Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 10
323
Views
31
CrossRef citations to date
0
Altmetric
SYNTHETIC COMMUNICATIONS REVIEWS

Mandelic acid catalyzed one-pot three-component synthesis of α-aminonitriles and α-aminophosphonates under solvent-free conditions at room temperature

, , , & ORCID Icon
Pages 1545-1560 | Received 14 Jan 2020, Published online: 02 Apr 2020

References

  • Enders, D.; Shilvock, J. P. Some Recent Applications of α-Amino Nitrile Chemistry. Chem. Soc. Rev. 2000, 29, 359–373. DOI: 10.1039/a908290e.
  • Wang, L.; Shen, J.; Tang, Y.; Chen, Y.; Wang, W.; Cai, Z.; Du, Z. Synthetic Improvements in the Preparation of Clopidogrel. Org. Process Res. Dev. 2007, 11, 487–489. DOI: 10.1021/op700025d.
  • Brandon, M.; Fetterly, N. K.; Verkade, J. G. [HP(HNCH2CH2)3N]NO3: An Efficient Homogeneous and Solid-Supported Promoter for Aza and thia-Michael Reactions and for Strecker Reactions. Tetrahedron 2006, 62, 440–456. DOI: 10.1016/j.tet.2005.09.117.
  • Gauthier, J. Y.; Chauret, N.; Cromlish, W.; Desmarais, S.; Duong, L. T.; Falgueyret, J.-P.; Kimmel, D. B.; Lamontagne, S.; Leger, S.; LeRiche, T.; et al. The Discovery of Odanacatib (MK-0822), a Selective Inhibitor of Cathepsin K. Bioorg. Med. Chem. Lett. 2008, 18, 923–928. DOI: 10.1016/j.bmcl.2007.12.047.
  • Wijkmans, J.; Gossen, J. Inhibitors of Cathepsin K: A Patent Review (2004–2010). Expert Opin Ther Pat. 2011, 21, 1611–1629. DOI: 10.1517/13543776.2011.616283.
  • Ndao, M.; Beaulieu, C.; Black, W. C.; Isabel, E.; Camargo, F. V.; Nath-Chowdhury, M.; Masse, F.; Mellon, C.; Methot, N.; Nicoll-Griffith, D. A. Reversible Cysteine Protease Inhibitors Show Promise for a Chagas Disease Cure. Antimicrob. Agents Chemother. 2014, 58, 1167–1178. DOI: 10.1128/AAC.01855-13.
  • Bondebjerg, J.; Fuglsang, H.; Valeur, K. R.; Pedersen, J.; Naerum, L. Dipeptidyl Nitriles as Human Dipeptidyl Peptidase I Inhibitors. Bio. Med. Chem. Lett. 2006, 16, 3614–3617. DOI: 10.1016/j.bmcl.2006.01.102.
  • Burtoloso, A. C. B.; de Albuquerque, S.; Furber, M.; Gomes, J. C.; Gonçalez, C.; Kenny, P. W.; Leitão, A.; Montanari, C. A.; Quilles, J. C.; Ribeiro, J. F. R.; Rocha, J. R. Anti-Trypanosomal Activity of Non-Peptidic Nitrile-Based Cysteine Protease Inhibitors. PLoS Negl. Trop. Dis. 2017, 11, e0005343. DOI: 10.1371/journal.pntd.0005343.
  • Avelar, L. A. A.; Camilo, C. D.; Albuquerque, S.; Fernandes, W. B.; Gonçalez, C.; Kenny, P. W.; Leitao, A.; McKerrow, J. H.; Montanari, C. A.; Orozco, E. V. M.; et al. Molecular Design, Synthesis and Trypanocidal Activity of Dipeptidyl Nitriles as Cruzain Inhibitors. PLoS Negl. Trop. Dis. 2015, 9, e0003916. DOI: 10.1371/journal.pntd.0003916.
  • Prasad, G. S.; Krishna, J. R.; Manjunath, M.; Reddy, O. V. S.; Krishnaiah, M.; Reddy, C. S.; Puranik, V. G. Synthesis, NMR, X-Ray Crystallography and Bioactivity of Some α-Aminophosphonates. Arkivoc. 2007, xiii, 133–141.
  • Sravya, G.; Suresh, G.; Zyryanov, G. V.; Balakrishna, A.; Reddy, N. B. K2CO3/Al2O3: An Efficient and Recyclable Catalyst for One-Pot, Three Components Synthesis of α-Aminophosphonates and Bioactivity Evaluation. Asian J. Chem. 2019, 31, 2383–2388.
  • Che, J.; Xu, X.; Tang, Z.; Gu, Y.; Shi, D. Synthesis and Herbicidal Activity Evaluation of Novel α-Amino Phosphonate Derivatives Containing a Uracil Moiety. Bioorg. Med. Chem. Lett. 2016, 26, 1310–1313. DOI: 10.1016/j.bmcl.2016.01.010.
  • Lan, X.; Xie, D.; Yin, L.; Wang, Z.; Chen, J.; Zhang, A.; Song, B.; Hu, D. Novel α,β-Unsaturated Amide Derivatives Bearing α-Amino Phosphonate Moiety as Potential Antiviral Agents. Bioorg. Med. Chem. Lett. 2017, 27, 4270–4273. DOI: 10.1016/j.bmcl.2017.08.048.
  • Zeng, Z.-G.; Liu, N.; Lin, F.; Jiang, X.-Y.; Xu, H.-H. Synthesis and Antiphytoviral Activity of α-Aminophosphonates Containing 3,5-Diphenyl-2-Isoxazoline as Potential Papaya Ring Spot Virus Inhibitors. Mol. Divers. 2019, 23, 393–401. DOI: 10.1007/s11030-018-9877-5.
  • Bahrami, F.; Panahi, F.; Daneshgar, F.; Yousefi, R.; Shahsavani, M. B.; Khalafi-Nezhad, A. Synthesis of New α-Aminophosphonate Derivatives Incorporating Benzimidazole, Theophylline and Adenine Nucleobases Using Lcysteine Functionalized Magnetic Nanoparticles (LCMNP) as Magnetic Reusable Catalyst: Evaluation of Their Anticancer Properties. RSC Adv. 2016, 6, 5915–5924. DOI: 10.1039/C5RA21419J.
  • Subramanyam, Ch.; Thaslim Basha, Sk. T.; Madhava, G.; Rasool, Sk. N.; Adam, S.; Murthy, S. D. S.; Raju, C. N. Synthesis, Spectral Characterization and Bioactivity Evaluation of Novel α-Aminophosphonates. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 267–270. DOI: 10.1080/10426507.2016.1225056.
  • Liu, J.-Z.; Song, B.-A.; Bhadury, P. S.; Hu, D.-Y.; Yan, S. Synthesis and Bioactivities of α-Aminophosphonate Derivatives Containing Benzothiazole and Thiourea Moieties. Phosphorus Sulfur Silicon Relat. Elem. 2012, 187, 61–70. DOI: 10.1080/10426507.2011.575422.
  • Luo, H.; Hu, D.; Wu, J.; He, M.; Jin, L.; Yang, S.; Song, B. Rapid Synthesis and Antiviral Activity of (Quinazolin-4-Ylamino)Methyl-Phosphonates through Microwave Irradiation. IJMS. 2012, 13, 6730–6746. DOI: 10.3390/ijms13066730.
  • Li, Y.-J.; Wang, C.-Y.; Ye, M.-Y.; Yao, G.-Y.; Wang, H.-S. Novel Coumarin-Containing Aminophosphonatesas Antitumor Agent: Synthesis, Cytotoxicity, DNA-Binding and Apoptosis Evaluation. Molecules. 2015, 20, 14791–14809. DOI: 10.3390/molecules200814791.
  • Wu, L.; Song, B.; Bhadury, P. S.; Yang, S.; Hu, D.; Jin, L. Synthesis and Antiviral Activity of Novel Pyrazole Amides Containing α-Aminophosphonate Moiety. J. Heterocyclic Chem. 2011, 48, 389–396. DOI: 10.1002/jhet.591.
  • Gu, L.; Jin, C. Synthesis and Antitumor Activity of α-Aminophosphonates Containing Thiazole[5,4-b]Pyridine Moiety. Org. Biomol. Chem. 2012, 10, 7098–7102. DOI: 10.1039/c2ob25875g.
  • Shitre, G. V.; Bhosale, R. S.; Karhale, D. S.; Sujitha, P.; Kumar, C. G.; Krishna, K. V. S. R.; Bhosale, S. V. Synthesis and Biological Evaluation of Novel α-Aminophosphonate Derivatives Possessing Thiazole-Piperidine Skeleton as Cytotoxic Agents. Chem. Bio. Inter. 2014, 4, 48–57.
  • Shashikumar, N. D. Preparation of New α-Aminophosphonate Derivatives by Kabachnik-Fields Reaction Using a Recyclable Catalyst. J. Chem. 2013, 2013, 1–8. DOI: 10.1155/2013/240381.
  • De, S. K.; Gibbs, R. A. Praseodymium Trifluoromethylsulfonate as an Efficient and Recyclable Catalyst for the Synthesis of α-Aminonitriles. Synth. Commun. 2005, 35, 961–966. DOI: 10.1081/SCC-200051702.
  • Karimi-Jaberi, Z.; Bahrani, A. Boric Acid Catalysed Synthesis of α-Aminonitriles by a Three-Component Reaction at Room Temperature. J. Chem. Res. 2012, 36, 326–327. DOI: 10.3184/174751912X13352842814921.
  • Narasimhulu, M.; Reddy, T. S.; Mahesh, K. C.; Reddy, S. M.; Reddy, A. V.; Venkateswarlu, Y. Lanthanum(III) Nitrate Hexahydrate or Gadolinium(III) Chloride Hexahydrate Catalyzed One-Pot Synthesis of α-Amino Nitriles. J. Mol. Catal. A: Chem. 2007, 264, 288–292. DOI: 10.1016/j.molcata.2006.09.036.
  • Mansoor, S. S.; Aswin, K.; Logaiya, K.; Sudhan, S. P. N. An Efficient One-Pot Three-Component Synthesis of α-Aminonitriles via Strecker Reaction Catalysed by Bismuth(III) Nitrate. J. Saudi Chem. Soc. 2016, 20, S202–S210. DOI: 10.1016/j.jscs.2012.10.009.
  • Prakash, G. K. S.; Mathew, T.; Panja, C.; Alconcel, S.; Vaghoo, H.; Do, C.; Olah, G. A. Gallium (III) Triflate Catalyzed Efficient Strecker Reaction of Ketones and Their Fluorinated Analogs. PNAS. 2007, 104, 3703–3706. DOI: 10.1073/pnas.0611316104.
  • De, S. K. RuCl3 Catalyzed One-Pot Synthesis of α-Aminonitriles. Synth. Commun. 2005, 35, 653–656. DOI: 10.1081/SCC-200050347.
  • Pasha, M. A.; Nanjundaswamy, H. M.; Jayashankara, V. P. Cerium(III) Chloride: A Highly Efficient Reagent for the Synthesis of α-Aminonitriles. Synth. Commun. 2007, 37, 4371–4380. DOI: 10.1080/00397910701578180.
  • Brahmachari, G.; Banerjee, B. A Comparison between Catalyst-Free and ZrOCl2·8H2O-Catalyzed Strecker Reactions for the Rapid and Solvent-Free One-Pot Synthesis of Racemic α-Aminonitrile Derivatives. Asian J. Org. Chem. 2012, 1, 251–258. DOI: 10.1002/ajoc.201200055.
  • Chaturvedi, D.; Chaturvedi, A. K.; Mishra, N.; Mishra, V. A Novel Approach for the Synthesis of α-Aminonitriles Using Mitsunobu’s Reagent under Solvent-Free Conditions. Tetrahedron Lett. 2012, 53, 5398–5401. DOI: 10.1016/j.tetlet.2012.07.117.
  • Maleki, A.; Rahimi, J.; Hajizadeh, Z.; Niksefat, M. Synthesis and Characterization of an Acidic Nanostructure Based on Magnetic Polyvinyl Alcohol as an Efficient Heterogeneous Nanocatalyst for the Synthesis of α-Aminonitriles. J. Organomet. Chem. 2019, 881, 58–65. DOI: 10.1016/j.jorganchem.2018.12.002.
  • Saberi, D.; Cheraghi, S.; Mahdudi, S.; Akbari, J.; Heydari, A. Dehydroascorbic Acid (DHAA) Capped Magnetite Nanoparticles as an Efficient Magnetic Organocatalyst for the One-Pot Synthesis of α-Aminonitriles and α-Aminophosphonates. Tetrahedron Lett. 2013, 54, 6403–6406. DOI: 10.1016/j.tetlet.2013.09.032.
  • De, S. K. Nickel(II) Chloride Catalyzed One-Pot Synthesis of α-Aminonitriles. J. Mol. Catal. A: Chem. 2005, 225, 169–171. DOI: 10.1016/j.molcata.2004.09.005.
  • Indalkar, K. S.; Khatri, C. K.; Chaturbhuj, G. U. Expeditious and Efficient Synthesis of Strecker’s α-Aminonitriles Catalyzed by Sulfated Polyborate. Tetrahedron Lett. 2017, 58, 2144–2148. DOI: 10.1016/j.tetlet.2017.04.058.
  • Majhi, A.; Kim, S. S.; Kadam, S. T. Rhodium(III) Iodide Hydrate Catalyzed Three-Component Coupling Reaction: Synthesis of α-Aminonitriles from Aldehydes, Amines, and Trimethylsilyl Cyanide. Tetrahedron 2008, 64, 5509–5514. DOI: 10.1016/j.tet.2008.03.106.
  • Nammalwar, B.; Fortenberry, C.; Bunce, R. A. Synthesis of α-Aminonitriles under Mild Catalytic, Metal-Free Conditions. Tetrahedron Lett. 2014, 55, 379–381. DOI: 10.1016/j.tetlet.2013.11.035.
  • Wen, Y.; Xiong, Y.; Chang, L.; Huang, J.; Liu, X.; Feng, X. Chiral Bisformamides as Effective Organocatalysts for the Asymmetric One-Pot, Three-Component Strecker Reaction. J. Org. Chem. 2007, 72, 7715–7719. DOI: 10.1021/jo701307f.
  • Heydari, A.; Fatemi, P.; Alizadeh, A.-A. Lithium Perchlorate/Diethyl Ether Catalyzed Aminocyanation of Aldehydes. Tetrahedron Lett. 1998, 39, 3049–3050. DOI: 10.1016/S0040-4039(98)00354-2.
  • De, S. K.; Gibbs, R. A. Bismuth Trichloride Catalyzed Synthesis of α-Aminonitriles. Tetrahedron Lett. 2004, 45, 7407–7408. DOI: 10.1016/j.tetlet.2004.08.071.
  • Rahi, T.; Baghernejad, M.; Niknam, K. Synthesis of α-Aminonitriles Using Silica-Bonded N-Propylpiperazine Sulfamic Acid as a Recyclable Catalyst. Chin. Chem. Lett. 2012, 23, 1103–1106. DOI: 10.1016/j.cclet.2012.07.007.
  • Yadav, J. S.; Reddy, B. V. S.; Eshwaraiah, B.; Srinivas, M.; Vishnumurthy, P. Three-Component Coupling Reactions in Ionic Liquids: A Facile Synthesis of α-Aminonitriles. New J. Chem. 2003, 27, 462–465. DOI: 10.1039/b208844b.
  • Sefat, M. N.; Saberi, D.; Niknam, K. Preparation of Silica-Based Ionic Liquid an Efficient and Recyclable Catalyst for One-Pot Synthesis of α-Aminonitriles. Catal. Lett. 2011, 141, 1713–1720. DOI: 10.1007/s10562-011-0696-x.
  • Mojtahedi, M. M.; Abaee, M. S.; Abbasi, H. Environmentally Friendly Room Temperature Strecker Reaction: One-Pot Synthesis of α-Aminonitriles in Ionic Liquid. JICS. 2006, 3, 93–97. DOI: 10.1007/BF03245797.
  • Hajipour, A. R.; Dehbane, I. M. An Efficient One-Pot Synthesis of α-Amino Nitriles Using Ecofriendly Lewis-Acidic Ionic Liquid Choline Chloride.2ZnCl2. Iran. J. Catal. 2012, 2, 147–151.
  • Khazdooz, L.; Zareib, A.; Hajipourc, A. R.; Sheikhane, N. Brønsted Acidic Ionic Liquid as a Metal Free Catalyst for the One-Pot Synthesis of α-Aminonitriles under Mild and Solvent-Free Conditions. Iran. J. Catal. 2012, 2, 63–68.
  • Rajabi, F.; Nourian, S.; Ghiassian, S.; Balu, A. M.; Saidi, M. R.; Serrano-Ruiz, J. C.; Luque, R. Heterogeneously Catalysed Strecker-Type Reactions Using Supported Co(II) Catalysts: Microwave vs. conventional Heating. Green Chem. 2011, 13, 3282–3289. DOI: 10.1039/c1gc15741h.
  • Prakash, G. K. S.; Bychinskaya, I.; Marinez, E. R.; Mathew, T.; Olah, G. A. Nafion-Fe: A New Efficient ‘‘Green’’ Lewis Acid Catalyst for the Ketonic Strecker Reaction. Catal. Lett. 2013, 143, 303–312. DOI: 10.1007/s10562-012-0958-2.
  • Paraskar, A. S.; Sudalai, A. Cu(OTf)2 or Et3N-Catalyzed Three-Component Condensation of Aldehydes, Amines and Cyanides: A High Yielding Synthesis of α-Aminonitriles. Tetrahedron Lett. 2006, 47, 5759–5762. DOI: 10.1016/j.tetlet.2006.06.008.
  • Gharib, A.; Pesyan, N. N.; Fard, L. V.; Roshani, M. Catalytic Synthesis of α-Aminonitriles Using Nano Copper Ferrite (CuFe2O4) under Green Conditions. Org. Chem. Inter. 2014, 2014, 1–8. DOI: 10.1155/2014/169803.
  • Nasreen, A. L. Proline Catalyzed One Pot Synthesis of α-Aminonitriles. Tetrahedron Lett. 2013, 54, 3797–3800. DOI: 10.1016/j.tetlet.2013.05.025.
  • Rezaei, Z.; Khabnadideh, S.; Zomorodian, K.; Pakshir, K.; Nadali, S.; Mohtashami, N.; Mirzaei, E. F. Design, Synthesis, and Antifungal Activity of New α-Aminophosphonates. Inter. J. Med. Chem. 2011, 2011, 1–11. DOI: 10.1155/2011/678101.
  • Dake, S. A.; Raut, D. S.; Kharat, K. R.; Mhaske, R. S.; Deshmukh, S. U.; Pawar, R. P. Ionic Liquid Promoted Synthesis, Antibacterial and in Vitro Antiproliferative Activity of Novel α-Aminophosphonate Derivatives. Bioorg. Med. Chem. Lett. 2011, 21, 2527–2532. DOI: 10.1016/j.bmcl.2011.02.039.
  • Zhan, Z.-P.; Li, J.-P. Bismuth(III) Chloride-Catalyzed Three Component Coupling: Synthesis of α-Aminophosphonates. Synth. Commun. 2005, 35, 2501–2508. DOI: 10.1080/00397910500212692.
  • Rezaei, Z.; Firouzabadi, H.; Iranpoor, N.; Ghaderi, A.; Jafari, M. R.; Jafari, A. A.; Zare, H. R. Design and One-Pot Synthesis of α-Aminophosphonates and Bis (α-Aminophosphonates) by Iron(III) Chloride and Cytotoxic Activity. Eur. J. Med. Chem. 2009, 44, 4266–4275. DOI: 10.1016/j.ejmech.2009.07.009.
  • Xu, F.; Luo, Y.; Wu, J.; Shen, Q.; Chen, H. Facile One-Pot Synthesis of α-Amino Phosphonates Using Lanthanide Chloride as Catalyst. Heteroatom Chem. 2006, 17, 389–392. DOI: 10.1002/hc.20219.
  • Ghosh, R.; Maiti, S.; Chakraborty, A.; Maiti, D. K. In(OTf)3 Catalysed Simple One-Pot Synthesis of α-Amino Phosphonates. J. Mol. Catal. A: Chem. 2004, 210, 53–57. DOI: 10.1016/j.molcata.2003.09.020.
  • Sobhani, S.; Tashri, Z. One-Pot Synthesis of Primary 1-Aminophosphonates: Coupling Reaction of Carbonyl Compounds, Hexamethyldisilazane, and Diethyl Phosphite Catalyzed by Al(OTf)3. Heteroatom Chem. 2009, 20, 109–115. DOI: 10.1002/hc.20517.
  • Chandrasekhar, S.; Prakash, S. J.; Jagadeshwar, V.; Narsihmulu, C. Three Component Coupling Catalyzed by TaCl5-SiO2: Synthesis of α-Amino Phosphonates. Tetrahedron Lett. 2001, 42, 5561–5563. DOI: 10.1016/S0040-4039(01)01053-X.
  • Tian, Y.-P.; Xu, F.; Wang, Y.; Wang, J.-J.; Li, H.-L. PPh3-Catalysed One-Pot Three-Component Syntheses of α-Aminophosphonates under Solvent-Free Conditions. J. Chem. Res. (S) 2009, 2009, 78–80. DOI: 10.3184/030823409X401097.
  • Bhattacharya, A. K.; Rana, K. C. Amberlite-IR 120 Catalyzed Three-Component Synthesis of α-Aminophosphonates in One Pot. Tetrahedron Lett. 2008, 49, 2598–2601. DOI: 10.1016/j.tetlet.2008.02.102.
  • Hou, J.; Gao, J.; Zhang, H. NbCl5: An Efficient Catalyst for One-Pot Synthesis of α-Aminophosphonates under Solvent-Free Conditions. Appl. Organometal. Chem. 2011, 25, 47–53. DOI: 10.1002/aoc.1687.
  • Yadav, J. S.; Reddy, B. V. S.; Sreedhar, P. An Eco-Friendly Approach for the Synthesis of α-Aminophosphonates Using Ionic Liquids. Green Chem. 2002, 4, 436–438. DOI: 10.1039/B203934F.
  • Ranu, B. C.; Hajra, A.; Jana, U. General Procedure for the Synthesis of α-Amino Phosphonates from Aldehydes and Ketones Using Indium(III) Chloride as a Catalyst. Org. Lett. 1999, 1, 1141–1143. DOI: 10.1002/chin.200003168.
  • Sadaphal, S. A.; Sonar, S. S.; Kategaonkar, A. H.; Shingare, M. S. 1-Benzyl-3-Methyl Imidazolium Hydrogen Sulphate [Bnmim][HSO4] Promoted Synthesis of α-Aminophosphonates. Bull. Korean Chem. Soc. 2009, 30, 1054–1056.
  • Qian, C.; Huan, T. One-Pot Synthesis of α-Amino Phosphonates from Aldehydes Using Lanthanide Triflate as a Catalyst. J. Org. Chem. 1998, 63, 4125–4128. DOI: 10.1021/jo971242t.
  • Bhagat, S.; Chakraborti, A. K. An Extremely Efficient Three-Component Reaction of Aldehydes/Ketones, Amines, and Phosphites (Kabachnik-Fields Reaction) for the Synthesis of α-Aminophosphonates Catalyzed by Magnesium Perchlorate. J. Org. Chem. 2007, 72, 1263–1270. DOI: 10.1021/jo062140i.
  • Maghsoodlou, M. T.; Khorassani, H.; Heydari, S. M.; Hazeri, R.; Sajadikhah, N.; Rostamizadeh, S. S.; Al, M. ( H2PO4)3 as an Efficient and Reusable Catalyst for One-Pot Three-Component Synthesis of α-Amino Phosphonates under Solvent-Free Conditions. Chin. J. Chem. 2010, 28, 285–288. DOI: 10.1002/cjoc.201090067.
  • Bhagat, S.; Chakraborti, A. K. Zirconium(IV) Compounds as Efficient Catalysts for Synthesis of α-Aminophosphonates. J. Org. Chem. 2008, 73, 6029–6032. DOI: 10.1021/jo8009006.
  • Sobhani, S.; Safaei, E.; Asadi, M.; Jalili, F. An Eco-Friendly Procedure for the Efficient Synthesis of Dialkyl α-Aminophosphonates in Aqueous Media. J. Organomet. Chem. 2008, 693, 3313–3317. DOI: 10.1016/j.jorganchem.2008.07.037.
  • Brahmachari, G.; Banerjee, B. Facile and One-Pot Access to Diverse and Densely Functionalized 2-Amino-3-Cyano-4H-Pyrans and Pyran-Annulated Heterocyclic Scaffolds via an Eco-Friendly Multicomponent Reaction at Room Temperature Using Urea as a Novel Organo-Catalyst. ACS Sustainable Chem. Eng. 2014, 2, 411–422. DOI: 10.1021/sc400312n.
  • Brahmachari, G.; Banerjee, B. Facile and Chemically Sustainable One-Pot Synthesis of a Wide Array of Fused O- and N-Heterocycles Catalyzed by Trisodium Citrate Dihydrate under Ambient Conditions. Asian J. Org. Chem. 2016, 5, 271–286. DOI: 10.1002/ajoc.201500465.
  • Banerjee, B.; Brahmachari, G. Room Temperature Metal-Free Synthesis of Aryl/Heteroaryl-Substituted Bis(6-Aminouracil-5-yl)Methanes Using Sulfamic Acid (NH2SO3H) as an Efficient and Eco-Friendly Organo-Catalyst. Curr. Organocatal. 2016, 3, 125–132. DOI: 10.2174/2213337202666150812231130.
  • Kaur, G.; Singh, A.; Bala, K.; Devi, M.; Kumari, A.; Devi, S.; Devi, R.; Gupta, V. K.; Banerjee, B. Naturally Occurring Organic Acid-Catalyzed Facile Diastereoselective Synthesis of Biologically Active (E)-3-(Arylimino)Indolin-2-One Derivatives in Water at Room Temperature. Curr. Org. Chem. 2019, 23, 1778–1788. DOI: 10.2174/1385272822666190924182538.
  • Singh, A.; Kaur, G.; Kaur, A.; Gupta, V. K.; Banerjee, B. A General Method for the Synthesis of 3,3-Bis(Indol-3-yl)Indolin-2-Ones, Bis(Indol-3-yl)(Aryl)Methanes and Tris(Indol-3-yl)Methanes Using Naturally Occurring Mandelic Acid as an Efficient Organo-Catalyst in Aqueous Ethanol at Room Temperature. Curr. Green Chem. 2020, 7. in press. DOI: 10.2174/2213346107666200228125715.
  • Singh, M. S.; Chowdhury, S. Recent Developments in Solvent-Free Multicomponent Reactions: A Perfect Synergy for Eco-Compatible Organic Synthesis. RSC Adv. 2012, 2, 4547–4592. DOI: 10.1039/c2ra01056a.
  • Banerjee, B. Recent Developments on Organo-Bicyclo-Bases Catalyzed Multi-Component Synthesis of Biologically Relevant Heterocycles. Curr. Org. Chem. 2018, 22, 208–233. DOI: 10.2174/1385272821666170703123129.
  • Kaur, G.; Thakur, S.; Kaundal, P.; Chandel, K.; Banerjee, B. p-Dodecylbenzenesulfonic Acid: An Efficient Brønsted Acid-Surfactant-Combined Catalyst to Carry out Diverse Organic Transformations in Aqueous Medium. ChemistrySelect 2018, 3, 12918–12936. DOI: 10.1002/slct.201802824.
  • Kaur, G.; Bala, K.; Devi, S.; Banerjee, B. Camphorsulfonic Acid (CSA): An Efficient Organocatalyst for the Synthesis or Derivatization of Heterocycles with Biologically Promising Activities. Curr. Green Chem. 2018, 5, 150–167. DOI: 10.2174/2213346105666181001113413.
  • Banerjee, B.; Bhardwaj, V.; Kaur, A.; Kaur, G.; Singh, A. Catalytic Applications of Saccharin and Its Derivatives in Organic Synthesis. Curr. Org. Chem. 2019, 23, 3191–3205. DOI: 10.2174/1385272823666191121144758.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.