Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 10
418
Views
34
CrossRef citations to date
0
Altmetric
SYNTHETIC COMMUNICATIONS REVIEWS

Synthesis, in-vitro antibacterial and anticancer screening of novel nicotinonitrile-coumarin hybrids utilizing piperazine citrate

ORCID Icon & ORCID Icon
Pages 1468-1485 | Received 24 Dec 2019, Published online: 26 Mar 2020

References

  • Patel, D.; Kumari, P.; Patel, N. B. In Vitro Antimicrobial and Antimycobacterial Activity of Some Chalcones and Their Derivatives. Med. Chem. Res. 2013, 22, 726–744. DOI: 10.1007/s00044-012-0073-3.
  • Timonen, J. M.; Nieminen, R. M.; Sareila, O.; Goulas, A.; Moilanen, L. J.; Haukka, M.; Vainiotalo, P.; Moilanen, E.; Aulaskari, P. H. Synthesis and Anti-inflammatory Effects of a Series of Novel 7-Hydroxycoumarin Derivatives. Eur. J. Med. Chem. 2011, 46, 3845–3850. DOI: 10.1016/j.ejmech.2011.05.052.
  • Riveiro, M. E.; De Kimpe, N.; Moglioni, A.; Vazquez, R.; Monczor, F.; Shayo, C.; Davio, C. Coumarins: Old Compounds with Novel Promising Therapeutic Perspectives. CMC. 2010, 17, 1325–1338. DOI: 10.2174/092986710790936284.
  • Anand, P.; Singh, B.; Singh, N. A. A Review on Coumarins as Acetylcholinesterase Inhibitors for Alzheimer’s Disease. Bioorg. Med. Chem. 2012, 20, 1175–1180. DOI: 10.1016/j.bmc.2011.12.042.
  • Wong, K. Y.; Duchowicz, P. R.; Mercader, A. G.; Castro, E. A. QSAR Applications during Last Decade on Inhibitors of Acetylcholinesterase in Alzheimer’s Disease. MRMC. 2012, 12, 936–946. DOI: 10.2174/138955712802762365.
  • Matos, M. J.; Viña, D.; Janeiro, P.; Borges, F.; Santana, L.; Uriarte, E. New Halogenated 3-Phenylcoumarins as Potent and Selective MAO-B Inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 5157–5160. DOI: 10.1016/j.bmcl.2010.07.013.
  • Gomez-Outes, A.; Luisa Suarez-Gea, M.; Calvo-Rojas, G.; Lecumberri, R.; Rocha, E.; Pozo-Hernández, C.; Terleira-Fernandez, I. A.; Vargas-Castrillón, E. Discovery of Anticoagulant Drugs: A Historical Perspective. CDDT. 2012, 9, 83–104. DOI: 10.2174/1570163811209020083.
  • Zhao, D. G.; Zhou, A. Y.; Du, Z.; Zhang, Y.; Zhang, K.; Ma, Y. Y. Coumarins with α-Glucosidase and α-Amylase Inhibitory Activities from the Flower of Edgeworthia gardneri. Fitoterapia 2015, 107, 122–127. DOI: 10.1016/j.fitote.2015.10.012.
  • Barancelli, D. A.; Salles, A. G.; Jr, Taylor, J. G.; Correia, C. R. D. Coumarins from Free Ortho-Hydroxy Cinnamates by Heck-Matsuda Arylations: A Scalable Total Synthesis of (R)-Tolterodine. Org. Lett. 2012, 14, 6036–6039. DOI: 10.1021/ol302923f.
  • Augustine, J. K.; Bombrun, A.; Ramappa, B.; Boodappa, C. An Efficient One-Pot Synthesis of Coumarins Mediated by Propylphosphonic Anhydride (T3P) via the Perkin Condensation. Tetrahedron Lett. 2012, 53, 4422–4425. DOI: 10.1016/j.tetlet.2012.06.037.
  • Popova, S. A.; Shevchenko, O. G.; Chukicheva, I. Y.; Kutchin, A. V. Synthesis and Biological Evaluation of Novel Coumarins with Tert‐Butyl and Terpene Substituents. C&B. 2019, 16, e1800317. DOI: 10.1002/cbdv.201800317.
  • Zambare, A. S.; Kalam Khan, F. A.; Zambare, S. P.; Shinde, S. D.; Sangshetti, J. N. Recent Advances in the Synthesis of Coumarin Derivatives via Pechmann Condensation. Curr. Org. Chem. 2016, 20, 798–828. DOI: 10.2174/1385272820666151026224227.
  • Ross, N. A.; MacGregor, R. R.; Bartsch, R. A. Synthesis of β-Lactams and β-Aminoesters via High Intensity Ultrasound-Promoted Reformatsky Reactions. Tetrahedron 2004, 60, 2035–2041. DOI: 10.1016/j.tet.2004.01.002.
  • Mekky, A. E. M.; Sanad, S. M. H. Synthesis of Novel Bis(Chromenes) and Bis(Chromeno[3,4-c]Pyridine) Incorporating Piperazine Moiety. Synth. Commun. 2019, 49, 1385–1395. DOI: 10.1080/00397911.2019.1595658.
  • Shakil, M. R.; Meguerdichian, A. G.; Tasnim, H.; Shirazi-Amin, A.; Seraji, M. S.; Suib, S. L. Syntheses of ZnO with Different Morphologies: Catalytic Activity Toward Coumarin Synthesis via the Knoevenagel Condensation Reaction. Inorg. Chem. 2019, 58, 5703–5714. DOI: 10.1021/acs.inorgchem.9b00053.
  • Vekariya, R. H.; Patel, H. D. Recent Advances in the Synthesis of Coumarin Derivatives via Knoevenagel Condensation: A Review. Synth. Commun. 2014, 44, 2756–2788. DOI: 10.1080/00397911.2014.926374.
  • Yousefi, M. R.; Goli-Jolodar, O.; Shirini, F. Piperazine: An Excellent Catalyst for the Synthesis of 2-Amino-3-Cyano-4H-Pyrans Derivatives in Aqueous Medium. Bioorg. Chem. 2018, 81, 326–333. DOI: 10.1016/j.bioorg.2018.08.026.
  • Mobinikhaledi, A.; Foroughifar, N.; Moghanian, H.; Keshavarzi, N. Piperazine Catalyzed Convenient Synthesis of 4H-Pyran Derivatives from α,α′-Bis(Substituted-Benzylidene) Cycloalkanones and Malononitrile under Reflux Conditions. J. Saudi Chem. Soc. 2015, 19, 399–403. DOI: 10.1016/j.jscs.2012.05.001.
  • Darvishzad, S.; Daneshvar, N.; Shirini, F.; Tajik, H. Introduction of Piperazine-1,4-Diium Dihydrogen Phosphate as a New and Highly Efficient Dicationic Brönsted Acidic Ionic Salt for the Synthesis of (Thio)Barbituric Acid Derivatives in Water. J. Mol. Struct. 2019, 1178, 420–427. DOI: 10.1016/j.molstruc.2018.10.053.
  • Munirathinam, R.; Huskens, J.; Verboom, W. Piperazine-Containing Polymer Brush Layer as Supported Base Catalyst in a Glass Microreactor. J. Flow Chem. 2014, 4, 135–139. DOI: 10.1556/JFC-D-14-00020.
  • Wen, X. Polymeric Sulfonate of Piperazine as an Inexpensive and Recyclable Catalyst for Knoevenagel Condensation. Indian J. Chem. B. 2006, 45, 762–765. DOI: 10.1002/chin.200628080.
  • Barros, M. T.; Faisca Phillips, A. M. Chiral Piperazines as Efficient Catalysts for the Asymmetric Michael Addition of Aldehydes to Nitroalkenes. Eur. J. Org. Chem. 2007, 2007, 178–185. DOI: 10.1002/ejoc.200600731.
  • Rezaei-Seresht, E.; Tayebee, R.; Yasemi, M. KG-60-Piperazine as a New Heterogeneous Catalyst for Gewald Three-Component Reaction. Synth. Commun. 2013, 43, 1859–1864. DOI: 10.1080/00397911.2012.674607.
  • Rodrigo, E.; Alcubilla, B. G.; Sainz, R.; Fierro, J. G.; Ferritto, R.; Cid, M. B. Reduced Graphene Oxide Supported Piperazine in Aminocatalysis. Chem. Commun. 2014, 50, 6270–6273. DOI: 10.1039/c4cc02701a.
  • Dash, G. K.; Suresh, P.; Sahu, S. K.; Kar, D. M.; Ganapaty, S.; Panda, S. B. Evaluation of Evolvulus Alsinoides Linn. for Anthelmintic and Antimicrobial Activities. J. Nat. Remedies 2002, 2, 182–185. DOI: 10.18311/jnr/2002/146.
  • Greenberg, B. L.; Gilman, R. H.; Shapiro, H.; Gilman, J. B.; Mondal, G.; Maksud, M.; Khatoon, H.; Chowdhury, J. Single Dose Piperazine Therapy for Ascaris Lumbricoides: An Unsuccessful Method of Promoting Growth. Am. J Clin. Nutr. 1981, 34, 2508–2516. DOI: 10.1093/ajcn/34.11.2508.
  • Chege, H. W.; Kemboi, D. C.; Bebora, L. C.; Maingi, N.; Mbuthia, P. G.; Nyaga, P. N.; Njagi, L. W. Efficacy of Piperazine Citrate, Levamisole Hydrochloride and Albendazole in the Treatment of Chicken Naturally Infected with Gastrointestinal Helminths. Livestock Res. Rural Develop 2017, 29, Article 98.
  • Yetim, I.; Ozkan, O. V.; Semerci, E.; Abanoz, R. Rare Cause of Intestinal Obstruction, Ascaris Lumbricoides Infestation: Two Case Reports. Cases J. 2009, 2, Article 7970. DOI: 10.4076/1757-1626-2-7970.
  • Mohan, N. R.; Sreenivasa, S.; Manojkumar, K. E.; Rao, T.; Thippeswamy, B. S.; Suchetan, P. A. Synthesis, Antibacterial, Anthelmintic and anti-Inflammatory Studies of Novel Methylpyrimidine Sulfonyl Piperazine Derivatives. J. Braz. Chem. Soc. 2014, 25, 1012–1020. DOI: 10.5935/0103-5053.20140073.
  • Gouda, M. A.; Abd El‐Ggani, G. E.; Berghot, M. A.; Khalil, A. E. G. M. Synthesis and Antioxidant Activity of Some Novel Nicotinonitrile Derivatives Bearing a Furan Moiety. J. Heterocyclic Chem. 2019, 56, 2036–2045. DOI: 10.1002/jhet.3584.
  • Al‐Refai, M.; Ibrahim, M.; Al‐Fawwaz, A.; Geyer, A. Synthesis and Characterization of New 4-Aryl-2-(2-Oxopropoxy)-6-(2, 5-Dichlorothiophene) Nicotinonitrile and Their Furo[2,3-b] Pyridine Derivatives: Assessment of Antioxidant and Biological Activity. Eur. J. Chem. 2018, 9, 375–381. DOI: 10.5155/eurjchem.9.4.375-381.1792.
  • Fekry, R. M.; El-Sayed, H. A.; Assy, M. G.; Shalby, A.; Mohamed, A. S. Synthesis and Anticancer Activity of Some Novel Fused Nicotinonitrile Derivatives. Org. Chem. Curr. Res. 2016, Article 1000171. DOI: 10.4172/2161-0401.1000171.
  • Krauze, A.; Baumane, L.; Sile, L.; Chernova, L.; Vilums, M.; Vitolina, R.; Duburs, G.; Stradins, J. Synthesis, Cardiovascular Activity, and Electrochemical Oxidation of Nitriles of 5-Ethoxycarbonyl-2-Methylthio-1,4-Dihydropyridine-3-Carboxylic Acid. Chem. Heterocycl. Compd. 2004, 40, 876–887. DOI: 10.1023/B:COHC.0000044570.13567.74.
  • Tirzite, D.; Krauze, A.; Zubareva, A.; Tirzitis, G.; Duburs, G. Synthesis and Antiradical Activity of 5-Acetyl-2-Alkylthio-4-Aryl-6-Methyl-1,4-Dihydropyridine-3-Carboxylic Acid Nitriles. Chem. Heterocycl. Compd. 2002, 38, 795–800.
  • El-Hashash, M. A.; El-Bordany, E. A.; Marzouk, M. I.; El-Naggar, A. M.; Nawar, T.; El-Sayed, W. M. Novel Nicotinonitrile Derivatives Bearing Imino Moieties Enhance Apoptosis and Inhibit Tyrosine Kinase. ACAMC. 2019, 18, 1589–1598. DOI: 10.2174/1871520618666180510112614.
  • Sanad, S. M. H.; Abdel Fattah, A. M.; Attaby, F. A.; Elneairy, M. A. A. Pyridine-2(1H)-Thiones: Versatile Precursors for Novel Pyrazolo[3,4-b]Pyridine, Thieno[2,3-b]Pyridines and Their Fused Azines. J. Heterocycl. Chem. 2019, 56, 651–662. DOI: 10.1002/jhet.3444.
  • Sanad, S. M. H.; Abdel Fattah, A. M.; Attaby, F. A.; Elneairy, M. A. A. Synthesis and Characterization of Novel Bis(Pyridine-2(1H)-Thiones) and Their Bis(2-Methylsulfanylpyridines) Incorporating 2,6-Dibromophenoxy Moiety. Can. J. Chem. 2019, 97, 53–60. DOI: 10.1139/cjc-2017-0721.
  • Sanad, S. M. H.; Hefny, M. I. M.; Ahmed, A. A. M.; Elneairy, M. A. A. Synthesis of Novel Bis[(5-Cyanopyridin-6-yl)Sulfanyl]Butanes, Bis(2-S-Alkylpyridines) and Bis(3-Aminothieno[2,3-b]Pyridines) Incorporating 2,6-Dibromophenoxy Moiety. J. Heterocyclic Chem. 2018, 55, 2046–2054. DOI: 10.1002/jhet.3239.
  • Sanad, S. M. H.; Hawass, M. A. E.; Ahmed, A. A. M.; Elneairy, M. A. A. Efficient Synthesis and Characterization of Novel Pyrido[3’,2’:4,5]Thieno[3,2-d]Pyrimidines and Their Fused [1,2,4]Triazole Derivatives. J. Heterocyclic Chem. 2018, 55, 2823–2833. DOI: 10.1002/jhet.3352.
  • Dyachenko, I. V.; Dyachenko, V. D. Synthesis of 4, 6-Dimethyl-2-Thioxo-1, 2-Dihydropyridine-3-Carbonitrile by Condensation of Cyanothioacetamide with Acetaldehyde and 1-(Prop-1-en-2-yl) Piperidine. Russ. J. Org. Chem. 2016, 52, 32–36. DOI: 10.1134/S1070428016010061.
  • Rodinovskaya, L. A.; Sharanin, Y. A.; Shestopalov, A. M.; Litvinov, V. P. Cyclization Reactions of Nitrils. 29. Regioselective Synthesis of 6-Aryl-3-Cyano-2(1H)-Pyridinethiones and the Corresponding Selenones and Their Characteristics. Chem. Heterocycl. Compd. 1988, 24, 658–665. DOI: 10.1007/BF00475603.
  • Sanad, S. M. H.; Ahmed, A. A. M.; Mekky, A. E. M. Efficient Synthesis and Molecular Docking of Novel Antibacterial Pyrimidines and Their Related Fused Heterocyclic Derivatives. J. Heterocyclic Chem. 2020, 57, 590–605. DOI: 10.1002/jhet.3789.
  • El-Emary, T. I.; Bakhite, E. A. Synthesis and Biological Screening of New 1,3-Diphenylpyrazoles with Different Heterocyclic Moieties at Position-4. Pharmazie 1999, 54, 106–111.
  • Mekky, A. E. M.; Sanad, S. M. H. Synthesis, Characterization, and Antimicrobial Evaluation of Novel Thiohydrazonates and Pyrazolo[3,4-b]Pyridines. Polycycl. Aromat. Comp. 2019. DOI: 10.1080/10406638.2019.1631194.
  • Cardia, M. C.; Sanna, M. L.; Meleddu, R.; Distinto, S.; Yañez, M.; Viña, D.; Lamela, M.; Maccioni, E. A Novel Series of 3,4‐Disubstituted Dihydropyrazoles: Synthesis and Evaluation for MAO Enzyme Inhibition. J. Heterocyclic Chem. 2013, 50(S1), E87–E92. DOI: 10.1002/jhet.1072.
  • Schwartz, M. A.; Rose, B. F.; Holton, R. A.; Scott, S. W.; Vishnuvajjala, B. Intramolecular Oxidative Coupling of Diphenolic, Monophenolic, and Nonphenolic Substrates. J. Am. Chem. Soc. 1977, 99, 2571–2578. DOI: 10.1021/ja00450a027.
  • Bratenko, M. K.; Chornous, V. A.; Vovk, M. V. 4-Functionally Substituted 3-Heterylpyrazoles: IV. 1-Phenyl-3-Aryl(Heteryl)-5-(4-Pyrazolyl)-2-Pyrazolines. Russ. J.Org. Chem 2001, 37, 556–559.
  • Brahmbhatt, D. I.; Kaneria, A. R.; Patel, A. K.; Patel, N. H. Synthesis and Antimicrobial Screening of Some 3-[4-(3-Aryl-1-Phenyl-1H-Pyrazol-4-yl)-6-Aryl-Pyridin-2-yl] and 4-Methyl-3-Phenyl-6-[4-(3-Aryl-1-Phenyl-1H-Pyrazol-4-yl)-6-Aryl-Pyridin-2-yl]Coumarins. Indian J. Chem. Section B 2010, 49, 971–977.
  • Guieu, S.; Rocha, J.; Silva, A. M. Synthesis of Unsymmetrical Methylenebisphenol Derivatives. Synlett 2013, 24, 762–764. DOI: 10.1055/s-0032-1318394.
  • Muthukumar, T.; Sambandam, B.; Aravinthan, A.; Sastry, T. P.; Kim, J. H. Green Synthesis of Gold Nanoparticles and Their Enhanced Synergistic Antitumor Activity Using HepG2 and MCF7 Cells and Its Antibacterial Effects. Process Biochem. 2016, 51, 384–391. DOI: 10.1016/j.procbio.2015.12.017.
  • Goldfeder, Y.; Zaknoon, F.; Mor, A. Experimental Conditions That Enhance Potency of an Antibacterial Oligo-Acyl-Lysyl. Antimicrob. Agents Chemother. 2010, 54, 2590–2595. DOI: 10.1128/AAC.01656-09.
  • Paudel, B.; Bhattarai, H. D.; Lee, J. S.; Hong, S. G.; Shin, H. W.; Yim, J. H. Antibacterial Potential of Antarctic Lichens Against Human Pathogenic Gram‐Positive Bacteria. Phytother. Res. 2008, 22, 1269–1271. DOI: 10.1002/ptr.2445.
  • Hemaiswarya, S.; Doble, M. Combination of Phenylpropanoids with 5-Fluorouracil as anti-Cancer Agents against Human Cervical Cancer (HeLa) Cell Line. Phytomedicine 2013, 20, 151–158. DOI: 10.1016/j.phymed.2012.10.009.
  • Mendoza-Ferri, M. G.; Hartinger, C. G.; Mendoza, M. A.; Groessl, M.; Egger, A. E.; Eichinger, R. E.; Mangrum, J. B.; Farrell, N. P.; Maruszak, M.; Bednarski, P. J.; et al. Transferring the Concept of Multinuclearity to Ruthenium Complexes for Improvement of Anticancer Activity. J. Med. Chem. 2009, 52, 916–925. DOI: 10.1021/jm8013234.
  • ISO 10993-5:2009. Biological Evaluation of Medical Devices-Part 5: Tests for in vitro cytotoxicity. https://www.iso.org/standard/36406.html (accessed May 22, 2018).
  • El-Sayed, N. S.; Shirazi, A. N.; El-Meligy, M. G.; El-Ziaty, A. K.; Rowley, D.; Sun, J.; Nagib, Z. A.; Parang, K. Synthesis of 4-Aryl-6-Indolylpyridine-3-Carbonitriles and Evaluation of Their Antiproliferative Activity. Tetrahedron Lett. 2014, 55, 1154–1158. DOI: 10.1016/j.tetlet.2013.12.081.
  • Gomha, S. M.; Khalil, K. D. A Convenient Ultrasound-Promoted Synthesis of Some New Thiazole Derivatives Bearing a Coumarin Nucleus and Their Cytotoxic Activity. Molecules 2012, 17, 9335–9347. DOI: 10.3390/molecules17089335.
  • Abbas, I.; Gomha, S. M.; Elaasser, M.; Bauomi, M. Synthesis and Biological Evaluation of New Pyridines Containing Imidazole Moiety as Antimicrobial and Anticancer Agents. Turk. J. Chem. 2015, 39, 334–346. DOI: 10.3906/kim-1410-25.
  • Abdallah, M. A.; Gomha, S. M.; Abbas, I. M.; Kazem, M. S.; Alterary, S. S.; Mabkhot, Y. N. An Efficient Synthesis of Novel Pyrazole-Based Heterocycles as Potential Antitumor Agents. Appl. Sci. 2017, 7, 785. DOI: 10.3390/app7080785.
  • ChemDraw Professional 16.0.0.82. 2017. https://www.perkinelmer.com/uk/product/chemdraw-professional-chemdrawpro.
  • Lipinski, C. A. Lead-and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1, 337–341. DOI: 10.1016/j.ddtec.2004.11.007.
  • Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. DOI: 10.1016/S0169-409X(96)00423-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.