Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 9
356
Views
10
CrossRef citations to date
0
Altmetric
SYNTHETIC COMMUNICATIONS REVIEWS

[3 + 3] Cycloaddition of aza-oxyallyl cations with 1,4-dithiane-2,5-diols for the construction of 3-thiomorpholinones

, , , , &
Pages 1375-1387 | Received 19 Dec 2019, Published online: 19 Mar 2020

References

  • (a) Hasegawa, M.; Nakayama, A.; Hosokami, T.; Kurebayashi, Y.; Ikeda, T.; Shimoto, Y.; Ide, S.; Honda, Y.; Suzuki, N. Synthesis and Pharmacological Activities of Novel Bicyclic Thiazoline Derivatives as Hepatoprotective Agents. I. 8-Ethoxycarbonyl-5,6-Dihydrothiazolo(2,3-c)(1,4)Thiazine Derivatives. Chem. Pharm. Bull. 1995, 43, 78–83. DOI: 10.1248/cpb.43.78. (b) Bestian, M. Über Einige Reaktionen Des Äthylen-Imins. Justus Liebigs Ann. Chem. 1950, 566, 210–244. DOI: 10.1002/jlac.19505660210. (c) Biava, M.; Porretta, G. C.; Poce, G.; Battilocchio, C.; Alfonso, S.; Logu, A. D.; Serra, N.; Manetti, F.; Botta, M. Identification of a Novel Pyrrole Derivative Endowed with Antimycobacterial Activity and Protection Index Comparable to That of the Current Antitubercular Drugs Streptomycin and Rifampin. Bioorg. Med. Chem. 2010, 18, 8076–8084. DOI: 10.1016/j.bmc.2010.09.006.
  • Dawson, L. A.; Bromidge, S. M. 5-HT1 Receptor Augmentation Strategies as Enhanced Efficacy: Therapeutics for Psychiatric Disorders. Curr. Top. Med. Chem. 2008, 8, 1008–1023. DOI: 10.2174/156802608785161439.
  • Itoh, Y.; Yamazaki, A.; Ukai, Y.; Yoshikuni, Y.; Kimura, K. Enhancement of Brain Noradrenaline and Dopamine Turnover by Thyrotropin-Releasing Hormone and Its Analogue NS-3 in Mice and Rats. Pharmacol. Toxicol. 1996, 78, 421–428. DOI: 10.1111/j.1600-0773.1996.tb00230.x.
  • Lehr, H.; Karlan, S.; Goldberg, M. W. Subsituted 3-Thiomorpholinones. J. Med. Chem. 1963, 6, 136–141. DOI: 10.1021/jm00338a012.
  • (a) Watanabe, Y.; Osanai, K.; Nishi, T.; Miyawaki, N.; Shii, D.; Honda, T.; Shibano, T. Synthesis of Azido Derivatives of Semotiadil, a Novel 1,4-Benzothiazine Calcium Antagonist, for Photoaffinity Probes of Calcium Channels. Bioorg. Med. Chem. Lett. 1996, 6, 1923–1926. DOI: 10.1016/0960-894X(96)00338-1. (b) Koidl, B.; Miyawaki, N.; Tritthart, H. A. A Novel Benzothiazine Ca2+ Channel Antagonist, Semotiadil, Inhibits Cardiac L-Type Ca2+ Currents. Eur. J. Pharmacol. 1997, 322, 243–247. DOI: 10.1016/S0014-2999(96)00995-8. (c) Takahashi, T.; Kanda, T.; Imai, S.; Suzuki, T.; Kobayashi, I.; Murata, K. Semotiadil Improves Survival of Rats with Monocrotaline-Induced Pulmonary Hypertension: Comparison with Diltiazem. Eur. J. Pharmacol. 1996, 295, 229–234. DOI: 10.1016/0014-2999(95)00665-6.
  • Nofal, Z. M.; Soliman, E. A.; Abd El-Karim, S. S.; El-Zahar, M. I.; Srour, A. M.; Sethumadhavan, S.; Maher, T. J. Synthesis of Some New Benzimidazole-Thiazole Derivatives as Anticancer Agents. J. Hetercyclic. Chem. 2014, 51, 1797–1806. DOI: 10.1002/jhet.1886.
  • (a) Marcus, E. T.; Gundy, A.; Levenson, C. H.; Meyer, R. B. Jr. Nucleosides of 1,4-Thiazin-3-One and Derivatives as Tetrahedral Intermediate Analogs of Enzymes in Pyrimidine Nucleoside Metabolism. J. Med. Chem. 1988, 31, 1575. DOI: 10.1021/jm00403a015. (b) Yamazaki, H.; Harada, H.; Matsuzaki, K.; Yoshioka, K.; Takase, M.; Ohki, E. Studies on bi-Heterocyclic Compounds. I. 6-Substituted Dihydro-1,4-Thiazinones. Chem. Pharm. Bull. 1987, 35, 2243–2253. DOI: 10.1248/cpb.35.2243.
  • (a) Woydowski, K.; Fleischhauer, J.; Schiffer, J.; Liebscher, J. Synthesis of Optically Active 3,4,5,6-Tetrahydro-2H-1,4-Thiazin-3-Ones and Their Benzo Analogues by Ring Transformation of Glycidic Esters. J. Chem. Soc. Perkin Trans. 1 1999, 2, 149–154. DOI: 10.1039/a808111e. (b) Apostolopoulos, C. D.; Georgiadis, M. P.; Couladouros, E. A. Ring Chain Transformation of γ-Keto-δ-Crotonolactones: A Convenient Synthesis of 1,4-Piperazinones, 1,4-Thiazinones and 1,4-Diazepinones. J. Heterocycl. Chem. 1996, 33, 703–708. DOI: 10.1002/jhet.5570330330.
  • (a) Ishibashi, H.; Uegaki, M.; Sakai, M.; Takeda, Y. Base-Promoted Aminoethylation of Thiols with 2-Oxazolidinones: A Simple Synthesis of 2-Aminoethyl Sulfides. Tetrahedron 2001, 57, 2115–2120. DOI: 10.1016/S0040-4020(01)00061-8. (b) Williams, A. J.; Chakthong, S.; Gray, D.; Lawrence, R. M.; Gallagher, T. 1,2-Cyclic Sulfamidates as Versatile Precursors to Thiomorpholines and Piperazines. Org. Lett. 2003, 5, 811–814. DOI: 10.1021/ol027418h.
  • Marcaccini, S.; Pepino, R.; Torroba, T.; Miguel, D.; Garcı́a-Valverde, M. Synthesis of Thiomorpholines by an Intramolecular Ugi Reaction. Tetrahedron Lett. 2002, 43, 8591–8593. DOI: 10.1016/S0040-4039(02)02064-6.
  • Saruta, K.; Ogiku, T. A Traceless Solid Phase Synthesis of Thiomorpholin-3-Ones. Tetrahedron Lett. 2008, 49, 424–427. DOI: 10.1016/j.tetlet.2007.11.117.
  • Khumtaveeporn, K.; Alper, H. Sequential Ring Expansion and Ketene Elimination Reactions in the Novel Rhodium(I)-Catalyzed Carbonylation of Thiazolidines. J. Am. Chem. Soc. 1994, 116, 5662–5666. DOI: 10.1021/ja00092a016.
  • Xuan, J.; Cao, X.; Cheng, X. Advances in Heterocycle Synthesis via [3 + m]-Cycloaddition Reactions Involving an Azaoxyallyl Cation as the Key Intermediate. Chem. Commun. (Camb.) 2018, 54, 5154–5163. DOI: 10.1039/c8cc00787j.
  • Jeffrey, C. S.; Barnes, K. L.; Eickhoff, J. A.; Carson, C. R. Generation and Reactivity of Aza-Oxyallyl Cationic Intermediates: Aza-[4 + 3] Cycloaddition Reactions for Heterocycle Synthesis. J. Am. Chem. Soc. 2011, 133, 7688–7691. DOI: 10.1021/ja201901d.
  • Li, C.; Jiang, K.; Ouyang, Q.; Liu, T. Y.; Chen, Y. C. [3 + 1]- and [3 + 2]-Cycloadditions of Azaoxyallyl Cations and Sulfur Ylides. Org. Lett. 2016, 18, 2738–2741. DOI: 10.1021/acs.orglett.6b01194.
  • (a) Zhang, K.; Yang, C.; Yao, H.; Lin, A. [3 + 2] Cycloaddition Reaction of in Situ Formed Azaoxyallyl Cations with Aldehydes: An Approach to Oxazolidin-4-Ones. Org. Lett. 2016, 18, 4618–4621. DOI: 10.1021/acs.orglett.6b02254. (b) Acharya, A.; Montes, K.; Jeffrey, C. S. Access to 4-Oxazolidinones: A (3 + 2) Cycloaddition Approach. Org. Lett. 2016, 18, 6082–6085. DOI: 10.1021/acs.orglett.6b03069. (c) Jia, Q.; Du, Z.; Zhang, K.; Wang, J. [3 + 2] Cycloaddition of Aza-Oxyallyl Cations with Aldehydes. Org. Chem. Front. 2017, 4, 91–94. DOI: 10.1039/C6QO00526H. (d) Jiang, S.; Li, K.; Yan, J.; Shi, K.; Zhao, C.; Yang, L.; Zhong, G. J. Synthetic Access to Oxazolidin-4-Ones via Elimination/[3 + 2] Cycloaddition Reaction. J. Org. Chem. 2017, 82, 9779–9785. DOI: 10.1021/acs.joc.7b00547. (e) Shao, P.-L.; Li, Z.-R.; Wang, Z.-P.; Zhou, M.-H.; Wu, Q.; Hu, P.; He, Y. [3 + 2] Cycloaddition of Azaoxyallyl Cations with Cyclic Ketones: Access to Spiro-4-Oxazolidinones. J. Org. Chem. 2017, 82, 10680–10686. DOI: 10.1021/acs.joc.7b01728.
  • (a) Acharya, A.; Anumandla, D.; Jeffrey, C. S. Dearomative Indole Cycloaddition Reactions of Aza-Oxyallyl Cationic Intermediates: Modular Access to Pyrroloindolines. J. Am. Chem. Soc. 2015, 137, 14858–14860. DOI: 10.1021/jacs.5b10184. (b) DiPoto, M. C.; Hughes, R. P.; Wu, J. Dearomative Indole (3 + 2) Reactions with Azaoxyallyl Cations – New Method for the Synthesis of Pyrroloindolines. J. Am. Chem. Soc. 2015, 137, 14861–14864. DOI: 10.1021/jacs.5b10221. (c) Ji, W.; Yao, L.; Liao, X. Access to the Pyrroloindoline Core via [3 + 2] Annulation as Well as the Application in the Synthetic Approach to (±)-Minfiensine. Org. Lett. 2016, 18, 628–630. DOI: 10.1021/acs.orglett.5b03421.
  • Zhang, K.; Xu, X.; Zheng, J.; Yao, H.; Huang, Y.; Lin, A. [3 + 3] Cycloaddition of in Situ Formed Azaoxyallyl Cations with 2-Alkenylindoles: An Approach to Tetrahydro-β-Carbolinones. Org. Lett. 2017, 19, 2596–2599. DOI: 10.1021/acs.orglett.7b00914.
  • (a) An, Y.; Xia, H.; Wu, J. Base-Controlled [3 + 3] Cycloaddition of Isoquinoline N-Oxides with Azaoxyallyl Cations. Chem. Commun. 2016, 52, 10415–10418. DOI: 10.1039/C6CC03650C. (b) Zhao, H.-W.; Zhao, Y.-D.; Liu, Y.-Y.; Zhao, L.-J.; Feng, N.-N.; Pang, H.-L.; Chen, X.-Q.; Song, X.-Q.; Du, J. Facile Access to Novel 1,2,4-Oxadiazinan-5-Ones via [3 + 3] Cycloaddition of in Situ Generated Azaoxyallyl Cations with Nitrones. RSC Adv. 2017, 7, 12916–12922. DOI: 10.1039/C6RA27440D. (c) Xuan, J.; Cheng, X.; Cao, X. [3 + 3] Cycloaddition of in Situ Formed Azaoxyallyl Cations with Nitrones: Synthesis of 1,2,4-Oxadiazinan-5-One Derivatives. ChemistrySelect 2017, 2, 4364–4367. DOI: 10.1002/slct.201700826. (d) Jia, Q.; Li, D.; Lang, M.; Zhang, K.; Wang, J. 4-Dimethylaminopyridine-Mediated [3 + 3] Cycloaddition of Aza-Oxyallyl Cations and Nitrones. Adv. Synth. Catal. 2017, 359, 3837–3842. DOI: 10.1002/adsc.201700415. (e) Lin, W.; Zhan, G.; Shi, M.; Du, W.; Chen, Y. [3 + 3] Formal Cycloadditions of Nitrones from Isatins and Azaoxyallyl Cations for Construction of Spirooxindoles. Chin. J. Chem. 2017, 35, 857–860. DOI: 10.1002/cjoc.201600864. (f) Cheng, X.; Cao, X.; Xuan, J.; Xiao, W. J. Silver(I)- and Base-Mediated [3 + 3]-Cycloaddition of C,N-Cyclic Azomethine Imines with Aza-Oxyallyl Cations. Org. Lett. 2018, 20, 52–55. DOI: 10.1021/acs.orglett.7b03344. (g) Cheng, X.; Cao, X.; Zhou, S. J.; Cai, B. G.; He, X. K.; Xuan, J. Transition‐Metal Free Construction of Isoquinoline‐Fused Triazines Containing Alkenyl C − X Bonds. Adv. Synth. Catal. 2019, 361, 1230–1235. DOI: 10.1002/adsc.201801181. (h) Zhao, H.-W.; Zhao, Y.-D.; Liu, Y.-Y.; Zhao, L.-J.; Song, X.-Q.; Chen, X.-Q.; Pang, H.-L.; Du, J.; Feng, N.-N. 1,3-Dipolar [3 + 3] Cycloaddition of α-Halohydroxamate-Based Azaoxyallyl Cations with Hydrazonoyl Chloride-Derived Nitrile Imines. RSC Adv. 2017, 7, 55106–55109. DOI: 10.1039/C7RA09766B.
  • (a) Harmata, M. Exploration of Fundamental and Synthetic Aspects of the Intramolecular 4 + 3 Cycloaddition Reaction†. Acc. Chem. Res. 2001, 34, 595–605. DOI: 10.1021/ar000064e. (b) Harmata, M. The (4 + 3)-Cycloaddition Reaction: Heteroatom-Substituted Allylic Cations as Dienophiles. Chem. Commun. (Camb.) 2010, 46, 8904–8922. DOI: 10.1039/c0cc03621h. (c) Lohse, A. G.; Hsung, R. P. (4 + 3) Cycloaddition Reactions of Nitrogen-Stabilized Oxyallyl Cations. Chem. Eur. J. 2011, 17, 3812–3822. DOI: 10.1002/chem.201100260. . (d) Acharya, A.; Eickhoff, J. A.; Jeffrey, C. S. Intramolecular Aza-[4 + 3] Cycloaddition Reactions of α-Halohydroxamates. Synthesis 2013, 45, 1825–1836. DOI: 10.1055/s-0033-1338883. (e) Acharya, A.; Eickhoff, J. A.; Chen, K.; Catalano, V. J.; Jeffrey, C. S. Access to Bicyclic Hydroxamate Macrocycles via Intramolecular Aza-(4 + 3) Cyloaddition Reactions of Aza-Oxyallylic Cation Intermediates. Org. Chem. Front. 2016, 3, 330–334. DOI: 10.1039/C5QO00315F.
  • DiPoto, M. C.; Wu, J. Synthesis of 2-Aminoimidazolones and Imidazolones by (3 + 2) Annulation of Azaoxyallyl Cations. Org. Lett. 2018, 20, 499–501. DOI: 10.1021/acs.orglett.7b03719.
  • (a) Zhao, H.-W.; Zhao, Y.-D.; Liu, Y.-Y.; Du, J.; Pang, H.-L.; Chen, X.-Q.; Song, X.-Q.; Feng, N.-N. Base-Promoted [3 + 2] Cycloaddition of in Situ Formed Azaoxyallyl Cations with Isothiocyanides. Eur. J. Org. Chem. 2017, 2017, 3466–3472. DOI: 10.1002/ejoc.201700278. (b) Wang, G.; Zhao, S.; Chen, R.; Yang, L.; Wang, J.; Guo, H.; Wu, M.; Domena, J.; Xing, Y.; Sun, S. Synthesis of Thiazolidin-4-Ones via [3 + 2] Cycloaddition of in Situ Generated Aza-Oxyallylic Cations with Isothiocyanates. Tetrahedron Lett. 2017, 58, 4308–4311. DOI: 10.1016/j.tetlet.2017.10.004.
  • (a) Zhou, S. J.; Cheng, X.; Xuan, J. [3 + 2]-Cycloaddition of Azaoxyallyl Cations with Cyclopropenones and Cyclopropenethiones: Synthesis of Spirocyclic Oxazole and Thiazole Derivatives. Asian J. Org. Chem. 2019, 8, 1376–1379. DOI: 10.1002/ajoc.201900272. (b) Jaiswal, V.; Mondal, B.; Singh, K.; Das, D.; Saha, J. [3 + 2]-Annulation of Azaoxyallyl Cations and Thiocarbonyls for the Assembly of Thiazolidin-4-Ones. Org. Lett. 2019, 21, 5848–5852. DOI: 10.1021/acs.orglett.9b01933.
  • (a) Feng, J.; Zhao, M.; Lin, X. [3 + 2]-Cycloaddition of Azaoxyallyl Cations with 1,2-Benzisoxazoles: A Rapid Entry to Oxazolines. J. Org. Chem. 2019, 84, 9548–9560. DOI: 10.1021/acs.joc.9b01166. (b) Sun, L.; Liu, Y.; Wang, Y.; Li, Y.; Liu, Z.; Lu, T.; Li, W. An Efficient Synthesis of Oxazolines via a Cascade Reaction between Azaoxyallyl Cations and 1,2-Benzisoxazoles. Org. Biomol. Chem. 2019, 17, 7526–7530.
  • (a) Xu, X.; Zhang, K.; Li, P.; Yao, H.; Lin, A. [3 + 3] Cycloaddition of Azides with in Situ Formed Azaoxyallyl Cations To Synthesize 1,2,3,4-Tetrazines. Org. Lett 2018, 20, 1781. DOI: 10.1021/acs.orglett.8b02088. (b) Ji, D.; Sun, J. [3 + 2]-Cycloaddition of Azaoxyallyl Cations with Hexahydro-1,3,5-Triazines: Access to 4-Imidazolidinones. Org. Lett. 2018, 20, 2745–2748. DOI: 10.1021/acs.orglett.8b03435. (c) Jin, Q.; Gao, M.; Zhang, D.; Jiang, C.; Yao, N.; Zhang, J. Base-Mediated [2 + 4] Cycloadditions of in Situ Formed Azaoxyallyl Cations with N -(2-Chloromethyl)Aryl Amides. Org. Biomol. Chem. 2018, 16, 7336–7339. DOI: 10.1039/C8OB02176G. (d) Wang, G.; Chen, R.; Wu, M.; Sun, S.; Luo, X.; Chen, Z.; Guo, H.; Chong, C.; Xing, Y. Efficient One-Pot Synthesis of 1,3-Dihydro-2H-Pyrrol-2-One Derivatives via Aza-Oxyallylic Cations. Tetrahedron Lett. 2017, 58, 847–850. DOI: 10.1016/j.tetlet.2017.01.048. (e) Eyilcim, O.; Issever, S.; Ocal, N.; Gronert, S.; Erden, I. Imidazolidin-4-Ones via (3 + 2) Cycloadditions of Aza-Oxyallyl Cations onto (E)-N-Arylideneanilines. Tetrahedron Lett. 2018, 59, 3674–3677. DOI: 10.1016/j.tetlet.2018.08.056. (f) Singh, R.; Nagesh, K.; Yugandhar, D.; Prasanthi, A. V. G. Metal- and Oxidant-Free Modular Approach to Access N -Alkoxy Oxindoles via Aryne Annulation. Org. Lett. 2018, 20, 4848–4853. DOI: 10.1021/acs.orglett.8b01972. (g) Zhang, Y.; Ma, H.; Liu, X.; Cui, X.; Wang, S.; Zhan, Z.; Pu, J.; Huang, G. The Synthesis of Multi-Substituted Pyrrolidinones via a Direct [3 + 2] Cycloaddition of Azaoxyallyl Cations with Aromatic Ethylenes. Org. Biomol. Chem. 2018, 16, 4439–4442. DOI: 10.1039/C8OB00899J. (h) Sun, S.; Chen, R.; Wang, G.; Wang, J. Sodium Carbonate Promoted [3 + 2] Annulation of α-Halohydroxamates and Isocyanates. Org. Biomol. Chem. 2018, 16, 8011–8014. DOI: 10.1039/C8OB02321B. (i) Feng, J.; Zhou, M.; Lin, X.; Lu, A.; Zhang, X.; Zhao, M. Base-Mediated [3 + 4]-Cycloaddition of Anthranils with Azaoxyallyl Cations: A New Approach to Multisubstituted Benzodiazepines. Org. Lett. 2019, 21, 6245–6248. DOI: 10.1021/acs.orglett.9b02118. (j) Baldé, B.; Force, G.; Marin, L.; Guillot, R.; Schulz, E.; Gandon, V.; Leboeuf, D. Synthesis of Cyclopenta[b]Piperazinones via an Azaoxyallyl Cation. Org. Lett. 2018, 20, 7405–7409. DOI: 10.1021/acs.orglett.8b03103.
  • For selected examples, see: (a) Duan, S. W.; Li, Y.; Liu, Y. Y.; Zou, Y. Q.; Shi, D. Q.; Xiao, W. J. An Organocatalytic Michael-Aldol Cascade: Formal [3 + 2] Annulation to Construct Enantioenriched Spirocyclic Oxindole Derivatives. Chem. Commun. 2012, 48, 5160. DOI: 10.1039/c2cc30931a. (b) Zhou, P.; Cai, Y.; Lin, L.; Lian, X.; Xia, Y.; Liu, X.; Feng, X. Asymmetric Synthesis of Spirocyclic Oxindole-Fused Tetrahydrothiophenes via N,N′- Dioxide-Nickel(II) Catalyzed Domino Reaction of 1,4-Dithiane-2,5-Diol with 3-Alkenyloxindoles. Adv. Synth. Catal. 2015, 357, 695–700. DOI: 10.1002/adsc.201400964. (c) Gui, Y.-Y.; Yang, J.; Qi, L.-W.; Wang, X.; Tian, F.; Li, X.-N.; Peng, L.; Wang, L.-X. A Cinchona Alkaloid Catalyzed Enantioselective sulfa-Michael/Aldol Cascade Reaction of Isoindigos: Construction of Chiral Bispirooxindole Tetrahydrothiophenes with Vicinal Quaternary Spirocenters. Org. Biomol. Chem. 2015, 13, 6371–6379. DOI: 10.1039/C5OB00774G. (d) Zhong, Y.; Ma, S.; Li, B.; Jiang, X.; Wang, R. Diastereoselective Synthesis of Biheterocyclic Tetrahydrothiophene Derivatives via Base-Catalyzed Cascade Michael-Aldol [3 + 2] Annulation of 1,4-Dithiane-2,5-Diol with Maleimides. J. Org. Chem. 2015, 80, 6870–6874. DOI: 10.1021/acs.joc.5b00897. (e) Ling, J. B.; Su, Y.; Zhu, H. L.; Wang, G. Y.; Xu, P. F. Hydrogen-Bond-Mediated Cascade Reaction Involving Chalcones: Facile Synthesis of Enantioenriched Trisubstituted Tetrahydrothiophenes. Org. Lett. 2012, 14, 1090–1093. DOI: 10.1021/ol2034959. (f) Su, Y.; Ling, J. B.; Zhang, S.; Xu, P. F. Organocatalytic Cascade Sulfa-Michael/Aldol Reaction of β,β-Disubstituted Enones: Enantioselective Synthesis of Tetrahydrothiophenes with a Trifluoromethylated Quaternary Center. J. Org. Chem. 2013, 78, 11053–11058. DOI: 10.1021/jo4016024. (g) Duan, M.; Liu, Y.; Ao, J.; Xue, L.; Luo, S.; Tan, Y.; Qin, W.; Song, C. E.; Yan, H. Asymmetric Synthesis of Trisubstituted Tetrahydrothiophenes via in Situ Generated Chiral Fluoride-Catalyzed Cascade Sulfa-Michael/Aldol Reaction of 1,4-Dithiane-2,5-Diol and α,β-Unsaturated Ketones. Org. Lett. 2017, 19, 2298–2301. DOI: 10.1021/acs.orglett.7b00813.
  • (a) Qian, H.; Sun, J. Organocatalytic Enantio- and Diastereoselective Assembly of Thiazolidine Scaffolds by Formal [3 + 2] Annulation. Asian J. Org. Chem. 2014, 3, 387–390. DOI: 10.1002/ajoc.201400025. (b) Cheng, P.; Guo, W.; Chen, P.; Liu, Y.; Du, X.; Li, C. The Enantioselective Construction of Chiral Spirooxindole-Based 4-Thiazolidinone via Asymmetric Catalytic Formal [3 + 2] Annulation Using a Bifunctional Catalyst. Chem. Commun. 2016, 52, 3418–3421. DOI: 10.1039/C5CC10292H. . (c) Feng, B. X.; Yang, J. D.; Li, J.; Li, X. Asymmetric [3 + 2] Annulations of 1,4-di-Thiane-2,5-Diol and Oxindole Ketimines. Tetrahedron Lett. 2016, 57, 3457–3461. DOI: 10.1016/j.tetlet.2016.06.084. (d) Rainoldi, G.; Begnini, F.; Silvani, A.; Lesma, G. Efficient Synthesis of Spirooxindole-Fused 3-Thiazoline Derivatives by a One-Pot Asinger-Type Reaction. Synlett 2016, 27, 2831–2835. DOI: 10.1055/s-0036-1589286.
  • (a) Sathishkannan, G.; Srinivasan, K. [3 + 3] Annulation of Donor–Acceptor Cyclopropanes with Mercaptoacetaldehyde: Application to the Synthesis of Tetrasubstituted Thiophenes. Chem. Commun. 2014, 50, 4062. DOI: 10.1039/c4cc00565a. (b) Wang, H. P.; Zhang, H. H.; Hu, X. Q.; Xu, P. F.; Luo, Y. C. Sc(OTf) 3-Catalysed [3 + 3] Annulation of Cyclopropane 1,1-Diesters with Mercaptoacetaldehyde: A Facile Strategy for the Synthesis of Tetrahydrothiopyranols. Eur. J. Org. Chem. 2015, 2015, 3486–3494. DOI: 10.1002/ejoc.201500282. (c) Fu, X.; Lin, L.; Xia, Y.; Zhou, P.; Liu, X.; Feng, X. Catalytic Asymmetric [3 + 3] Annulation of Cyclopropanes with Mercaptoacetaldehyde. Org. Biomol. Chem. 2016, 14, 5914–5917. DOI: 10.1039/c6ob00948d.
  • (a) Fang, X.; Li, J.; Tao, H. Y.; Wang, C. J.; Highly Diastereoselective DABCO-Catalyzed [3 + 3]-Cycloaddition of 1,4-Dithiane-2,5-Diol with Azomethine Imines. Org. Lett. 2013, 15, 5554–5557. DOI: 10.1021/ol402724h. (b) Kumar, S. V.; Muthusubramanian, S.; Perumal, S. A Solvent- and Catalyst-Free Domino Reaction for the Efficient Synthesis of 3-Arylthiazolidine-2-Thiones under Microwave Irradiation. RSC Adv. 2015, 5, 90451–90456. DOI: 10.1039/C5RA19112B.
  • Vijay, M.; Satheesh, V.; Kumar, S. V.; Punniyamurthy, T. Regiospecific Bi-Catalysed Domino C-N/C-S Bonds Formation: Synthesis of 1,4-Thiazines/1,4-Thiomorpholines. Adv. Synth. Catal. 2018, 360, 3030–3037. DOI: 10.1002/adsc.201800511.
  • (a) Varshnaya, R. K.; Banerjee, P. Construction of Thiazines and Oxathianes via [3 + 3] Annulation of N-Tosylaziridinedicarboxylates and Oxiranes with 1,4-Dithiane-2,5-Diol: Application towards the Synthesis of Bioactive Molecules. Org. Biomol. Chem. 2017, 15, 5182–5190. DOI: 10.1039/C7OB00941K. (b) Kumar, S. V.; Perumal, S. Tetrahedron Lett. Novel Domino Reactions for the Efficient Synthesis of 5,6-Dihydro-1,4,2-Oxathiazines. 2014, 55, 3761. DOI: 10.1016/j.tetlet.2014.05.062. (c) Wu, X.; Geng, X.; Zhao, P.; Zhang, J.; Gong, X.; Wu, Y. D.; Wu, A. X. I2-Promoted Povarov-Type Reaction Using 1,4-Dithane-2,5-Diol as an Ethylene Surrogate: Formal [4 + 2] Synthesis of Quinolines. Org. Lett. 2017, 19, 1550–1553. DOI: 10.1021/acs.orglett.7b02182. (d) Yu, J.; Yu, L.; Zhao, X.; Gan, L.; Zhu, W.; Wang, Z.; Wang, R.; Jiang, X. Organocatalytic Asymmetric [3 + 2] Annulation of 1,4-Dithiane-2,5-Diol with Azlactones: Access to Chiral Dihydrothiophen-2(3H)-One Derivatives. Org. Chem. Front. 2018, 5, 2040–2044. DOI: 10.1039/C8QO00305J. (e) Ni, C.; Wang, M.; Tong, X. Access to Thiophene and 1H-Pyrrole via Amine-Initiated (3 + 2) Annulation and Aromatization Cascade Reaction of β′-Acetoxy Allenoate and 1,2-Bisnucleophile. Org. Lett. 2016, 18, 2240–2243. DOI: 10.1021/acs.orglett.6b00874.
  • During thepreparation of our manuscript, the [3 + 3]-cycloadditions of monoarylα-chlorohydroxamates and 1, 4-dithiane-2, 5-diol have been reported by Wang and co-workers. He, Z. L.; Chen, Y.; Wang, X.; Ni, M.; Wang, G. Access to Thiomorpholin-3-One Derivatives: [3 + 3]-Cycloadditions of α-Chlorohydroxamates and 1,4-Dithiane-2,5-Diol. Tetrahedron 2019, 75, 130461.
  • (a) Colomer, I.; A. E. R., Chamberlain; Haughey, M. B.; Donohoe, T. J. Hexafluoroisopropanol as a Highly Versatile Solvent. Nat. Rev. Chem. 2017, 1, 0088. (b) WencelDelord, J.; Colobert, F. A Remarkable Solvent Effect of Fluorinated Alcohols on Transition Metal Catalysed C–H Functionalizations. Org. Chem. Front. 2016, 3, 394. DOI: 10.1039/C5QO00398A.
  • Crystallographic data for 3aa have been deposited with the Cambridge Crystallographic Data Centre as deposition number CCDC 1947114. These data can be obtained free of charge by contacting The Cambridge Crystallographic Data Centre, 12, UnionRoad, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; E-mail:[email protected].
  • Nagasawa, H. T.; Goon, D. J.; Crankshaw, D. L.; Vince, R.; Patterson, S. E. Novel, Orally Effective Cyanide Antidotes. J. Med. Chem. 2007, 50, 6462–6464. DOI: 10.1021/jm7011497.
  • Bushey, D. F.; Hoover, F. C. Syntheses and Stereochemistry of Amidoximes. J. Org. Chem. 1980, 45, 4198–4206. DOI: 10.1021/jo01309a026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.