Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 14
444
Views
4
CrossRef citations to date
0
Altmetric
SYNTHETIC COMMUNICATIONS REVIEWS

Recent advances in O-formylation of alcohols and phenols using efficient catalysts in eco-friendly media

, , , , &
Pages 2132-2155 | Received 06 Mar 2020, Published online: 07 Apr 2020

References

  • Yilmaz, E.; Tut, Y.; Turkoglu, O.; Soylak, M. Synthesis and Characterization of Pd Nanoparticle-Modified Magnetic Sm2O3–ZrO2 as Effective Multifunctional Catalyst for Reduction of 2-Nitrophenol and Degradation of Organic Dyes. J. Iran. Chem. Soc. 2018, 15, 1721–1731. DOI: 10.1007/s13738-018-1369-0.
  • Tamura, M.; Nakagawa, Y.; Tomishige, K. Recent Developments of Heterogeneous Catalysts for Hydrogenation of Carboxylic Acids to Their Corresponding Alcohols. Asian J. Org. Chem. 2020, 9, 126–143. DOI: 10.1002/ajoc.201900667.
  • Shirini, F.; Mazloumi, M.; Seddighi, M. Acidic Ionic Liquid Immobilized on Nanoporous Na+-Montmorillonite as an Efficient and Reusable Catalyst for the Formylation of Amines and Alcohols. Res. Chem. Intermed. 2016, 42, 1759–1776. DOI: 10.1007/s11164-015-2116-0.
  • Malakooti, R.; Sobhani, S.; Razavi, N.; Shafiei, S.; Mokhtari, R. Formylation of Amines and Alcohols Using Aminopropylated Mesoporous SBA-15 Silica (APMS) as an Efficient and Recyclable Catalyst. Collect. Czechoslov. Chem. Commun. 2011, 76, 1979–1990. DOI: 10.1002/chin.201222036.
  • Soleimani, E.; Yaesoobi, N.; Ghasempour, H. R. MgBr 2 Supported on Fe 3 O 4 @SiO 2 ∼ Urea Nanoparticle: An Efficient Catalyst for Ortho -Formylation of Phenols and Oxidation of Benzylic Alcohols. Appl. Organometal. Chem. 2018, 32, e4006. DOI: 10.1002/aoc.4006.
  • Amin, R.; Ardeshir, K.; Heidar Ali, A.-N.; Zahra, T.-R. Formylation of Alcohol with Formic Acid under Solvent-Free and Neutral Conditions Catalyzed by Free I2 or I2 Generated in Situ from Fe(NO3)3·9H2O/NaI. Chinese J. Catal. 2011, 32, 60–64. DOI: 10.1016/S1872-2067(10)60160-X.
  • Zadehahmadi, F.; Tangestaninejad, S.; Moghadam, M.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Kardanpour, R. Highly Efficient Protection of Alcohols and Phenols Catalysed by Tin Porphyrin Supported on MIL-101. Appl. Organometal. Chem. 2015, 29, 209–215. DOI: 10.1002/aoc.3270.
  • Yadollahi, B.; Mirkhani, V.; Tangestaninejad, S.; Karimian, D. Rapid and Efficient Protection of Alcohols and Phenols, and Deprotection of Trimethylsilyl Ethers Catalyzed by a Cerium-Containing Polyoxometalate. Appl. Organometal. Chem. 2011, 25, 83–86. DOI: 10.1002/chin.201117051.
  • Srivastava, V.; Negi, A. S.; Kumar, J. K.; Gupta, M. M. A Simple, Convenient and Chemoselective Formylation of Sterols by Vilsmeier Reagent. Steroids. 2006, 71, 632–638. DOI: 10.1016/j.steroids.2006.03.005.
  • Hasaninejad, A.; Zare, A.; Zolfigol, M. A.; Abdeshah, M.; Ghaderi, A.; Nami-Ana, F. Synthesis of Poly-Substituted Quinolines via Friedländer Hetero-Annulation Reaction Using Silica-Supported P2O5 under Solvent-Free Conditions. Iran. J. Chem. Chem. Eng. 2011, 30, 73–81.
  • Shirini, F.; Zolfigol, M. A.; Abedini, M.; Salehi, P. Al(HSO4)3 Catalyzed Acetylation and Formylation of Alcohols. Bull. Korean Chem. Soc. 2003, 24, 1683–1685.
  • Shirini, F.; Zolfigol, M. A.; Safari, A. Efficient Acetylation and Formylation of Alcohols in the Presence of Zr(HSO4)4. J. Chem. Res. (s). 2006, 2006, 154–156. DOI: 10.3184/030823406776330819.
  • Ma, J.; Zhang, J.; Zhou, X.; Wang, J.; Gong, H. N-Formylation of Amine Using Graphene Oxide as a Sole Recyclable Metal-Free Carbocatalyst. J. Iran. Chem. Soc. 2018, 15, 2851–2860. DOI: 10.1007/s13738-018-1471-3.
  • Zolfigol, M. A.; Bahrami-Nejad, N.; Afsharnadery, F.; Baghery, S. 1-Methylimidazolium Tricyanomethanide {[HMIM]C(CN)3} as a Nano Structure and Reusable Molten Salt Catalyst for the Synthesis of Tetrahydrobenzo[b]Pyrans via Tandem Knoevenagel-Michael Cyclocondensation and 3,4-Dihydropyrano[c]Chromene Derivatives. J. Mol. Liq. 2016, 221, 851–859. DOI: 10.1016/j.molliq.2016.06.069.
  • Arefi, M.; Kazemi Miraki, M.; Mostafalu, R.; Satari, M.; Heydari, A. Citric Acid Stabilized on the Surface of Magnetic Nanoparticles as an Efficient and Recyclable Catalyst for Transamidation of Carboxamides, Phthalimide, Urea and Thiourea with Amines under Neat Conditions. J. Iran. Chem. Soc. 2019, 16, 393–400. DOI: 10.1007/s13738-018-1523-8.
  • Zemmouri, R.; Kajjout, M.; Castanet, Y.; Eddarir, S.; Rolando, C. Palladium-Catalyzed Stereoconvergent Formylation of (E/Z) -β-Bromo-β-Fluorostyrenes: Straightforward Access to (Z) -α-Fluorocinnamic Aldehydes and (Z) -β-Fluorocinnamic Alcohols. J. Org. Chem. 2011, 76, 7691–7698. DOI: 10.1021/jo200798h.
  • Iranpoor, N.; Firouzabadi, H.; Zolfigol, M. A. Selective Acetylation of Primary Alcohols: Acetyl and Formyl Transfer Reactions with Copper(II) Salts. Synth. Commun. 1998, 28, 1923–1934. DOI: 10.1080/00397919808007166.
  • Shirini, F.; Seddighi, M.; Mamaghani, M. Brönsted Acidic Ionic Liquid Supported on Rice Husk Ash (RHA–[Pmim]HSO 4): A Highly Efficient and Reusable Catalyst for the Formylation of Amines and Alcohols. RSC Adv. 2014, 4, 50631–50638. DOI: 10.1039/C4RA08282F.
  • Jones, G.; Stanforth, S. P. The Vilsmeier Reaction of Non-Aromatic Compounds. In Organic Reaction. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2000; pp 355–686. DOI: 10.1002/0471264180.or056.02.
  • Meth-Cohn, O.; Tarnowski, B. Cyclizations under Vilsmeier Conditions. In Advances in Heterocyclic Chemistry; Katritzky, A.R., Ed.; Academic Press, 1982, Vol. 31, pp. 207–236.
  • Jarrahpour, A.; Zarei, M. The Vilsmeier Reagent: A Useful and Versatile Reagent for the Synthesis of 2-Azetidinones. Tetrahedron, 2009, 65, 2927–2934. DOI: 10.1016/j.tet.2009.02.005.
  • Thota, N.; Mukherjee, D.; Reddy, M. V.; Yousuf, S. K.; Koul, S.; Taneja, S. C. Reaction of Carbohydrates with Vilsmeier Reagent: A Tandem Selective Chloro O-Formylation of Sugars. Org. Biomol. Chem. 2009, 7, 1280. DOI: 10.1039/b900026g.
  • Claraz, A.; Masson, G. Asymmetric Iodine Catalysis-Mediated Enantioselective Oxidative Transformations. Org. Biomol. Chem. 2018, 16, 5386–5402. DOI: 10.1039/C8OB01378K.
  • Wang, L.; Liu, J. Synthetic Applications of Hypervalent Iodine(III) Reagents Enabled by Visible Light Photoredox Catalysis. Eur. J. Org. Chem. 2016, 2016, 1813–1824. DOI: 10.1002/ejoc.201501490.
  • Flores, A.; Cots, E.; Bergès, J.; Muñiz, K. Enantioselective Iodine(I/III) Catalysis in Organic Synthesis. Adv. Synth. Catal. 2019, 361, 2–25. DOI: 10.1002/adsc.201801478.
  • Breugst, M.; von der Heiden, D. Mechanisms in Iodine Catalysis. Chemistry. 2018, 24, 9187–9199. DOI: 10.1002/chem.201706136.
  • Finkbeiner, P.; Nachtsheim, B. J. Iodine in Modern Oxidation Catalysis. Synthesis (Stuttg). 2013, 45, 979–999. DOI: 10.1055/s-0032-1318330.
  • Cheon, C. H.; Yamamoto, H. Super Brønsted Acid Catalysis. Chem. Commun. (Camb.). 2011, 47, 3043–3056. DOI: 10.1039/c0cc04867d.
  • Rafiee, F.; Hajipour, A. R. A Versatile Method for the Synthesis of Diaryl and Alkyl Aryl Ketones via Palladium-Catalysed Cross-Coupling Reaction of Arylboronic Acids with Acyl Chlorides. Appl. Organometal. Chem. 2015, 29, 181–184. DOI: 10.1002/aoc.3269.
  • Esmaeilpour, M.; Sardarian, A. R. Dodecylbenzenesulfonic Acid as an Efficient, Chemoselective and Reusable Catalyst in the Acetylation and Formylation of Alcohols and Phenols under Solvent-Free Conditions at Room Temperature. Iran. J. Sci. Technol. Trans. A Sci. 2014, 38, 175–186.
  • Brummond, K. M.; Gesenberg, K. D. α-Chlorination of Ketones Using p-Toluenesulfonyl Chloride. Tetrahedron Lett. 1999, 40, 2231–2234. DOI: 10.1016/S0040-4039(99)00213-0.
  • Abdollahi-Alibeik, M.; Shabani, E. Nanocrystalline Sulfated Zirconia as an Efficient Solid Acid Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones. J. Iran. Chem. Soc. 2014, 11, 351–359. DOI: 10.1007/s13738-013-0306-5.
  • Kazemi, M.; Mohammadi, M. Magnetically Recoverable Catalysts: Catalysis in Synthesis of Polyhydroquinolines. Appl. Organomet. Chem 2020, 34, e5400.
  • Ghorbani-Choghamarani, A.; Goudarziafshar, H.; Zamani, P. Polyvinylpolypyrrolidoniume Tribromide as New and Metal-Free Catalyst for the Formylation and Trimethylsilylation of Hydroxyl Group. Chinese Chem. Lett. 2011, 22, 1207–1210.
  • Hajjami, M.; Ghorbani-Choghamarani, A.; Karamshahi, Z.; Norouzi, M. Tribromo Melamine as Novel and Versatile Catalyst for the Formylation and Acetylation of Alcohols. Chinese J. Catal. 2014, 35, 260–263. DOI: 10.1016/S1872-2067(12)60748-7.
  • Ghorbani-Vaghei, R.; Veisi, H.; Amiri, M. Poly(N,N′-Dichloro-N-Ethyl-Benzene-1,3-Disulfonamide, N,N,N′,N′-Tetrachlorobenzene-1,3-Disulfonamide, Poly(N,N′-Dibromo-N-Ethyl-Benzene-1,3-Disulfonamide, and N,N,N′,N′-Tetrabromobenzene-1,3-Disulfonamide Catalyzed Formylation of Amines and Alcohols Using. JICS. 2009, 6, 761–768. DOI: 10.1007/BF03246167.
  • Hekmatian, Z.; Khazaei, A. Tribromoisocyanuric Acid (TBCA) as a Mild and Metal Free Catalyst for the Acetylation and Formylation of Hydroxyl Groups under Solvent Free Conditions. Orient. J. Chem. 2015, 31, 1565–1570. DOI: 10.13005/ojc/310335.
  • Zeynizadeh, B.; Gholamiyan, E.; Gilanizadeh, M. Magnetically Recoverable CuFe2O4 Nanoparticles as an Efficient Heterogeneous Catalyst for Green Formylation of Alcohols. Curr. Chem. Lett. 2018, 7, 121–130. DOI: 10.5267/j.ccl.2018.11.001.
  • Tamoradi, T.; Mousavi, S. M.; Mohammadi, M. Praseodymium (Iii) Anchored on CoFe2O4 MNPs: An Efficient Heterogeneous Magnetic Nanocatalyst for One-Pot, Multi-Component Domino Synthesis of Polyhydroquinoline and 2,3-Dihydroquinazolin-4(1H)-One Derivatives. New J. Chem. 2020, 44, 3012–3020. DOI: 10.1039/C9NJ05468E.
  • Nikoorazm, M.; Khanmoradi, M.; Mohammadi, M. Guanine‐La Complex Supported onto SBA‐15: A Novel Efficient Heterogeneous Mesoporous Nanocatalyst for One‐Pot, Multi‐Component Tandem Knoevenagel Condensation–Michael Addition–Cyclization Reactions. Appl. Organomet. Chem. 2020, 34, e5504.
  • Pu, Q.; Kazemi, M.; Mohammadi, M. Application of Transition Metals in Sulfoxidation Reactions. Mini. Rev. Org. Chem. 2019, 16, 5775–5791.
  • Chen, L.; Noory Fajer, A.; Yessimbekov, Z.; Kazemi, M.; Mohammadi, M. Diaryl Sulfides Synthesis: Copper Catalysts in C–S Bond Formation. J. Sulfur Chem. 2019, 40, 451–468. DOI: 10.1080/17415993.2019.1596268.
  • Moradi, L.; Zare, M. Ultrasound-Promoted Green Synthesis of 1,4-Dihydropyridines Using Fuctionalized MWCNTs as a Highly Efficient Heterogeneous Catalyst. Green Chem. Lett. Rev. 2018, 11, 197–208. DOI: 10.1080/17518253.2018.1458160.
  • Khazaei, A.; Zolfigol, M. A.; Moosavi-Zare, A. R.; Zare, A.; Ghaemi, E.; Khakyzadeh, V.; Asgari, Z.; Hasaninejad, A. Sulfonic Acid Functionalized Imidazolium Salts/FeCl 3 as Novel and Highly Efficient Catalytic Systems for the Synthesis of Benzimidazoles at Room Temperature. Sci. Iran. 2011, 18, 1365–1371. DOI: 10.1016/j.scient.2011.09.016.
  • Ghorbani-Vaghei, R.; Veisi, H.; Amiri, M.; Chegini, M.; Karimi, M.; Dadamahaleh, S. A.; Sedrpoushan, A. Highly Efficient Formylation of Alcohols, Thiols and Aniline Derivatives by a Heterogeneous (HCOOH/SiO2) System under Microwave Irradiation and Solvent-Free Conditions. South African J. Chem. 2009, 62, 39–43.
  • Ghorbani-Choghamarani, A.; Akbaripanah, Z. 2-(Sulfooxy)Propane-1,2,3-Tricarboxylic Acid as Novel and Versatile Catalyst for the Formylation of Alcohols and Amines Using Ethyl Formate under Neat Conditions. Chinese Chem. Lett. 2012, 23, 450–453. DOI: 10.1016/j.cclet.2012.01.041.
  • Zolfigol, M. A.; Chehardoli, G.; Dehghanian, M.; Niknam, K.; Shirini, F.; Khoramabadi-Zad, A. Silica Sulfuric Acid and Al(HSO 4) 3: As Efficient Catalysts for the Formylation of Alcohols by Using Ethyl Formate under Heterogeneous Conditions. J. Chinese Chemical Soc. 2008, 55, 885–889. DOI: 10.1002/jccs.200800132.
  • Niknam, K.; Saberi, D. Preparation of Sulfuric Acid ([3-(3-Silicapropyl)Sulfanyl]Propyl)Ester: A New and Recyclable Catalyst for the Formylation and Acetylation of Alcohols under Heterogeneous Conditions. Appl. Catal. A Gen. 2009, 366, 220–225. DOI: 10.1016/j.apcata.2009.07.014.
  • Niknam, K.; Saberi, D. Silica-Bonded N-Propyl Sulfamic Acid as an Efficient Catalyst for the Formylation and Acetylation of Alcohols and Amines under Heterogeneous Conditions. Tetrahedron Lett. 2009, 50, 5210–5214. DOI: 10.1016/j.tetlet.2009.06.140.
  • Singh, A. S.; Bhanage, B. M.; Nagarkar, J. M. Formylation and Acetylation of Alcohols Using Amberlyst-15® as a Recyclable Heterogeneous Catalyst. Green Chem. Lett. Rev. 2012, 5, 27–32. DOI: 10.1080/17518253.2011.578079.
  • Rogers, R. D.; Seddon, K. R. Chemistry. Ionic liquids-solvents of the future? Science 2003, 302, 792–793. DOI: 10.1126/science.1090313.
  • Xiao, L.; Lv, D.; Wu, W. Brønsted Acidic Ionic Liquids Mediated Metallic Salts Catalytic System for the Chemical Fixation of Carbon Dioxide to Form Cyclic Carbonates. Catal. Lett. 2011, 141, 1838–1844. DOI: 10.1007/s10562-011-0682-3.
  • Li, K.; Choudhary, H.; Rogers, R. D. Ionic Liquids for Sustainable Processes: Liquid Metal Catalysis. Curr. Opin. Green Sustain. Chem. 2018, 11, 15–21. DOI: 10.1016/j.cogsc.2018.02.011.
  • Zolfigol, M. A.; Khazaei, A.; Karimitabar, F.; Hamidi, M. Alum as a Catalyst for the Synthesis of Bispyrazole Derivatives. Appl. Sci. 2016, 6, 1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.