetic Core. J. Iran. Chem. Soc. 2019, 16, 1255–1263. DOI: 10.1007/s13738-019-01601-w.
  • Rajinder, Y.; Gupta, M.; Kour, J. Nickel NPs @N-Doped Titania: An Efficient and Recyclable Heterogeneous Nanocatalytic System for One-Pot Synthesis of Pyrano[2,3-d]Pyrimidines and 1,8-Dioxo-Octahydroxanthenes. J. Iran. Chem. Soc. 2019, 16, 1977–1992. DOI: 10.1007/s13738-019-01669-4.
  • Khodaei, M. M.; Dehghan, M. A Green and Cost-Effective Approach for the Production of Gold Nanoparticles Using Corn Silk Extract: A Recoverable Catalyst for Suzuki–Miyaura Reaction and Adsorbent for Removing of Dye Pollutants. Polyhedron 2019, 162, 219–231. DOI: 10.1016/j.poly.2019.01.060.
  • Azarkamanzad, Z.; Farzaneh, F.; Maghami, M.; Simpson, J.; Synthesis, A. M. Characterization and Immobilization of a Novel Mononuclear Vanadium (V) Complex on Modified Magnetic Nanoparticles as Catalyst for Epoxidation of Allyl Alcohols. Appl. Organomet. Chem. 2018, 32, e4168.
  • He, Y.; Cai, C. Tetrazole Functionalized Polymer Supported Palladium Complex: An Efficient and Reusable Catalyst for the Room-Temperature Suzuki Cross-Coupling Reaction. Catal. Lett. 2010, 140, 153–159. DOI: 10.1007/s10562-010-0415-z.
  • McNamara, C. A.; Dixon, M. J.; Bradley, M. Recoverable Catalysts and Reagents Using Recyclable Polystyrene-Based Supports. Chem. Rev. 2002, 102, 3275–3300. DOI: 10.1021/cr0103571.
  • Gladysz, J. A. Introduction: Recoverable Catalysts and Reagents – Perspective and Prospective. Chem. Rev. 2002, 102, 3215–3216. DOI: 10.1021/cr020068s.
  • Kazemi, M.; Ghobadi, M.; Mirzaie, A. Cobalt Ferrite Nanoparticles (CoFe2O4 MNPs) as Catalyst and Support: Magnetically Recoverable Nanocatalysts in Organic Synthesis. Nanotechnol. Rev. 2018, 7, 43–68.
  • Kheilkordi, Z.; Mohammadi Ziarani, G.; Bahar, S.; Badiei, A. The Green Synthesis of 2-Amino-3-Cyanopyridines Using SrFe12O19 Magnetic Nanoparticles as Efficient Catalyst and Their Application in Complexation with Hg2+ Ions. J. Iran. Chem. Soc. 2019, 16, 365–372. DOI: 10.1007/s13738-018-1514-9.
  • Kazemi Miraki, M.; Arefi, M.; Salamatmanesh, A.; Yazdani, E.; Heydari, A. Magnetic Nanoparticle-Supported Cu–NHC Complex as an Efficient and Recoverable Catalyst for Nitrile Hydration. Catal. Lett. 2018, 148, 3378–3388. DOI: 10.1007/s10562-018-2526-x.
  • Mokhtary, M. Recent Advances in Catalysts Immobilized on Magnetic Nanoparticles. J. Iran. Chem. Soc. 2016, 13, 1827–1845. DOI: 10.1007/s13738-016-0900-4.
  • Nasr-Esfahani, M.; Hoseini, S. J.; Mohammadi, F. Fe3O4 Nanoparticles as an Efficient and Magnetically Recoverable Catalyst for the Synthesis of 3, 4-Dihydropyrimidin-2(1H)-Ones under Solvent-Free Conditions. Cuihua Xuebao/Chin. J. Catal. 2011, 32, 1484–1489. DOI: 10.1016/S1872-2067(10)60263-X.
  • Azadi, M.; Habibi-Yangjeh, A. Microwave-Assisted Facile One-Pot Method for Preparation of BiOI-ZnO Nanocomposites as Novel Dye Adsorbents by Synergistic Collaboration. J. Iran. Chem. Soc. 2015, 12, 909–919. DOI: 10.1007/s13738-014-0555-y.
  • Singh, A. S.; Shelkar, R. S.; Nagarkar, J. M. Palladium(II) on Functionalized NiFe2O4: An Efficient and Recyclable Phosphine-Free Heterogeneous Catalyst for Suzuki Coupling Reaction. Catal. Lett. 2015, 145, 723–730. DOI: 10.1007/s10562-014-1455-6.
  • Nakhaei Pour, A.; Karimi, J.; Taghipoor, S.; Gholizadeh, M.; Hashemian, M. Fischer–Tropsch Synthesis over CNT-Supported Cobalt Catalyst: Effect of Magnetic Field. J. Iran. Chem. Soc. 2017, 14, 1477–1488. DOI: 10.1007/s13738-017-1088-y.
  • Naghizadeh-Alamdari, S.; Habibi-Yangjeh, A. Sonochemical Preparation of AgBr-ZnO Nanocomposites in Water Using One-Pot Method as Highly Efficient Photocatalysts under Visible Light. J. Iran. Chem. Soc. 2015, 12, 1961–1971. DOI: 10.1007/s13738-015-0670-4.
  • Alavi, S. J.; Sadeghian, H.; Seyedi, S. M.; Eshghi, H.; Salimi, A. Magnetically Recoverable AlFe/Te Nanocomposite as a New Catalyst for the Facile Esterification Reaction under Neat Conditions. Appl. Organomet. Chem. 2018, 32, e4167.
  • Farzaneh, F.; Mohammadi, Z.; Azarkamanzad, Z. Immobilized Different Amines on Modified Magnetic Nanoparticles as Catalyst for Biodiesel Production from Soybean Oil. J. Iran. Chem. Soc. 2018, 15, 1625–1632. DOI: 10.1007/s13738-018-1360-9.
  • Shen, X.; Wang, J.; Liu, M.; Li, M.; Lu, J. Preparation of the Hierarchical Ti-Rich TS-1 via TritonX-100-Assisted Synthetic Strategy for the Direct Oxidation of Benzene. Catal. Lett. 2019, 149, 2586–2596. DOI: 10.1007/s10562-019-02735-5.
  • Demir, A.; Topkaya, R.; Baykal, A. Green Synthesis of Superparamagnetic Fe3O4 Nanoparticles with Maltose: Its Magnetic Investigation. Polyhedron. 2013, 65, 282–287. DOI: 10.1016/j.poly.2013.08.041.
  • Yilmaz, E.; Tut, Y.; Turkoglu, O.; Soylak, M. Synthesis and Characterization of Pd Nanoparticle-Modified Magnetic Sm2O3–ZrO2 as Effective Multifunctional Catalyst for Reduction of 2-Nitrophenol and Degradation of Organic Dyes. J. Iran. Chem. Soc. 2018, 15, 1721–1731. DOI: 10.1007/s13738-018-1369-0.
  • Nabid, M. R.; Bide, Y.; Ghalavand, N.; Niknezhad, M. Ni@Pd Core-Shell Nanoparticles Immobilized on Yolk-Shell Fe3O4@Polyaniline Composites as a Highly Efficient, Magnetically Separable and Atom-Economical Catalyst for Reduction of Nitrobenzenes. Appl. Organometal. Chem. 2014, 28, 389–395. DOI: 10.1002/aoc.3133.
  • Pourjavadi, A.; Habibi, Z. Palladium Nanoparticle-Decorated Magnetic Pomegranate Peel-Derived Porous Carbon Nanocomposite as an Excellent Catalyst for Suzuki–Miyaura and Sonogashira Cross-Coupling Reactions. Appl. Organomet. Chem. 2018, 32, e4480.
  • Zare, N.; Zabardasti, A.; Mohammadi, A.; Azarbani, F.; Kakanejadifard, A. Sonochemical Synthesis, Characterization, Biological Applications, and DFT Study of New Nano-Sized Manganese Complex of Azomethine Derivative of Diaminomaleonitrile. J. Iran. Chem. Soc. 2019, 16, 1501–1516. DOI: 10.1007/s13738-019-01626-1.
  • Stepanov, A.; Mustafina, A.; Mendes, R. G.; Rümmeli, M. H.; Gemming, T.; Popova, E.; Nizameev, I.; Kadirov, M. Impact of Heating Mode in Synthesis of Monodisperse Iron-Oxide Nanoparticles via Oleate Decomposition. J. Iran. Chem. Soc. 2016, 13, 299–305. DOI: 10.1007/s13738-015-0737-2.
  • Feizpour, F.; Jafarpour, M.; Rezaeifard, A. Band Gap Modification of TiO2 Nanoparticles by Ascorbic Acid-Stabilized Pd Nanoparticles for Photocatalytic Suzuki–Miyaura and Ullmann Coupling Reactions. Catal. Lett. 2019, 149, 1595–1610. DOI: 10.1007/s10562-019-02749-z.
  • Singh, H.; Rajput, J. K.; Govil, G.; Arora, P.; Badhan, J. Dual Functional Novel Catalytic Cu1 − xZrxFe2O4 (X = 0, 0.5, 1) Nanoparticles for Synthesis of Polysubstituted Pyridines and Sunlight-Driven Degradation of Methylene Blue. Appl. Organomet. Chem. 2018, 32, e4514.
  • Kooti, M.; Nasiri, E. Preparation of an Organic–Inorganic Hybrid Based on Synergy of Brønsted and Lewis Acid Centres as Heterogeneous Magnetic Nanocatalyst for Ultrafast Synthesis of Acetaminophen. Appl. Organomet. Chem. 2018, 32, e3390.
  • Wu, X.; Ding, Z.; Song, N.; Li, L.; Wang, W. Effect of the Rare-Earth Substitution on the Structural, Magnetic and Adsorption Properties in Cobalt Ferrite Nanoparticles. Ceram. Int. 2016, 42, 4246–4255. DOI: 10.1016/j.ceramint.2015.11.100.
  • Wang, D.; Astruc, D. Fast-Growing Field of Magnetically Recyclable Nanocatalysts. Chem. Rev. 2014, 114, 6949–6985. DOI: 10.1021/cr500134h.
  • Sankaranarayanapillai, S.; Volker, S.; Werner, R. T. Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis. Angew. Chem. Int. Ed. 2010, 49, 3428–3459.
  • Mohapatra, S.; Rout, S. R.; Panda, A. B. One-Pot Synthesis of Uniform and Spherically Assembled Functionalized MFe2O4 (M=Co, Mn, Ni) Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2011, 384, 453–460. DOI: 10.1016/j.colsurfa.2011.05.001.
  • El-Shobaky, G. A.; Turky, A. M.; Mostafa, N. Y.; Mohamed, S. K. Effect of Preparation Conditions on Physicochemical, Surface and Catalytic Properties of Cobalt Ferrite Prepared by Coprecipitation. J. Alloys Compd. 2010, 493, 415–422. DOI: 10.1016/j.jallcom.2009.12.115.
  • Salamatmanesh, A.; Kazemi Miraki, M.; Yazdani, E.; Heydari, A. Copper(I)–Caffeine Complex Immobilized on Silica-Coated Magnetite Nanoparticles: A Recyclable and Eco-Friendly Catalyst for Click Chemistry from Organic Halides and Epoxides. Catal. Lett. 2018, 148, 3257–3268. DOI: 10.1007/s10562-018-2523-0.
  • Zhang, M.; Lu, J.; Zhang, J.-N.; Zhang, Z.-H. Magnetic Carbon Nanotube Supported Cu (CoFe2O4/CNT-Cu) Catalyst: A Sustainable Catalyst for the Synthesis of 3-Nitro-2-Arylimidazo[1,2-a]Pyridines. Catal. Commun. 2016, 78, 26–32. DOI: 10.1016/j.catcom.2016.02.004.
  • Gawande, M. B.; Branco, P. S.; Varma, R. S. Nano-Magnetite (Fe3O4) as a Support for Recyclable Catalysts in the Development of Sustainable Methodologies. Chem. Soc. Rev. 2013, 42, 3371. DOI: 10.1039/c3cs35480f.
  • Patil, D.; Chandam, D.; Mulik, A.; Patil, P.; Sankapal, S.; Deshmukh, M. Novel Dibenzo-18-Crown-6 Ether Functionalized Bis-Benzimidazole Derivatives: Synthesis and Antifungal Evaluation. Res. Chem. Intermed. 2016, 42, 2449–2459. DOI: 10.1007/s11164-015-2160-9.
  • Morshedi, A.; Shaterian, H. R. Green Approach to Synthesis of New Series of 6,8a-Dihydropyrido[2,3-d]Pyrimidine Derivatives. J. Iran. Chem. Soc. 2019, 16, 493–500. DOI: 10.1007/s13738-018-1528-3.
  • Ahooie, T. S.; Azizi, N.; Yavari, I.; Hashemi, M. M. Magnetically Separable and Recyclable G-C3N4 Nanocomposite Catalyzed One-Pot Synthesis of Substituted Imidazoles. J. Iran. Chem. Soc. 2018, 15, 855–862. DOI: 10.1007/s13738-017-1284-9.
  • Ibrahim, M.; Malik, I.; Mansour, W.; Sharif, M.; Fettouhi, M.; El Ali, B. Novel (N-Heterocyclic Carbene)Pd(Pyridine)Br2 Complexes for Carbonylative Sonogashira Coupling Reactions: Catalytic Efficiency and Scope for Arylalkynes, Alkylalkynes and Dialkynes. Appl. Organomet. Chem. 2018, 32, e4280.
  • Goud, N. S.; Ghouse, M. S.; Vishnu, J.; Pranay, J.; Alvala, R.; Talla, V.; Qureshi, I. A.; Alvala, M. Synthesis and Biological Evaluation of Novel Heterocyclic Imines Linked Coumarin-Thiazole Hybrids as Anticancer Agents. ACAMC 2019, 19, 557–566. DOI: 10.2174/1871520619666190207140120.
  • Shaterian, H. R.; Oveisi, A. R. Simple Green Approach to the Synthesis of 2-Amino-5-Oxo-4,5- Dihydropyrano[3,2-c]Chromene-3-Carbonitrile Derivatives Catalyzed by 3-Hydroxypropanaminium Acetate (HPAA) as a New Ionic Liquid. JICS 2011, 8, 545–552. DOI: 10.1007/BF03249089.
  • Damavandi, J. A.; Zolfigol, M. A.; Karami, B. Oxidation of 1,2-Dihydroquinolines under Mild and Heterogeneous Conditions. Synth. Commun. 2001, 31, 3183–3187. DOI: 10.1081/SCC-100105895.
  • Rouhani, M.; Ramazani, A. Perlite–SO3H Nanoparticles: Very Efficient and Reusable Catalyst for Three-Component Synthesis of N-Cyclohexyl-3-Aryl-Quinoxaline-2-Amine Derivatives under Ultrasound Irradiation. J. Iran. Chem. Soc. 2018, 15, 2375–2382. DOI: 10.1007/s13738-018-1426-8.
  • Zolfigol, M. A.; Bahrami-Nejad, N.; Afsharnadery, F.; Baghery, S. 1-Methylimidazolium Tricyanomethanide {[HMIM]C(CN)3} as a Nano Structure and Reusable Molten Salt Catalyst for the Synthesis of Tetrahydrobenzo[b]Pyrans via Tandem Knoevenagel-Michael Cyclocondensation and 3,4-Dihydropyrano[c]Chromene Derivatives. J. Mol. Liq. 2016, 221, 851–859. DOI: 10.1016/j.molliq.2016.06.069.
  • Islam, M.; Mondal, S.; Mondal, P.; Roy, A. S.; Tuhina, K.; Mobarok, M.; Paul, S.; Salam, N.; Hossain, D. An Efficient Recyclable Polymer Supported Copper(II) Catalyst for C-N Bond Formation by N-Arylation. Catal. Lett. 2011, 141, 1171–1181. DOI: 10.1007/s10562-011-0606-2.
  • Kolvari, E.; Koukabi, N.; Khoramabadi-Zad, A.; Shiri, A.; Zolfigol, M. A. Alternative Methodologies for Halogenation of Organic Compounds. COS 2014, 10, 837–863. DOI: 10.2174/157017941006140206102541.
  • Arshadi, S.; Vessally, E.; Edjlali, L.; Ghorbani-Kalhor, E.; Hosseinzadeh-Khanmiri, R. N-Propargylic β-Enaminocarbonyls: Powerful and Versatile Building Blocks in Organic Synthesis. RSC Adv. 2017, 7, 13198–13211. DOI: 10.1039/C7RA00746A.
  • Rahmati, A.; Pashmforoush, N. Synthesis of Various Heterocyclic Compounds via Multi-Component Reactions in Water. J. Iran. Chem. Soc. 2015, 12, 993–1036. DOI: 10.1007/s13738-014-0562-z.
  • Li, B.-L.; Zhang, M.; Hu, H.-C.; Du, X.; Zhang, Z.-H. Nano-CoFe2O4 Supported Molybdenum as an Efficient and Magnetically Recoverable Catalyst for a One-Pot, Four-Component Synthesis of Functionalized Pyrroles. New J. Chem. 2014, 38, 2435. DOI: 10.1039/c3nj01368e.
  • Saha, M.; Pradhan, K.; Das, A. R. Facile and Eco-Friendly Synthesis of Chromeno[4,3-b]Pyrrol-4(1H)-One Derivatives Applying Magnetically Recoverable Nano Crystalline CuFe2O4 Involving a Domino Three-Component Reaction in Aqueous Media. RSC Adv. 2016, 6, 55033–55038. DOI: 10.1039/C6RA06979G.
  • Moghaddam, F. M.; Koushki Foroushani, B.; Rezvani, H. R. Nickel Ferrite Nanoparticles: An Efficient and Reusable Nanocatalyst for a Neat, One-Pot and Four-Component Synthesis of Pyrroles. RSC Adv. 2015, 5, 18092–18096. DOI: 10.1039/C4RA09348H.
  • Li, B.-L.; Hu, H.-C.; Mo, L.-P.; Zhang, Z.-H. Nano CoFe2O4 Supported Antimony (Iii) as an Efficient and Recyclable Catalyst for One-Pot Three-Component Synthesis of Multisubstituted Pyrroles. RSC Adv. 2014, 4, 12929–12943. DOI: 10.1039/C3RA47855F.
  • El-Remaily, M.; Abu-Dief, A. M. CuFe2O4 Nanoparticles: An Efficient Heterogeneous Magnetically Separable Catalyst for Synthesis of Some Novel Propynyl-1H-Imidazoles Derivatives. Tetrahedron 2015, 71, 2579–2584. DOI: 10.1016/j.tet.2015.02.057.
  • Sanasi, P. D.; Majji, R. K.; Bandaru, S.; Bassa, S.; Pinninti, S.; Vasamsetty, S.; Korupolu, R. B. Nano Copper Ferrite Catalyzed Sonochemical, One-Pot Three and Four Component Synthesis of Poly Substituted Imidazoles. MRC 2016, 05, 31–44. DOI: 10.4236/mrc.2016.51004.
  • Nemati, F.; Elhampour, A.; Natanzi, M. B. Synthesis and Characterization of Nano-Copper Ferrite as a Magnetically Separable Catalyst for the One-Pot Synthesis of 2,4,5-Trisubstituted and 1,2,4,5-Tetrasubstituted Imidazoles under Solvent-Free Condition. Inorg. Nano-Metal Chem. 2017, 47, 666–671. DOI: 10.1080/15533174.2016.1212223.
  • Payra, S.; Saha, A.; Banerjee, S. Nano-NiFe2O4 Catalyzed Microwave Assisted One-Pot Regioselective Synthesis of Novel 2-Alkoxyimidazo[1,2-a]Pyridines under Aerobic Conditions. RSC Adv. 2016, 6, 12402–12407. DOI: 10.1039/C5RA25540F.
  • Haghshenas Kashani, S.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Mohammadpoor-Baltork, I. Ruthenium Nanoparticles Immobilized on Nano-Silica Functionalized with Thiol-Based Dendrimer: A Nanocomposite Material for Oxidation of Alcohols and Epoxidation of Alkenes. Catal. Lett. 2018, 148, 1110–1123. DOI: 10.1007/s10562-018-2313-8.
  • Zolfigol, M. A.; Khazaei, A.; Faal-Rastegar, T.; Mallakpour, S.; Khavasi, H. R.; Salehi, P.; Fakharian, M. Synthesis of 1,2,3-Triazolylmethoxyphenyl[1,2,4]Triazolo[1,2-a]in-Dazoletrione Derivatives by Combining Click and Multicomponent Reactions. Synthesis 2016, 48, 1518–1524. DOI: 10.1055/s-0035-1561392.
  • Dabiri, M.; Salehi, P.; Baghbanzadeh, M.; Zolfigol, M. A.; Bahramnejad, M. Silica Sulfuric Acid: An Efficient and Versatile Acidic Catalyst for the Rapid and Ecofriendly Synthesis of 1,3,4-Oxadiazoles at Ambient Temperature. Synth. Commun. 2007, 37, 1201–1209. DOI: 10.1080/00397910701199151.
  • Ojaghi Aghbash, K.; Noroozi Pesyan, N.; Şahin, E. Cu(I)-Catalyzed Alkyne–. Azide ‘Click’ Cycloaddition (CuAAC): A Clean, Efficient, and Mild Synthesis of New 1,4-Disubstituted 1H-1,2,3-Triazole-Linked 2-Amino-4,8-Dihydropyrano[3,2-b]Pyran-3-Carbonitrile–Crystal Structure. Res. Chem. Intermed. 2019, 45, 2079–2094.
  • Hajipour, A. R.; Karimzadeh, M.; Fakhari, F.; Karimi, H. CuFeO2/Tetrabutylammonium Bromide Catalyzes Selective Synthesis of 1,4-Disubstituted 1,2,3-Triazoles in Neat Water at Room Temperature. Appl. Organometal. Chem. 2016, 30, 946–948. DOI: 10.1002/aoc.3526.
  • Praveen Kumar, A.; Sudhakara, K.; Kumar, B. P.; Raghavender, A.; Ravi, S.; Keniec, D. N.; Lee, Y.-I. Synthesis of γ-Fe2O3 Nanoparticles and Catalytic Activity of Azide-Alkyne Cycloaddition Reactions. Asian J. Nanosci. Mater. 2018, 1, 172–182.
  • Jain, Y.; Kumari, M.; Singh, R. P.; Kumar, D.; Gupta, R. Sonochemical Decoration of Graphene Oxide with Magnetic Fe3O4@CuO Nanocomposite for Efficient Click Synthesis of Coumarin-Sugar Based Bioconjugates and Their Cytotoxic Activity. Catal. Lett. In press.
  • Lu, J.; Ma, E.-Q.; Liu, Y.-H.; Li, Y.-M.; Mo, L.-P.; Zhang, Z.-H. One-Pot Three-Component Synthesis of 1,2,3-Triazoles Using Magnetic NiFe2O4–Glutamate–Cu as an Efficient Heterogeneous Catalyst in Water. RSC Adv. 2015, 5, 59167–59185. DOI: 10.1039/C5RA09517D.
  • Anil Kumar, B. S. P.; Harsha Vardhan Reddy, K.; Madhav, B.; Ramesh, K.; Nageswar, Y. Magnetically Separable CuFe2O4 Nano Particles Catalyzed Multicomponent Synthesis of 1,4-Disubstituted 1,2,3-Triazoles in Tap Water Using ‘Click Chemistry. Tetrahedron Lett. 2012, 53, 4595–4599. DOI: 10.1016/j.tetlet.2012.06.077.
  • Kumar, A. S.; Reddy, M. A.; Knorn, M.; Reiser, O.; Sreedhar, B. Magnetically Recoverable CuFe2O4 Nanoparticles: Catalyzed Synthesis of Aryl Azides and 1,4-Diaryl-1,2,3-Triazoles from Boronic Acids in Water. Eur. J. Org. Chem. 2013, 2013, 4674–4680. DOI: 10.1002/ejoc.201300343.
  • Abrishami, F.; Ebrahimikia, M.; Rafiee, F. Synthesis of 5-Substituted 1 H-Tetrazoles Using a Recyclable Heterogeneous Nanonickel Ferrite Catalyst. Appl. Organometal. Chem. 2015, 29, 730–735. DOI: 10.1002/aoc.3358.
  • Easmon, J.; Pürstinger, G.; Thies, K.-S.; Heinisch, G.; Hofmann, J. Synthesis, Structure − Activity Relationships, and Antitumor Studies of 2-Benzoxazolyl Hydrazones Derived from Alpha- (N) -Acyl Heteroaromatics. J. Med. Chem. 2006, 49, 6343–6350. DOI: 10.1021/jm060232u.
  • Sarode, S. A.; Bhojane, J. M.; Nagarkar, J. M. Tetrahedron Lett 2015, 56, 206–210. DOI: 10.1016/j.tetlet.2014.11.065.
  • Long, B.; Zhang, J.; Wang, X.; Tang, X.; Wu, Z. Total Synthesis and Biological Evaluation of Wewakazole. Chem. Res. Chin. Univ. 2017, 33, 890–894. DOI: 10.1007/s40242-017-7129-3.
  • Chen, W.; Yang, J. Synthesis of N-Heterocyclic Carbene-PdCl-[(2-Pyridyl)Alkyl Carboxylate] Complexes and Their Catalytic Activities towards Arylation of (Benzo)Oxazoles with Aryl Bromides. J. Organomet. Chem. 2018, 872, 24–30. DOI: 10.1016/j.jorganchem.2018.07.029.
  • Zhou, R.-R.; Cai, Q.; Li, D.-K.; Zhuang, S.-Y.; Wu, Y.-D.; Wu, A.-X. Acid-Promoted Multicomponent Tandem Cyclization to Synthesize Fully Substituted Oxazoles via Robinson-Gabriel-Type Reaction. J. Org. Chem. 2017, 82, 6450–6456. DOI: 10.1021/acs.joc.7b00763.
  • Hajipour, A. R.; Khorsandi, Z. A Comparative Study of the Catalytic Activity of Co- and CoFe2O4-NPs in C–N and C–O Bond Formation: Synthesis of Benzimidazoles and Benzoxazoles from o-Haloanilides. New J. Chem. 2016, 40, 10474–10481. DOI: 10.1039/C6NJ02293F.
  • Yang, D.; Zhu, X.; Wei, W.; Jiang, M.; Zhang, N.; Ren, D.; You, J.; Wang, H. Magnetic Copper Ferrite Nanoparticles: An Inexpensive, Efficient, Recyclable Catalyst for the Synthesis of Substituted Benzoxazoles via Ullmann-Type Coupling under Ligand-Free Conditions. Synlett 2014, 25, 729–735. DOI: 10.1055/s-0033-1340599.
  • Alemi-Tameh, F.; Safaei-Ghomi, J.; Mahmoudi-Hashemi, M.; Teymuri, R. A Comparative Study on the Catalytic Activity of Fe3O4@SiO2–SO3H and Fe3O4@SiO2–NH2 Nanoparticles for the Synthesis of Spiro [Chromeno [2,3-c] Pyrazole-4,3′-Indoline]-Diones under Mild Conditions. Res. Chem. Intermed. 2016, 42, 6391–6406. DOI: 10.1007/s11164-016-2470-6.
  • Divar, M.; Zomorodian, K.; Bastan, S.; Yazdanpanah, S.; Khabnadideh, S. Synthesis of Some Quinazolinone Derivatives Using Magnetic Nanoparticles-Supported Tungstic Acid as Antimicrobial Agents. J. Iran. Chem. Soc. 2018, 15, 1457–1466. DOI: 10.1007/s13738-018-1337-8.
  • Alemi Tameh, F.; Safaei-Ghomi, J. Synthesis of Spiro[Pyrazoloquinoline-Oxindoles] and Spiro[Chromenopyrazolo-Oxindoles] Promoted by Guanidine-Functionalized Magnetic Fe3O4 Nanoparticles. J. Iran. Chem. Soc. 2018, 15, 1633–1637. DOI: 10.1007/s13738-018-1361-8.
  • Moradi, L.; Ataei, Z.; Zahraei, Z. Convenient Synthesis of Spirooxindoles Using SnO2 Nanoparticles as Effective Reusable Catalyst at Room Temperature and Study of Their in Vitro Antimicrobial Activity. J. Iran. Chem. Soc. 2019, 16, 1273–1281. DOI: 10.1007/s13738-019-01598-2.
  • Meghyasi, R.; Safaei-Ghomi, J.; Sharif, M. A. NiFe2O4 Nanoparticles: A Green and Reusable Heterogeneous Catalyst for the Synthesis of Spiro[Indole-3,2′-Pyrrole]-2,5′(1 H, 1′ H) -Diones. J. Chem. Res. 2016, 40, 397–399.
  • Bazgir, A.; Hosseini, G.; Ghahremanzadeh, R. Copper Ferrite Nanoparticles: An Efficient and Reusable Nanocatalyst for a Green One-Pot, Three-Component Synthesis of Spirooxindoles in Water. ACS Comb. Sci. 2013, 15, 530–534. DOI: 10.1021/co400057h.
  • Singh, R.; Ganaie, S. A. An Eco-Compatible Synthesis of Novel Spiro[Acenaphthylene-1,2′[1,3]-Thiazolidine]-2,4′(1H)-Diones Using Thiamine Hydrochloride as Efficient Catalyst in Aqueous Medium. Res. Chem. Intermed. 2017, 43, 45–55. DOI: 10.1007/s11164-016-2604-x.
  • Gaber, M.; El-Wakiel, N.; El-Baradie, K.; Hafez, S. Chromone Schiff Base Complexes: Synthesis, Structural Elucidation, Molecular Modeling, Antitumor, Antimicrobial, and DNA Studies of Co(II), Ni(II), and Cu(II) Complexes. J. Iran. Chem. Soc. 2019, 16, 169–182. DOI: 10.1007/s13738-018-1494-9.
  • Zolfigol, M. A.; Ardeshir, K.; Ahmad Reza, M.-Z.; Zare, A. Ali Reza, H. An Efficient Protocol for the Synthesis of Carboacyclic Nucleosides via Aza-Conjugate Addition Reaction. Iran. J. Chem. Chem. Eng. 2010, 29, 67–73.
  • Desai, K. G.; Raval, J. P.; Desai, K. R. Neat Reaction Technology for the Synthesis of 4-Oxo-Thiazolidines Derived from 2-SH-Benzothiazole and Antimicrobial Screening of Some Synthesized 4-Thiazolidinones. JICS 2006, 3, 233–241. DOI: 10.1007/BF03247213.
  • Khillare, L. D.; Bhosle, M. R.; Deshmukh, A. R.; Mane, R. A. One-Pot Rapid Synthesis of Thiazole-Substituted Pyrazolyl-4-Thiazolidinones Mediated by Diisopropylethylammonium Acetate. Res. Chem. Intermed. 2015, 41, 8955–8964. DOI: 10.1007/s11164-015-1940-6.
  • Dofe, V. S.; Sarkate, A. P.; Azad, R.; Gill, C. H. Green Synthesis and Inhibitory Effect of Novel Quinoline Based Thiazolidinones on the Growth of MCF-7 Human Breast Cancer Cell Line by G2/M Cell Cycle Arrest. Res. Chem. Intermed. 2018, 44, 1149–1160. DOI: 10.1007/s11164-017-3157-3.
  • Safaei-Ghomi, J.; Navvab, M.; Shahbazi-Alavi, H. CoFe2O4@SiO2/PrNH2 Nanoparticles as Highly Efficient and Magnetically Recoverable Catalyst for the Synthesis of 1,3-Thiazolidin-4-Ones. J. Sulfur Chem. 2016, 37, 1–12. DOI: 10.1080/17415993.2016.1169533.
  • Kenchappa, R.; Bodke, Y. D.; Chandrashekar, A.; Telkar, S.; Manjunatha, K. S.; Aruna Sindhe, M. Synthesis of Some 2, 6-Bis (1-Coumarin-2-Yl)-4-(4-Substituted Phenyl) Pyridine Derivatives as Potent Biological Agents. Arab. J. Chem. 2017, 10, S1336–S1344. DOI: 10.1016/j.arabjc.2013.03.020.
  • Zolfigol, M. A.; Bagherzadeh, M.; Niknam, K.; Shirini, F.; Mohammadpoor-Baltork, I.; Ghorbani Choghamarani, A.; Baghbanzadeh, M. Oxidation of 1,4-Dihydropyridines under Mild and Heterogeneous Conditions Using Solid Acids. JICS 2006, 3, 73–80. DOI: 10.1007/BF03245793.
  • Dayan, O.; Demirmen, S.; Özdemir, N. Heteroleptic Ruthenium(II) Complexes of 2-(2-Pyridyl)Benzimidazoles: A Study of Catalytic Efficiency towards Transfer Hydrogenation of Acetophenone. Polyhedron 2015, 85, 926–932. DOI: 10.1016/j.poly.2014.10.012.
  • Guin, S.; Gupta, R.; Majee, D.; Samanta, S. DABCO- and DBU-Promoted One-Pot Reaction of N-Sulfonyl Ketimines with Morita-Baylis-Hillman Carbonates: A Sequential Approach to (2-Hydroxyaryl)Nicotinate Derivatives. Beilstein J. Org. Chem. 2018, 14, 2771–2778. DOI: 10.3762/bjoc.14.254.
  • Rasouli, N. Application of a Novel, Efficient and Recyclable Photo Redox Catalyst (Zn–Al Layered Double Hydroxide/Eosin) for the Synthesis of Substituted Pyridine Derivatives under Visible Light Irradiation. Appl. Organomet. Chem. 2018, 32, e4585.
  • Mehdipour, E.; Shafieyoon, P.; Salahvarzi, M.; Amani, V. Tetrakis [N-(2-Pyridyl) Sulfonamide] Di Palladium: Synthesize, X-Ray Diffraction, Antibacterial Properties and as a Novel Binuclear Pd-Complex for Coupling Reactions. J. Iran. Chem. Soc. 2017, 14, 1575–1582. DOI: 10.1007/s13738-017-1098-9.
  • Sobhani, S.; Honarmand, M. Ionic Liquid Immobilized on γ-Fe2O3 Nanoparticles: A New Magnetically Recyclable Heterogeneous Catalyst for One-Pot Three-Component Synthesis of 2-Amino-3,5-Dicarbonitrile-6-Thio-Pyridines. Appl. Catal. A Gen. 2013, 467, 456–462. DOI: 10.1016/j.apcata.2013.08.006.
  • Zhang, M.; Liu, P.; Liu, Y.-H.; Shang, Z.-R.; Hu, H.-C.; Zhang, Z.-H. Magnetically Separable Graphene Oxide Anchored Sulfonic Acid: A Novel, Highly Efficient and Recyclable Catalyst for One-Pot Synthesis of 3,6-Di(Pyridin-3-Yl)-1H-Pyrazolo[3,4-b]Pyridine-5-Carbonitriles in Deep Eutectic Solvent under Microwave Irradiation. RSC Adv. 2016, 6, 106160–106170. DOI: 10.1039/C6RA19579B.
  • Borhade, S. R.; Suresh, B. Waghmode, An efficient synthesis of 4-arylquinolin-2(1 H)-ones and 3-alkenyl-4-arylquinolin-2(1 H)-ones using a Pd/NiFe204-catalyzed consecutive Heck reaction. Can. J. Chem. 2011, 89, 1355–1363. DOI: 10.1139/v11-103.
  • Ahmed, N.; Kumar, H.; Babu, B. V. Intramolecular Aminolysis of 2-Aminochalcone Epoxides Using InBr3 or BiCl3 as Efficient Catalysts. Synth. Commun. 2013, 43, 567–581. DOI: 10.1080/00397911.2011.604571.
  • Mohapatra, R. K.; Das, P. K.; Pradhan, M. K.; Maihub, A. A.; El-Ajaily, M. M. Biological Aspects of Schiff Base–Metal Complexes Derived from Benzaldehydes: An Overview. J. Iran. Chem. Soc. 2018, 15, 2193–2227. DOI: 10.1007/s13738-018-1411-2.
  • Adibi, H.; Hosseinzadeh, L.; Mahdian, M.; Foroumadi, A.; Zolfigol, M. A.; Mallakpour, S. Synthesis of 7-Substituted Fluoroquinolone Derivatives Containing Triazolidine Dione Moiety and in Vitro Evaluation of Their Cytotoxic Effects. J. Rep. Pharm. Sci. 2013, 2, 75–82.
  • Madhu, B.; Raja Sekar, B.; Venkata Ramana Reddy, C. H.; Dubey, P. K. Effect of Heterocyclic Ring System on Formation of Dimeric Quinolones under Catalyst-Free Conditions: A Green Approach. Res. Chem. Intermed. 2017, 43, 6993–7012. DOI: 10.1007/s11164-017-3032-2.
  • Messaoudi, S.; Gabillet, M.; Brion, J. D.; Alami, M. An Efficient Synthesis of 3-Triazolyl-2(1H)-Quinolones by CuTC-Catalyzed Azide-Alkyne Cycloaddition Reaction. Appl. Organometal. Chem. 2013, 27, 155–158. DOI: 10.1002/aoc.2946.
  • Ahankar, H.; Ramazani, A.; Joo, S. W. Magnetic Nickel Ferrite Nanoparticles as an Efficient Catalyst for the Preparation of Polyhydroquinoline Derivatives under Microwave Irradiation in Solvent-Free Conditions. Res. Chem. Intermed. 2016, 42, 2487–2500. DOI: 10.1007/s11164-015-2163-6.
  • Aly, H. M. Synthesis of Bifunctional Thieno[3,2-c]Pyrazole, Pyrazolothieno[2,3-d]Pyrimidin Derivatives and Their Antimicrobial Activities. J. Iran. Chem. Soc. 2016, 13, 999–1009. DOI: 10.1007/s13738-016-0813-2.
  • Azarifar, D.; Khaleghi-Abbasabadi, M. Fe3O4-Supported N-Pyridin-4-Amine-Grafted Graphene Oxide as Efficient and Magnetically Separable Novel Nanocatalyst for Green Synthesis of 4H-Chromenes and Dihydropyrano[2,3-c]Pyrazole Derivatives in Water. Res. Chem. Intermed. 2019, 45, 199–222. DOI: 10.1007/s11164-018-3597-4.
  • Honarmand, M.; Naeimi, A.; Zahedifar, M. Nanoammonium Salt: A Novel and Recyclable Organocatalyst for One-Pot Three-Component Synthesis of 2-Amino-3-Cyano-4H-Pyran Derivatives. J. Iran. Chem. Soc. 2017, 14, 1875–1888. DOI: 10.1007/s13738-017-1127-8.
  • Alinezhad, H.; Tarahomi, M.; Maleki, B.; Amiri, A. SO3H-Functionalized Nano-MGO-D-NH2: Synthesis, Characterization and Application for One-Pot Synthesis of Pyrano[2,3- d] Pyrimidinone and Tetrahydrobenzo [b] Pyran Derivatives in Aqueous Media. Appl. Organometal. Chem. 2019, 33, e4661. DOI: 10.1002/aoc.4661.
  • Bandaru, S.; Majji, R. K.; Bassa, S.; Chilla, P. N.; Yellapragada, R.; Vasamsetty, S.; Jeldi, R. K.; Korupolu, R. B.; Sanasi, P. D. Magnetic Nano Cobalt Ferrite Catalyzed Synthesis of 4H-Pyrano[3,2-H]Quinoline Derivatives under Microwave Irradiation. Green Sustain. Chem. 2016, 06, 101–109. DOI: 10.4236/gsc.2016.62009.
  • Rajput, J. K.; Kaur, G. Synthesis and Applications of CoFe2O4 Nanoparticles for Multicomponent Reactions. Catal. Sci. Technol. 2014, 4, 142–151. DOI: 10.1039/C3CY00594A.
  • Poor Heravi, M. R.; Morsalie, N. Nickel Ferrite as a Recyclable Nanocatalyst for Synthesis of Novel Highly Substituted 1,4-Dihydropyrano[2,3-c]Pyrazole Derivatives. Iran. Chem. Commun. 2018, 6, 87–96.
  • Ganta, R. K.; Ramgopal, A.; Ramesh, C.; Babu, K. R.; Krishna Kumar, M. M.; Rao, B. V. Four-Component, One-Pot Synthesis of Spiropyrazolo Pyrimidine Derivatives by Using Recyclable Nanocopper Ferrite Catalyst and Antibacterial Studies. Synth. Commun. 2016, 46, 1999–2008. DOI: 10.1080/00397911.2016.1244271.
  • Tayebee, R.; Pejhan, A.; Ramshini, H.; Maleki, B.; Erfaninia, N.; Tabatabaie, Z.; Esmaeili, E. Equisetum Arvense as an Abundant Source of Silica Nanoparticles. SiO2/H3PW12O40 Nanohybrid Material as an Efficient and Environmental Benign Catalyst in the Synthesis of 2-Amino-4H-Chromenes under Solvent-Free Conditions. Appl. Organomet. Chem. 2018, 32, e3924.
  • Pisani, L.; Catto, M.; De Palma, A.; Farina, R.; Cellamare, S.; Altomare, C. D. Discovery of Potent Dual Binding Site Acetylcholinesterase Inhibitors via Homo- and Heterodimerization of Coumarin-Based Moieties. ChemMedChem. 2017, 12, 1349–1358. DOI: 10.1002/cmdc.201700282.
  • Wang, X.; Liang, H.; Zeng, K.; Zhao, M.; Tu, P.; Li, J.; Jiang, Y. Panitins A-G: Coumarin Derivatives from Murraya Paniculata from Guangxi Province, China Show Variable NO Inhibitory Activity. Phytochemistry 2019, 162, 224–231. DOI: 10.1016/j.phytochem.2019.03.012.
  • Srikrishna, D.; Dubey, P. K. Synthesis of Novel Substituted 3-(4-((1H-Benzo[d]Imidazol-2-Ylthio)Methyl)-1-Phenyl-1H-Pyrazol-3-Yl)-2H-Chromen-2-Ones: Various Approaches. Res. Chem. Intermed. 2018, 44, 4455–4468. DOI: 10.1007/s11164-018-3397-x.
  • Rizk, S. A.; Elsayed, G. A.; El-Hashash, M. A. One-Pot Synthesis, Spectroscopic Characterization and DFT Study of Novel 8-Azacoumarin Derivatives as Eco-Friendly Insecticidal Agents. J. Iran. Chem. Soc. 2018, 15, 2093–2105. DOI: 10.1007/s13738-018-1402-3.
  • Abbasi, F.; Azizi, N.; Abdoli-Senejani, M. Highly Efficient Synthesis of Dicoumarols and Xanthene Derivatives in Presence of Brønsted–Lewis Acidic Ionic Liquids Catalyst. J. Iran. Chem. Soc. 2017, 14, 2097–2103. DOI: 10.1007/s13738-017-1146-5.
  • Woźniakiewicz, M.; Gładysz, M.; Nowak, P. M.; Kędzior, J.; Kościelniak, P. Separation of 20 Coumarin Derivatives Using the Capillary Electrophoresis Method Optimized by a Series of Doehlert Experimental Designs. Talanta 2017, 167, 714–724. DOI: 10.1016/j.talanta.2017.02.017.
  • Yu, D.; Suzuki, M.; Xie, L.; Morris-Natschke, S. L.; Lee, K. H. Recent Progress in the Development of Coumarin Derivatives as Potent anti-HIV Agents. Med. Res. Rev. 2003, 23, 322–345. DOI: 10.1002/med.10034.
  • Baghbanian, S. M.; Farhang, M. CuFe2O4 Nanoparticles: A Magnetically Recoverable and Reusable Catalyst for the Synthesis of Coumarins via Pechmann Reaction in Water. Synth. Commun. 2014, 44, 697–706. DOI: 10.1080/00397911.2013.835423.
  • Moosavi-Zare, A. R.; Zolfigol, M. A.; Khaledian, O.; Khakyzadeh, V.; Farahani, M. D.; Beyzavi, M. H.; Kruger, H. G. Tandem Knoevenagel-Michael-Cyclocondensation Reaction of Malononitrile, Various Aldehydes and 2-Naphthol over Acetic Acid Functionalized Ionic Liquid. Chem. Eng. J. 2014, 248, 122–127. DOI: 10.1016/j.cej.2014.03.035.
  • Amirheidari, B.; Seifi, M.; Abaszadeh, M. Evaluation of Magnetically Recyclable Nano-Fe3O4 as a Green Catalyst for the Synthesis of Mono- and Bis-Tetrahydro-4H-Chromene and Mono and Bis 1,4-Dihydropyridine Derivatives. Res. Chem. Intermed. 2016, 42, 3413–3423. DOI: 10.1007/s11164-015-2220-1.
  • Sajadikhah, S. S.; Maghsoodlou, M. T.; Hazeri, N.; Norouzi, M.; Moein, M. A Green and Efficient One-Pot Three-Component Synthesis of Dihydropyrano[3,2-c]Chromenes Using NaCl in Hydroalcoholic Media. Res. Chem. Intermed. 2015, 41, 8665–8672. DOI: 10.1007/s11164-014-1918-9.
  • Rajput, J. K.; Arora, P.; Kaur, G.; Kaur, M. CuFe2O4 Magnetic Heterogeneous Nanocatalyst: Low Power Sonochemical-Coprecipitation Preparation and Applications in Synthesis of 4H-Chromene-3-Carbonitrile Scaffolds. Ultrason. Sonochem. 2015, 26, 229–240. DOI: 10.1016/j.ultsonch.2015.01.008.
  • Ghaani, M.; Saffari, J. Synthesis of CuFe2O4 Nanoparticles by a new co-precipitation method and using them as Efficient Catalyst for One-pot Synthesis of Naphthoxazinones. J. Nanostruct. 2016, 6, 172–178. DOI: 10.7508/jns.2016.02.010.
  • Khojastehnezhad, A.; Rahimizadeh, M.; Eshghi, H.; Moeinpour, F.; Bakavoli, M. Ferric Hydrogen Sulfate Supported on Silica-Coated Nickel Ferrite Nanoparticles as New and Green Magnetically Separable Catalyst for 1,8 Dioxodecahydroacridine Synthesis. Chin. J. Catal. 2014, 35, 376–382. DOI: 10.1016/S1872-2067(14)60001-2.
  • Dabholkar, V.; Kurade, S.; Badhe, K. Synthesis of 1H-Pyrazolo [1,2-b] Phthalazine-5, 10-Dione Derivatives Using NiFe2O4 Nanoparticle as a Heterogeneous Catalyst. Der Pharma Chem. 2018, 10, 135–141.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.