Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 11
397
Views
5
CrossRef citations to date
0
Altmetric
SYNTHETIC COMMUNICATIONS REVIEWS

Transition-metal-free mono- or dinitration of protected anilines

, , , , , , ORCID Icon & show all
Pages 1687-1695 | Received 24 Jan 2020, Published online: 21 Apr 2020

References

  • For selected reviews, see: (a) Abrams, D. J.; Provencher, P. A.; Sorensen, E. J. Recent Applications of C–H Functionalization in Complex Natural Product Synthesis. Chem. Soc. Rev. 2018, 47, 8925–8967. DOI: 10.1039/C8CS00716K. (b) Davies, H. M. L.; Bois, J. D.; Yu, J.-Q. C–H Functionalization in Organic Synthesis. Chem. Soc. Rev. 2011, 40, 1855–1856. DOI: 10.1039/c1cs90010b.
  • For a recent review on electrophilic aromatic substitution: Galabov, B.; Nalbantova, D.; Schleyer, P. v R.; Schaefer, H. F. III Electrophilic Aromatic Substitution: New Insights into an Old Class of Reactions. Acc. Chem. Res. 2016, 49, 1191–1199. DOI: 10.1021/acs.accounts.6b00120.
  • For a recent review: (a) Wang, H.; Gao, X.; Lv, Z.; Abdelilah, T.; Lei, A. Recent Advances in Oxidative R1-H/R2-H Cross-Coupling with Hydrogen Evolution via Photo-/Electrochemistry. Chem. Rev. 2019, 119, 6769–6787. For some examples: DOI: 10.1021/acs.chemrev.9b00045. (b) Hu, X.; Zhang, G.; Nie, L.; Kong, T.; Kong, T.; Lei, A. Electrochemical Oxidation Induced Intermolecular Aromatic C-H imidation. Nat. Commun. 2019, 10, 5467. DOI: 10.1038/s41467-019-13524-4. (c) Sun, K.; Lv, Y.; Wang, J.; Sun, J.; Liu, L.; Jia, M.; Liu, X.; Li, Z.; Wang, X. Regioselective, Molecular Iodine-Mediated C3 Iodination of Quinolines. Org. Lett. 2015, 17, 4408–4411. DOI: 10.1021/acs.orglett.5b01857.
  • Dwivedi, V.; Kalsi, D.; Sundararaju, B. Electrochemical-/Photoredox Aspects of Transition Metal-Catalyzed Directed C − H Bond Activation. ChemCatChem 2019, 11, 5160–5187. DOI: 10.1002/cctc.201900680.
  • (a) Kancherla, S.; Jørgensen, K. B.; Fernández-Ibáñez, M. Á. Recent Developments in Palladium-Catalysed Non-Directed C–H Bond Activation in Arenes. Synthesis 2019, 51, 643–663. DOI: 10.1055/s-0037-1610852. (b) Wedi, P.; van Gemmeren, M. Arene‐Limited Nondirected C − H Activation of Arenes. Angew. Chem. Int. Ed. 2018, 57, 13016–13027. DOI: 10.1002/anie.201804727.
  • Liang, D.; Li, Y.; Gao, S.; Li, R.; Li, X.; Wang, B.; Yang, H. Amide-Assisted Radical Strategy: Metal-Free Direct Fluorination of Arenes in Aqueous Media. Green Chem. 2017, 19, 3344–3349. DOI: 10.1039/C7GC00356K.
  • (a) Tian, C.; Wang, Q.; Wang, X.; An, G.; Li, G. Visible-Light Mediated Ortho-Trifluoromethylation of Aniline Derivatives. J. Org. Chem. 2019, 84, 14241–14247. DOI: 10.1021/acs.joc.9b01987. (b) Vinayak, B.; Ravindrakumar, P. V.; Ramana, D. V.; Chandrasekharam, M. Revisiting 1-Chloro-1,2-Benziodoxol-3-One: Efficient Ortho-Chlorination of Aryls under Aqueous Conditions. New J. Chem. 2018, 42, 8953–8959. DOI: 10.1039/C8NJ00530C. An aryl radical is traditionally produced from a parent aromatic precursor rather than an aromatic C–H bond, for a recent example, see: (c) Zhang, Z.; Li, X.; Li, Y.; Guo, Y.; Zhao, X.; Yan, Y.; Sun, K.; Zhang, G. Iodine-Mediated Aryl Transfer Reaction from Arylhydrazine Hydrochlorides to Nitriles. Tetrahedron 2019, 75, 3628–3635. DOI: 10.1016/j.tet.2019.05.034.
  • (a) Zard, S. Z. Some Aspects of the Chemistry of Nitro Compounds. Hca. 2012, 95, 1730–1757. DOI: 10.1002/hlca.201200324. (b) Ono, N. In The Nitro Group in Organic Synthesis; Feuer, H., Ed.; Wiley-VCH: New-York, 2001.
  • (a) Donahue, M. G.; Jentsch, N. G.; Simons, C. R. Synthesis of [13C6]3,4-Diaminobenzoic Acid as a Precursor for Stable Isotope Labeled Benzimidazoles. Tetrahedron Lett. 2017, 58, 1692–1694. DOI: 10.1016/j.tetlet.2017.03.045. (b) Koseoglu, A.; Gul, T.; Acar, A. E. A Systematic Study on the Synthesis of n-Butyl Substituted 8-Aminoquinolines. J. Heterocyclic Chem. 2016, 53, 263–270. DOI: 10.1002/jhet.2399.
  • (a) Wan, Y.; Zhang, Z.; Ma, N.; Bi, J.; Zhang, G. Acylamino-Directed Specific Sequential Difunctionalizations of Anilides via Metal-Free Relay Reactions for p-Oxygen and o-Nitrogen Incorporation. J. Org. Chem. 2019, 84, 780–791. DOI: 10.1021/acs.joc.8b02636. (b) Hernando, E.; Castillo, R. R.; Rodríguez, N.; Arrayás, R. G.; Carretero, J. C. Copper-Catalyzed Mild Nitration of Protected Anilines. Chem. Eur. J. 2014, 20, 13854–13859. DOI: 10.1002/chem.201404000.
  • (a) Wang, C.-M.; Tang, K.-X.; Gao, T.-H.; Chen, L.; Sun, L.-P. Cu(II)-Catalyzed Ortho-C − H Nitration of Aryl Ureas by C − H Functionalization. J. Org. Chem. 2018, 83, 8315–8321. DOI: 10.1021/acs.joc.8b01016. (b) Gao, Y.; Mao, Y.; Zhang, B.; Zhan, Y.; Huo, Y. Regioselective Nitration of Anilines with Fe(NO3)3·9H2O as a Promoter and a Nitro Source. Org. Biomol. Chem. 2018, 16, 3881–3884. DOI: 10.1039/C8OB00841H. (c) He, Y.; Zhao, N.; Qiu, L.; Zhang, X.; Fan, X. Regio- and Chemoselective Mono- and Bisnitration of 8-Amino Quinoline Amides with Fe(NO3)3·9H2O as Promoter and Nitro Source. Org. Lett. 2016, 18, 6054–6057. For an Fe(NO3)3-mediated nitration of indolines, see: DOI: 10.1021/acs.orglett.6b02998. (d) Li, D.; Chen, Y.; Ma, M.; Yu, Y.; Jia, Z.; Li, P.; Xie, Z. Regioselective C5 Nitration of N-Protected Indolines Using Ferric Nitrate under Mild Conditions. Synth. Commun. 2019, 49, 1231–1240. DOI: 10.1080/00397911.2019.1580745.
  • For a Cu(NO3)2-catalyzed nitration of 8-aminoquinolines, see: Zhu, X.; Qiao, L.; Ye, P.; Ying, B.; Xu, J.; Shen, C.; Zhang, P. Copper-Catalyzed Rapid C–H Nitration of 8-Aminoquinolines by Using Sodium Nitrite as the Nitro Source under Mild Conditions. RSC Adv. 2016, 6, 89979–89983. DOI: 10.1039/c6ra19583k.
  • For a Cu(NO3)2- or AgNO3-mediated nitration of indolines, see: (a) Bose, A.; Mal, P. Using Weak Interactions to Control C–H Mono-Nitration of Indolines. Chem. Commun. 2017, 53, 11368–11371. For an AgNO3-mediated nitration of anilines: DOI: 10.1039/C7CC06267B. (b) Iranpoor, N.; Firouzabadi, H.; Nowrouzi, N.; Firouzabadi, D. Highly Chemoselective Nitration of Aromatic Amines Using the Ph3P/Br2/AgNO3 System. Tetrahedron Lett. 2006, 47, 6879–6881. DOI: 10.1016/j.tetlet.2006.07.054.
  • Lu, Y.; Li, Y.; Zhang, R.; Jin, K.; Duan, C. Regioselective ortho-Nitration of N-Phenyl Carboxamides and Primary Anilines Using Bismuth Nitrate/Acetic Anhydride. Tetrahedron 2013, 69, 9422–9427. DOI: 10.1016/j.tet.2013.08.076.
  • (a) Wan, L.; Qiao, K.; Yuan, X.; Zheng, M.-W.; Fan, B.-B.; Di, Z. C.; Zhang, D.; Fang, Z.; Guo, K. Nickel-Catalyzed Regioselective C–H Bond Mono- and Bis-Nitration of Aryloxazolines with tert-Butyl Nitrite as Nitro Source. Adv. Synth. Catal. 2017, 359, 2596–2604. DOI: 10.1002/adsc.201700186. (b) Wang, Y.; Yu, F.; Han, X.; Li, M.; Tong, Y.; Ding, J.; Hou, H. From Surprising Solvothermal Reaction to Uncommon Zinc(II)-Catalyzed Aromatic C − H Activation Reaction for Direct Nitroquinoline Synthesis. Inorg. Chem. 2017, 56, 5953–5958. DOI: 10.1021/acs.inorgchem.7b00653. (c) Whiteoak, C. J.; Planas, O.; Company, A.; Ribas, X. A First Example of Cobalt-Catalyzed Remote C–H Functionalization of 8-Aminoquinolines Operating through a Single Electron Transfer Mechanism. Adv. Synth. Catal. 2016, 358, 1679–1688. DOI: 10.1002/adsc.201600161. (d) Ji, Y-f.; Yan, H.; Jiang, Q-b. Effective Nitration of Anilides and Acrylamides by tert-Butyl Nitrite. Eur. J. Org. Chem. 2015, 2015, 2051–2060. DOI: 10.1002/ejoc.201403510.
  • Vinayak, B.; Chandrasekharam, M. Copper-Catalyzed Direct Nitration on Aryl C − H Bonds by Concomitant Azidation − Oxidation with TMS Azide and TBHP under Aerobic Conditions. Org. Lett. 2017, 19, 3528–3531. DOI: 10.1021/acs.orglett.7b01489.
  • Kianmehr, E.; Nasab, S. B. Silver-Catalyzed Chemo- and Regioselective Nitration of Anilides. Eur. J. Org. Chem. 2018, 2018, 6447–6452. DOI: 10.1002/ejoc.201800779.
  • Xie, D.-X.; Yu, H.-J.; Liu, H.; Xue, W.-C.; Qin, Y.-S.; Shao, G. Sodium Persulfate-Promoted Site-Selective Synthesis of Mononitroarylamines under Transition-Metal-Free Conditions. Tetrahedron 2019, 75, 1157–1165. DOI: 10.1016/j.tet.2019.01.011.
  • Düsel, S. J. S.; König, B. Visible-Light-Mediated Nitration of Protected Anilines. J. Org. Chem. 2018, 83, 2802–2807. DOI: 10.1021/acs.joc.7b03260.
  • (a) Huang, W.; Li, X.; Song, X.; Luo, Q.; Li, Y.; Dong, Y.; Liang, D.; Wang, B. Benzylarylation of N-Allyl Anilines: Synthesis of Benzylated Indolines. J. Org. Chem. 2019, 84, 6072–6083. DOI: 10.1021/acs.joc.9b00237. (b) Liang, D.; Huo, B.; Dong, Y.; Wang, Y.; Dong, Y.; Wang, B.; Ma, Y. Copper-Catalyzed Alkylarylation of Unactivated Alkenes: Synthesis of 3-Alkyl Indolines from N-Allyl Anilines and Alkanes. Chem. Asian J. 2019, 14, 1932–1936. DOI: 10.1002/asia.201900176. (c) Li, D.; Wang, Y.; Jia, Z.; Ou, Z.; Dong, Y.; Lv, C.; Fu, G.; Liang, D. Cu-Mediated Synthesis of Indolines and Dihydroisoquinolinones through Arylperfluoroalkylation of Unactivated Alkenes. Eur. J. Org. Chem. 2019, 2019, 4797–4804. DOI: 10.1002/ejoc.201900680. (d) Liang, D.; Song, X.; Xu, L.; Sun, Y.; Dong, Y.; Wang, B.; Li, W. Synthesis of Cyanoalkyl Indolines through Cyanoalkylarylation of N-Allyl Anilines with Alkyl Nitriles under Metal-Free and Neutral Conditions. Tetrahedron 2019, 75, 3495–3503. DOI: 10.1016/j.tet.2019.05.018. (e) Wang, X.; Zhao, X.; Li, X.; Huo, B.; Dong, Y.; Liang, D.; Ma, Y. Brønsted Acid-Catalyzed Radical C–H Functionalization of Acetone with N-Allyl Anilines to Give 3-(3-Oxobutyl)Indolines. Tetrahedron Lett. 2019, 60, 1306–1310. DOI: 10.1016/j.tetlet.2019.04.017. (f) Ji, Y.; Yang, S.; Lin, S.; Wang, Y.; Ji, C.; Liu, Y.; Liang, D. Synthesis of 2,3-Dihydrotryptamines from Amide Solvents and Acyclic Materials through Metal-Free Amidoalkylarylation of Unactivated Alkenes. Synlett 2019, 30, 1329–1333. DOI: 10.1055/s-0037-1611825. (g) Dai, E.; Luo, Q.; Chen, C.; Ying, F.; Dong, Y.; Liu, Y.; Wang, B.; Ma, Y.; Liang, D. Copper-Catalyzed Cyanoisopropylalkenylation of N-Alkenylacrylamides to Give 1,3-Dihydropyrrol-2-Ones. Chin. J. Org. Chem. 2019, 39, 3524–3531. DOI: 10.6023/cjoc201905006. (h) Li, Y.; Li, Y.; Li, Y.; Chen, C.; Ying, F.; Dong, Y.; Liang, D. Metal-Free Cross-Dehydrogenative C–N Coupling of Azoles with Xanthenes and Related Activated Arylmethylenes. Synth. Commun. 2019, 49, 2053–2065. DOI: 10.1080/00397911.2019.1615097.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.