Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 7
436
Views
19
CrossRef citations to date
0
Altmetric
ARTICLES

Green synthesis of chiral aromatic alcohols with Lactobacillus kefiri P2 as a novel biocatalyst

, &
Pages 1035-1045 | Received 03 Feb 2020, Published online: 21 Feb 2020

References

  • Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T. Analysis of the Reactions Used for the Preparation of Drug Candidate Molecules. Org. Biomol. Chem. 2006, 4, 2337. DOI: 10.1039/b602413k.
  • Sharma, S. K.; Husain, M.; Kumar, R.; Samuelson, L. A.; Kumar, J.; Watterson, A. C.; Parmar, V. S. Biocatalytic Routes toward Pharmaceutically Important Precursors and Novel Polymeric Systems. Pure Appl Chem. 2005, 77, 209–226. DOI: 10.1351/pac200577010209.
  • Lichman, B. R.; Zhao, J.; Hailes, H. C.; Ward, J. M. Enzyme Catalysed Pictet-Spengler Formation of Chiral 1,1′-Disubstituted- and Spiro-Tetrahydroisoquinolines. Nat. Commun. 2017, 8, 14883. DOI: 10.1038/ncomms14883.
  • Yılmaz, D.; Şahin, E.; Dertli, E. Highly Enantioselective Production of Chiral Secondary Alcohols Using Lactobacillus Paracasei BD101 as a New Whole Cell Biocatalyst and Evaluation of Their Antimicrobial Effects. Chem. Biodiversity. 2017, 14, e1700269. DOI: 10.1002/cbdv.201700269.
  • Naeem, M.; Rehman, A. U.; Shen, B.; Ye, L.; Yu, H. Semi-Rational Engineering of Carbonyl Reductase YueD for Efficient Biosynthesis of Halogenated Alcohols with in Situ Cofactor Regeneration. Biochem. Eng. J. 2018, 137, 62–70. DOI: 10.1016/j.bej.2018.05.008.
  • Honda, K.; Inoue, M.; Ono, T.; Okano, K.; Dekishima, Y.; Kawabata, H. Improvement of Operational Stability of Ogataea Minuta Carbonyl Reductase for Chiral Alcohol Production. J Biosci Bioeng. 2017, 123, 673–678. DOI: 10.1016/j.jbiosc.2017.01.016.
  • Javidnia, K.; Faghih-Mirzaei, E.; Miri, R.; Attarroshan, M.; Zomorodian, K. Indian J. Pharm. Sci. 2016, 78, 73. DOI: 10.1016/j.bej.2018.05.008.
  • Patel, R. N. Biocatalysis: Synthesis of Key Intermediates for Development of Pharmaceuticals. ACS Catal. 2011, 1, 1056–1074. DOI: 10.1021/cs200219b.
  • Rouf, A.; Taneja, S. C. Synthesis of Single-Enantiomer Bioactive Molecules: A Brief Overview. Chirality. 2014, 26, 63–78. DOI: 10.1002/chir.22268.
  • Şahin, E. Debaryomyces Hansenii as a New Biocatalyst in the Asymmetric Reduction of Substituted Acetophenones. Biocatal. Biotransform. 2017, 35, 363–371. DOI: 10.1080/10242422.2017.1348500.
  • Şahin, E.; Dertli, E. Highly Enantioselective Production of Chiral Secondary Alcohols with Candida Zeylanoides as a New Whole Cell Biocatalyst. Chem. Biodiversity. 2017, 14, e1700121. DOI: 10.1002/cbdv.201700121.
  • Panunzio, M.; Rossi, K.; Tamanini, E.; Campana, E.; Martelli, G. Synthesis of Enantiomerically Pure (S)- and (R)-Fluoxetine (Prozac®) via a Hetero Diels–Alder Strategy. Tetrahedron: Asymmetry. 2004, 15, 3489–3493. DOI: 10.1016/j.tetasy.2004.09.009.
  • Sukhorukov, A. Y.; Sukhanova, A. A.; Zlotin, S. G. Stereoselective Reactions of Nitro Compounds in the Synthesis of Natural Compound Analogs and Active Pharmaceutical Ingredients. Tetrahedron. 2016, 72, 6191–6281. DOI: 10.1016/j.tet.2016.07.067.
  • Wujkowska, Z.; Jarzyński, S.; Pieczonka, A. M.; Leśniak, S.; Rachwalski, M. Highly Enantioselective Addition of Arylzinc Reagents to Aldehydes Promoted by Chiral Aziridine Alcohols. Tetrahedron: Asymmetry. 2016, 27, 1238–1244. DOI: 10.1016/j.tetasy.2016.10.005.
  • Comasseto, J. V.; Andrade, L. H.; Omori, A. T.; Assis, L. F.; Porto, A. L. M. Deracemization of Aryl Ethanols and Reduction of Acetophenones by Whole Fungal Cells of Aspergillus Terreus CCT 4083, A. terreus CCT 3320 and Rhizopus Oryzae CCT 4964. J. Mol. Catal. B: Enzym. 2004, 29, 55–61. DOI: 10.1016/j.molcatb.2004.01.015.
  • Patel, R. N.; Goswami, A.; Chu, L.; Donovan, M. J.; Nanduri, V.; Goldberg, S.; Johnston, R.; Siva, P. J.; Nielsen, B.; Fan, J.; et al. Enantioselective Microbial Reduction of Substituted Acetophenones. Tetrahedron: Asymmetry. 2004, 15, 1247–1258. DOI: 10.1016/j.tetasy.2004.02.024.
  • Murzin, D. Y.; Maki-Arvela, P.; Toukoniitty, E.; Salmi, T. Asymmetric Heterogeneous Catalysis: Science and Engineering. Catal. Rev. 2005, 47, 175–256. DOI: 10.1081/CR-200057461.
  • Contesini, F. J.; Lopes, D. B.; Macedo, G. A.; Nascimento, M. d G.; Carvalho, P. d O. Aspergillus sp. lipase: Potential Biocatalyst for Industrial Use. P. J. Mol. Catal. B: Enzym. 2010, 67, 163–171. DOI: 10.1016/j.molcatb.2010.07.021.
  • Gotor-Fernandez, V.; Brieva, R.; Gotor, V. Lipases: Useful Biocatalysts for the Preparation of Pharmaceuticals. J. Mol. Catal. B: Enzym. 2006, 40, 111–120. DOI: 10.1016/j.molcatb.2006.02.010.
  • Nakamura, K.; Yamanaka, R.; Matsuda, T.; Harada, T. Recent Developments in Asymmetric Reduction of Ketones with Biocatalysts. Tetrahedron: Asymmetry. 2003, 14, 2659–2681. DOI: 10.1016/S0957-4166(03)00526-3.
  • Zilbeyaz, K.; Kurbanoglu, E. B. Highly Enantiomeric Reduction of Acetophenone and Its Derivatives by Locally Isolated Rhodotorula Glutinis. Chirality. 2010, 22, 849–854. DOI: 10.1002/chir.20846.
  • Weckbecker, A.; Hummel, W. Cloning, Expression, and Characterization of an (R)-Specific Alcohol Dehydrogenase from Lactobacillus Kefir. Biocatal. Biotransform. 2006, 24, 380–389. DOI: 10.1080/10242420600893827.
  • Amidjojo, M.; Weuster-Botz, D. Asymmetric Synthesis of the Chiral Synthon Ethyl (S)-4-Chloro-3-Hydroxybutanoate Using Lactobacillus Kefir. Tetrahedron: Asymmetry. 2005, 16, 899–901. DOI: 10.1016/j.tetasy.2005.01.013.
  • Tan, A. W. I.; Fischbach, M.; Huebner, H.; Buchholz, R.; Hummel, W.; Daussmann, T.; Wandrey, C.; Liese, A. Synthesis of Enantiopure (5R)-Hydroxyhexane-2-One with Immobilised Whole Cells of Lactobacillus Kefiri. Appl. Microbiol. Biotechnol. 2006, 71, 289–293. DOI: 10.1007/s00253-005-0168-6.
  • Hummel, W. Appl. Microbiol. Biotechnol. 1990, 34, 15. DOI: 10.1007/BF00170916.
  • Aragozzini, F.; Valenti, M.; Santaniello, E.; Ferraboschi, P.; Grisenti, P. Biocatalytic, Enantioselective Preparations of (R)- and (S)-Ethyl 4-Chloro-3-Hydroxybutanoate, a Useful Chiral Synthon. Biocatalysis. 1992, 5, 325–332. DOI: 10.3109/10242429209014878.
  • Purutoğlu, K.; Ispirli, H.; Yüzer, M. O.; Serencam, H.; Dertli, E. Diversity and Functional Characteristics of Lactic Acid Bacteria from Traditional Kefir Grains. Int. J. Dairy Technol. 2020, 73, 57–66. DOI: 10.1111/1471-0307.12633.
  • Ispirli, H.; Dertli, E. Isolation and Characterisation of Lactic Acid Bacteria from Traditional Koumiss and Kurut. Int J Food Prop. 2017, 20, S2441–S2449. DOI: 10.1080/10942912.2017.1372473.
  • Long, W. S.; Kow, P. C.; Kamaruddin, A. H.; Bhatia, S. Comparison of Kinetic Resolution between Two Racemic Ibuprofen Esters in an Enzymic Membrane Reactor. Process Biochem. 2005, 40, 2417–2425. DOI: 10.1016/j.procbio.2004.09.014.
  • Şahin, E. Chirality. 2018, 30, 189. DOI: 10.1002/chir.22782.
  • Jamie, A.; Alshami, A. S.; Maliabari, Z. O.; Ateih, M. A. J Bioprocess Biotech. 2017, 7, 297. DOI: 10.4172/2155-9821.1000297.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.