Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 7
329
Views
2
CrossRef citations to date
0
Altmetric
ARTICLES

Ligand-free copper-catalyzed denitrogenative arylation of phosphorylamides with arylhydrazines

, , &
Pages 947-957 | Received 06 Dec 2019, Published online: 19 Feb 2020

References

  • (a) McCarthy, M.; Guiry, P. J.; Axially Chiral Bidentate Ligands in Asymmetric Catalysis. Tetrahedron. 2001, 57, 3809–3844. DOI: 10.1016/S0040-4020(01)00087-4. (b) Tang, W.; Zhang, X.; New Chiral Phosphorus Ligands for Enantioselective Hydrogenation. Chem. Rev. 2003, 103, 3029–3070. DOI: 10.1021/cr020049i. (c) Methot, J. L.; Roush, W. R.; Nucleophilic Phosphine Organocatalysis. Adv. Synth. Catal. 2004, 346, 1035–1050. DOI: 10.1002/adsc.200404087. (d) Köhn, M.; Breinbauer, R.; The Staudinger Ligation—a Gift to Chemical Biology. Angew. Chem. Int. Ed. 2004, 43, 3106–3116. DOI: 10.1002/anie.200401744. (e) Grushin, V. V.; Mixed Phosphine − Phosphine Oxide Ligands. Chem. Rev. 2004, 104, 1629–1662. DOI: 10.1021/cr030026j. (f) Grabulosa, A.; Granell, J.; Muller, G.; Preparation of Optically Pure P-Stereogenic Trivalent Phosphorus Compounds. Coord. Chem. Rev. 2007, 251, 25–90. DOI: 10.1016/j.ccr.2006.05.009. (g) Lühr, S.; Holz, J.; Börner, A.; The Synthesis of Chiral Phosphorus Ligands for Use in Homogeneous Metal Catalysis. ChemCatChem. 2011, 3, 1708–1730. DOI: 10.1002/cctc.201100164.
  • (a) K. B. Dillon, F. Mathey, J. F. Nixon. Phosphorus-Carbon Heterocyclic Chemistry. In Phosphorus: The Carbon Copy; John Wiley & Sons: Chichester, 1998. (b) Seto, H.; Kuzuyama, T.; Seto, H.; Kuzuyama, T.; Bioactive Natural Products with Carbon–Phosphorus Bonds and Their Biosynthesis. Nat. Prod. Rep. 1999, 16, 589–596. DOI: 10.1039/a809398i. (c) Peng, A. Y.; Ding, Y. X.; Synthesis of 2H-1,2-Oxaphosphorin 2-Oxides via Ag2CO3-Catalyzed Cyclization of (Z)-2-Alken-4-Ynylphosphonic Monoesters. Org. Lett. 2005, 7, 3299–3301. DOI: 10.1021/ol051126+. (d) Li, X.; Zhang, D.; Pang, H.; Shen, F.; Fu, H.; Jiang, Y.; Zhao, Y.; Synthesis of a Diverse Series of Phosphacoumarins with Biological Activity. Org. Lett. 2005, 7, 4919–4922. DOI: 10.1021/ol051871m. (e) Li, B.; Zhou, B.; Lu, H.; Ma, L.; Peng, A.-Y.; Phosphaisocoumarins as a New Class of Potent Inhibitors for Pancreatic Cholesterol Esterase. Eur. J. Med. Chem. 2010, 45, 1955–1963. DOI: 10.1016/j.ejmech.2010.01.038. (f) Ruda, G. F.; Wong, P. E.; Alibu, V. P.; Norval, S.; Read, K. D.; Barrett, M. P.; Gilbert, I. H.; Aryl Phosphoramidates of 5-Phospho Erythronohydroxamic Acid, a New Class of Potent Trypanocidal Compounds. J. Med. Chem. 2010, 53, 6071–6078. DOI: 10.1021/jm1004754.
  • (a) Rewcastle, G. W.; Baguley, B. C.; Cain, B. F.; Potential Antitumor Agents. 37. Organophosphorus Derivatives of 9-Anilinoacridine. J. Med. Chem. 1982, 25, 1231–1235. DOI: 10.1021/jm00352a027. (b) Hrubiec, R. T.; Shyam, K.; Cosby, L. A.; Furubayashi, R.; Sartorelli, A. C.; Synthesis and Evaluation of 2-Substituted 1-Methyl-1-(4-Tolylsulfonyl)Hydrazines as Antineoplastic Agents. J. Med. Chem. 1986, 29, 1299–1301. DOI: 10.1021/jm00157a033. (c) Sørensen, M. D.; Blaehr, L. K. A.; Christensen, M. K.; Høyer, T.; Latini, S.; Hjarnaa, P.-J. V.; Björkling, F.; Cyclic Phosphinamides and Phosphonamides, Novel Series of Potent Matrix Metalloproteinase Inhibitors with Antitumour Activity. Bioorg. Med. Chem. 2003, 11, 5461–5484. DOI: 10.1016/j.bmc.2003.09.015. (d) Mucha, A.; Kunert, A.; Grembecka, J.; Pawełczak, M.; Kafarski, P.; A Phosphonamidate Containing Aromatic N-Terminal Amino Group as Inhibitor of Leucine Aminopeptidase—Design, Synthesis and Stability. Eur. J. Med. Chem. 2006, 41, 768–772. and the citations therein. DOI: 10.1016/j.ejmech.2006.03.023.
  • (a) Liu, L.; Zhang, A.-A.; Wang, Y.; Zhang, F.; Zuo, Z.; Zhao, W.-X.; Feng, C.-L.; Ma, W.; Asymmetric Synthesis of P-Stereogenic Phosphinic Amides via Pd(0)-Catalyzed Enantioselective Intramolecular C–H Arylation. Org. Lett. 2015, 17, 2046–2049. DOI: 10.1021/acs.orglett.5b00122. (b) Han, Z. S.; Zhang, L.; Xu, Y.; Sieber, J. D.; Marsini, M. A.; Li, Z.; Reeves, J. T.; Fandrick, K. R.; Patel, N. D.; Desrosiers, J.-N.; et al. Efficient Asymmetric Synthesis of Structurally Diverse P-Stereogenic Phosphinamides for Catalyst Design. Angew. Chem. Int. Ed. 2015, 54, 5474–5477. DOI: 10.1002/anie.201500350. (c)Wang, L.; Du, Z.; Wu, Q.; Jin, R.; Bian, Z.; Kang, C.; Guo, H.; Ma, X.; Gao, L.; Organocatalytic Enantioselective Synthesis of P -Stereogenic Chiral Oxazaphospholidines. Eur. J. Org. Chem. 2016, 2016, 2024–2028. DOI: 10.1002/ejoc.201600100.
  • Stankevič, M.; Bazan, J.; Two-Fold Modification of the Phenyl Substituent in Phenylphosphonic Acid Monoester Monoamides. J. Org. Chem. 2012, 77, 8244–8256. and citations therein. DOI: 10.1021/jo301526k.
  • (a) Tang, W.; Ding, Y.-X.; Synthesis of Phosphaisoquinolin-1-Ones by Pd(II)-Catalyzed Cyclization of o -(1-Alkynyl)Phenylphosphonamide Monoesters. J. Org. Chem. 2006, 71, 8489–8492. DOI: 10.1021/jo0614644. (b) Park, S.; Seo, B.; Shin, S.; Son, J.-Y.; Lee, P. H.; Rhodium-Catalyzed Oxidative Coupling through C–H Activation and Annulation Directed by Phosphonamide and Phosphinamide Groups. Chem. Commun. 2013, 49, 8671. DOI: 10.1039/c3cc44995e.l. (c) Kim, Y. R.; Cho, S.; Lee, P. H.; Metal-Free Azaphosphaannulation of Phosphonamides through Intramolecular Oxidative C–N Bond Formation. Org. Lett. 2014, 16, 3098–3101. DOI: 10.1021/ol501207w. (d) Nguyen, T. T.; Grigorjeva, L.; Daugulis, O.; Cobalt-Catalyzed, Aminoquinoline-Directed Functionalization of Phosphinic Amide sp 2 C–H Bonds. ACS Catal. 2016, 6, 551–554. DOI: 10.1021/acscatal.5b02391.
  • Li, J.; Zhang, S. L.; Tao, C. Z.; Fu, Y.; Guo, Q. X.; Cu-Catalyzed Arylation of Phosphinic Amide Facilitated by (±)-Trans-Cyclohexane-1,2-Diamine. Chin. Chem. Lett. 2007, 18, 1033–1036. DOI: 10.1016/j.cclet.2007.07.028.
  • Zhong, L.; Su, Q.; Xiao, J.; Peng, Z.; Dong, W.; Zhang, Y.; An, D.; Ligand-Free Copper-Catalyzed Arylation of Phosphonamides and Phosphinamides with Aryl Siloxanes. Asian J. Org. Chem. 2017, 6, 1072–1079. DOI: 10.1002/ajoc.201700110.
  • Xu, Y.; Su, Q.; Dong, W.; Peng, Z.; An, D.; The Chan-Evans-Lam N-Arylation of Phosphonic/Phosphinic Amides. Tetrahedron. 2017, 73, 4602–4609. DOI: 10.1016/j.tet.2017.06.028.
  • (a) Tomakinian, T.; Guillot, R.; Kouklovsky, C.; Vincent, G.; Synthesis of Benzofuro[3,2-b]Indoline Amines via Deamination-Interrupted Fischer Indolization and Their Unexpected Reactivity towards Nucleophiles. Chem. Commun. 2016, 52, 5443–5446. DOI: 10.1039/C6CC00365F. (b) Wei, W.; Wen, J.; Yang, D.; Guo, M.; Wang, Y.; You, J.; Wang, H.; Direct and Metal-Free Arylsulfonylation of Alkynes with Sulfonylhydrazides for the Construction of 3-Sulfonated Coumarins. Chem. Commun. 2015, 51, 768–771. DOI: 10.1039/C4CC08117J. (c) Senadi, G. C.; Hu, W. P.; Lu, T. Y.; Garkhedkar, A. M.; Vandavasi, J. K.; Wang, J. J.; I 2 –TBHP-Catalyzed Oxidative Cross-Coupling of N -Sulfonyl Hydrazones and Isocyanides to 5-Aminopyrazoles. Org. Lett. 2015, 17, 1521–1524. DOI: 10.1021/acs.orglett.5b00398. (d) Wu, Q.; Liu, P.; Pan, Y. M.; Xu, Y. L.; Wang, H. S.; Cu(OTf)2-Catalyzed Three-Component Annulation Reaction: one-Pot Synthesis of 4,5-Dihydropyrazole from Aldehydes, Hydrazines and Alkenes. RSC Adv. 2012, 2, 10167–10170. DOI: 10.1039/c2ra21106h. (e) Wang, X.; Pan, Y. M.; Huang, X. C.; Mao, Z. Y.; Wang, H. S.; A Novel Methodology for Synthesis of Dihydropyrazole Derivatives as Potential Anticancer Agents. Org. Biomol. Chem. 2014, 12, 2028–2032. DOI: 10.1039/C3OB42432D. (f) Yao, P.; Pd-Catalyzed Homocoupling of Arylhydrazines via C―N Cleavage under O 2. Appl. Organometal. Chem. 2014, 28, 194–197. DOI: 10.1002/aoc.3108.
  • Zhu, M. K.; Zhao, J. F.; Loh, T. P.; Palladium-Catalyzed C–C Bond Formation of Arylhydrazines with Olefins via Carbon–Nitrogen Bond Cleavage. Org. Lett. 2011, 13, 6308–6311. DOI: 10.1021/ol202862t.
  • (a) Chen, Y.; Guo, S.; Li, K.; Qu, J.; Yuan, H.; Hua, Q.; Chen, B.; Palladium-Catalyzed Direct Denitrogenative C-3-Arylation of 1 H -Indoles with Arylhydrazines Using Air as the Oxidant. Adv. Synth. Catal. 2013, 355, 711–715. DOI: 10.1002/adsc.201200997. (b) Peng, Z.; Hu, G.; Qiao, H.; Xu, P.; Gao, Y.; Zhao, Y.; Palladium-Catalyzed Suzuki Cross-Coupling of Arylhydrazines via C–N Bond Cleavage. J. Org. Chem. 2014, 79, 2733–2738. DOI: 10.1021/jo500026g. (c) Ravi, M.; Chauhan, P.; Kant, R.; Shukla, S. K.; Yadav, P. P.; Transition-Metal-Free C-3 Arylation of Quinoline-4-Ones with Arylhydrazines. J. Org. Chem. 2015, 80, 5369–5376. DOI: 10.1021/acs.joc.5b00739. (d) Zhang, H.; Wang, C.; Li, Z.; Wang, Z.; Palladium-Catalyzed Denitrogenative Hiyama Cross-Coupling with Arylhydrazines under Air. Tetrahedron. Lett. 2015, 56, 5371–5376. DOI: 10.1016/j.tetlet.2015.06.095. (e) Taniguchi, T.; Imoto, M.; Takeda, M.; Matsumoto, F.; Nakai, T.; Mihara, M.; Mizuno, T.; Nomoto, A.; Ogawa, A.; Metal-Free C–H Arylation of Aminoheterocycles with Arylhydrazines. Tetrahedron. 2016, 72, 4132–4140. DOI: 10.1016/j.tet.2016.05.056. (f) Zhang, J. Q.; Cao, J.; Li, W.; Li, S. M.; Li, Y. K.; Wang, J. T.; Tang, L.; Palladium/Copper-Catalyzed Arylation of Alkenes with N′-acyl arylhydrazines. New J. Chem. 2017, 41, 437–441. DOI: 10.1039/C6NJ03718F. (g) Kocaoğlu, E.; Karaman, M. A.; Tokgöz, H.; Talaz, O.; Transition-Metal Catalyst Free Oxidative Radical Arylation of N -Methylpyrrole. ACS Omega. 2017, 2, 5000–5004. DOI: 10.1021/acsomega.7b00988. (h) Wang, X.; Huang, Y.; Xu, Y.; Tang, X.; Wu, W.; Jiang, H.; Palladium-Catalyzed Denitrogenative Synthesis of Aryl Ketones from Arylhydrazines and Nitriles Using O2 as Sole Oxidant. J. Org. Chem. 2017, 82, 2211–2218. . DOI: 10.1021/acs.joc.6b02697.
  • (a) Xu, W.; Hu, G.; Xu, P.; Gao, Y.; Yin, Y.; Zhao, Y.; Palladium-Catalyzed C–P Cross-Coupling of Arylhydrazines with H-Phosphonates via C–N Bond Cleavage. Adv. Synth. Catal. 2014, 356, 2948–2954. DOI: 10.1002/adsc.201400155. (b) Chen, S.-Y.; Zeng, R.-S.; Zou, J.-P.; Asekun, O. T.; Copper-Catalyzed Coupling Reaction of Arylhydrazines and Trialkylphosphites. J. Org. Chem. 2014, 79, 1449–1453. DOI: 10.1021/jo4022474.
  • (a) Wang, C.; Zhang, Z.; Tu, Y.; Li, Y.; Wu, J.; Zhao, J.; Palladium-Catalyzed Oxidative Cross-Coupling of Arylhydrazines and Arenethiols with Molecular Oxygen as the Sole Oxidant. J. Org. Chem. 2018, 83, 2389–2394. DOI: 10.1021/acs.joc.7b02926. (b) Zhao, Z.; Lian, Y.; Zhao, C.; Wang, B.; Palladium-Catalyzed Desulfitative Arylation of Sulfonamides with Sodium Arylsulfinates. Syn. Commun. 2018, 48, 1436–1442. DOI: 10.1080/00397911.2018.1452262.
  • Sun, W. B.; Zhang, P. Z.; Jiang, T.; Li, C. K.; An, L. T.; Shoberu, A.; Zou, J. P.; CoPc/Cu(OAc)2-Catalyzed N-Arylation of Amines with Arylhydrazines Leading to N-Aryl Amines. Tetrahedron. 2016, 72, 6477–6483. DOI: 10.1016/j.tet.2016.08.058.
  • Dong, W.; Liu, C.; Ma, X.; Zhang, Y.; Peng, Z.; Xie, D.; An, D.; Copper-Catalyzed Denitrogenative N-Arylation of Sulfoximines and Sulfonamides with Arylhydrazines. Tetrahedron. 2019, 75, 3886–3893. DOI: 10.1016/j.tet.2019.05.039.
  • Gerson, F.; Huber, W., Eds. Organic Radicals Centered on One, Two, or Three Atoms. In Electron Spin Resonance Spectroscopy of Organic Radicals, Wiley-VCH: Weinheim, 2003, pp 185.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.