Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 12
210
Views
7
CrossRef citations to date
0
Altmetric
SYNTHETIC COMMUNICATIONS REVIEWS

Synthesis of isoquinolinone derivatives by Rh (III)-catalyzed C–H functionalization of N-ethoxybenzamides

, , , , &
Pages 1799-1812 | Received 12 Feb 2020, Published online: 24 Apr 2020

References

  • (a) Wurtz, N. R.; Parkhurst, B. L.; Jiang, W.; DeLucca, I.; Zhang, X.; Ladziata, V.; Cheney, D. L.; Bozarth, J. R.; Rendina, A. R.; Wei, A.; et al. Discovery of Phenylglycine Lactams as Potent Neutral Factor VIIa Inhibitors. ACS Med. Chem. Lett. 2016, 7, 1077–1081. DOI: 10.1021/acsmedchemlett.6b00282. (b) Butler, J. R.; Wang, C.; Bian, J.; Ready, J. M. Enantioselective Total Synthesis of (−)-Kibdelone C. J. Am. Chem. Soc. 2011, 133, 9956–9959. DOI: 10.1021/ja204040k. (c) Kung, P.-P.; Rui, E.; Bergqvist, S.; Bingham, P.; Braganza, J.; Collins, M.; Cui, M.; Diehl, W.; Dinh, D.; Fan, C.; et al. Design and Synthesis of Pyridone-Containing 3,4-Dihydroisoquinoline-1(2 H )-Ones as a Novel Class of Enhancer of Zeste Homolog 2 (EZH2) Inhibitors. J. Med. Chem. 2016, 59, 8306–8325. DOI: 10.1021/acs.jmedchem.6b00515.
  • (a) Chao, Q.; Deng, L.; Shih, H.; Leoni, L. M.; Genini, D.; Carson, D. A.; Cottam, H. B. Substituted Isoquinolines and Quinazolines as Potential Antiinflammatory Agents. Synthesis and Biological Evaluation of Inhibitors of Tumor Necrosis Factor α. J. Med. Chem. 1999, 42, 3860–3873. DOI: 10.1021/jm9805900. (b) Roth, J.; Madoux, F.; Hodder, P.; Roush, W. R. Synthesis of Small Molecule Inhibitors of the Orphan Nuclear Receptor Steroidogenic Factor-1 (NR5A1) Based on Isoquinolinone Scaffolds. Bioorg. Med. Chem. Lett. 2008, 18, 2628–2632. DOI: 10.1016/j.bmcl.2008.03.027. (c) George Rosenker, K. M.; Paquette, W. D.; Johnston, P. A.; Sharlow, E. R.; Vogt, A.; Bakan, A.; Lazo, J. S.; Wipf, P. Synthesis and Biological Evaluation of 3-Aminoisoquinolin-1(2H)-One Based Inhibitors of the Dual-Specificity Phosphatase Cdc25B. Bioorg. Med. Chem. 2015, 23, 2810–2818. DOI: 10.1016/j.bmc.2015.01.043.
  • (a) Liu, B.; Wei, E.; Lin, S.; Zhao, B.; Liang, F. Synthesis of Spiro[Isoquinolinone-4,2′-Oxiranes] and Isoindolinones via a Multicomponent Reaction of 2-Acetyl-Oxirane-2-Carboxamides, Arylaldehydes and Malononitrile. Chem. Commun. 2014, 50, 6995–6997. DOI: 10.1039/c4cc02141j. (b) Seitz, W.; Geneste, H.; Backfisch, G.; Delzer, J.; Graef, C.; Hornberger, W.; Kling, A.; Subkowski, T.; Zimmermann, N. Design and Synthesis of Novel Potent and Selective Integrin αvβ3 Antagonists—Novel Synthetic Routes to Isoquinolinone, Benzoxazinone, and Quinazolinone Acetates. Bioorg. Med. Chem. Lett. 2008, 18, 527–531. DOI: 10.1016/j.bmcl.2007.11.089. (c) Chen, J.; Peng, H.; He, J.; Huan, X.; Miao, Z.; Yang, C. Synthesis of Isoquinolinone-Based Tricycles as Novel Poly(ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 2669–2673. DOI: 10.1016/j.bmcl.2014.04.061. (d) Feng, C.-L.; Zhang, S.-G.; Chen, J.-Q.; Cai, J.; Ji, M. First Total Synthesis of Isoquinolinone Alkaloid Marinamide and Its Methyl Ester. Chin. Chem. Lett. 2013, 24, 767–769. DOI: 10.1016/j.cclet.2013.04.039.
  • (a) Song, G.; Li, X. Substrate Activation Strategies in Rhodium(III)-Catalyzed Selective Functionalization of Arenes. Acc. Chem. Res. 2015, 48, 1007–1020. DOI: 10.1021/acs.accounts.5b00077. (b) Segawa, Y.; Maekawa, T.; Itami, K. Synthesis of Extended π-Systems through C-H Activation. Angew. Chem. Int. Ed. 2015, 54, 66–81. DOI: 10.1002/anie.201403729. (c) Ackermann, L. Carboxylate-Assisted Ruthenium-Catalyzed Alkyne Annulations by C–H/Het–H Bond Functionalizations. Acc. Chem. Res. 2014, 47, 281–295. DOI: 10.1021/ar3002798. (d) Ackermann, L. Carboxylate-Assisted Transition-Metal-Catalyzed C–H Bond Functionalizations: Mechanism and Scope. Chem. Rev. 2011, 111, 1315–1345. DOI: 10.1021/cr100412j. (e) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Rhodium-Catalyzed C–C Bond Formation via Heteroatom-Directed C–H Bond Activation. Chem. Rev. 2010, 110, 624–655. DOI: 10.1021/cr900005n. (f) Wang, D.-Y.; Guo, S.-H.; Pan, G.-F.; Zhu, X.-Q.; Gao, Y.-R.; Wang, Y.-Q. Direct Dehydrogenative Arylation of Benzaldehydes with Arenes Using Transient Directing Groups. Org. Lett. 2018, 20, 1794–1797. DOI: 10.1021/acs.orglett.8b00292. (g) Zhang, X.-L.; Pan, G.-F.; Zhu, X.-Q.; Guo, R.-L.; Gao, Y.-R.; Wang, Y.-Q. Dehydrogenative β-Arylation of Saturated Aldehydes Using Transient Directing Groups. Org. Lett. 2019, 21, 2731–2735. DOI: 10.1021/acs.orglett.9b00695.
  • (a) Obata, A.; Ano, Y.; Chatani, N. Nickel-Catalyzed C–H/N–H Annulation of Aromatic Amides with Alkynes in the Absence of a Specific Chelation System. Chem. Sci. 2017, 8, 6650–6655. DOI: 10.1039/C7SC01750B. (b) Lu, Q.; Greßies, S.; Cembellín, S.; Klauck, F. J. R.; Daniliuc, C. G.; Glorius, F. Redox-Neutral Manganese(I)-Catalyzed C–H Activation: Traceless Directing Group Enabled Regioselective Annulation. Angew. Chem. Int. Ed. 2017, 56, 12778–12782. DOI: 10.1002/anie.201707396.
  • (a) Ackermann, L.; Fenner, S. Ruthenium-Catalyzed C–H/N–O Bond Functionalization: Green Isoquinolone Syntheses in Water. Org. Lett. 2011, 13, 6548–6551. DOI: 10.1021/ol202861k. (b) Yadav, M. R.; Rit, R. K.; Shankar, M.; Sahoo, A. K. Sulfoximine-Directed Ruthenium-Catalyzed ortho -C–H Alkenylation of (Hetero)Arenes: Synthesis of EP3 Receptor Antagonist Analogue. J. Org. Chem. 2014, 79, 6123–6134. DOI: 10.1021/jo5008465. (c) Yang, F.; Ackermann, L. Dehydrative C–H/N–OH Functionalizations in H 2 O by Ruthenium(II) Catalysis: Subtle Effect of Carboxylate Ligands and Mechanistic Insight. J. Org. Chem. 2014, 79, 12070–12082. DOI: 10.1021/jo501884v. (d) Allu, S.; Swamy, K. C. K. Ruthenium-Catalyzed Synthesis of Isoquinolones with 8-Aminoquinoline as a Bidentate Directing Group in C–H Functionalization. J. Org. Chem. 2014, 79, 3963–3972. DOI: 10.1021/jo500424p. (e) Reddy, M. C.; Manikandan, R.; Jeganmohan, M. Ruthenium-Catalyzed Aerobic Oxidative Cyclization of Aromatic and Heteroaromatic Nitriles with Alkynes: A New Route to Isoquinolones. Chem. Commun. 2013, 49, 6060–6062. DOI: 10.1039/c3cc42683a. (f) Chinnagolla, R. K.; Pimparkar, S.; Jeganmohan, M. A Regioselective Synthesis of 1-Haloisoquinolines via Ruthenium-Catalyzed Cyclization of O-Methylbenzohydroximoyl Halides with Alkynes. Chem. Commun. 2013, 49, 3703–3705. DOI: 10.1039/c3cc41269e. (g) Yedage, S. L.; Bhanage, B. M. Ru( ii )/PEG-400 as a Highly Efficient and Recyclable Catalytic Media for Annulation and Olefination Reactions via C–H Bond Activation. Green Chem. 2016, 18, 5635–5642. DOI: 10.1039/C6GC01581F. (h) Anukumar, A.; Tamizmani, M.; Jeganmohan, M. Ruthenium(II)-Catalyzed Regioselective-Controlled Allenylation/Cyclization of Benzimides with Propargyl Alcohols. J. Org. Chem. 2018, 83, 8567–8580. DOI: 10.1021/acs.joc.8b01123.
  • (a) Guimond, N.; Gorelsky, S. I.; Fagnou, K. Rhodium(III)-Catalyzed Heterocycle Synthesis Using an Internal Oxidant: Improved Reactivity and Mechanistic Studies. J. Am. Chem. Soc. 2011, 133, 6449–6457. DOI: 10.1021/ja201143v. (b) Guimond, N.; Gouliaras, C.; Fagnou, K. Rhodium(III)-Catalyzed Isoquinolone Synthesis: The N–O Bond as a Handle for C–N Bond Formation and Catalyst Turnover. J. Am. Chem. Soc. 2010, 132, 6908–6909. DOI: 10.1021/ja102571b. (c) Shi, L.; Yu, K.; Wang, B. Regioselective Synthesis of Multisubstituted Isoquinolones and Pyridones via Rh(Iii)-Catalyzed Annulation Reactions. Chem. Commun. 2015, 51, 17277–17280. DOI: 10.1039/C5CC05977A. (d) Wu, J.-Q.; Zhang, S.-S.; Gao, H.; Qi, Z.; Zhou, C.-J.; Ji, W.-W.; Liu, Y.; Chen, Y.; Li, Q.; Li, X.; et al. Experimental and Theoretical Studies on Rhodium-Catalyzed Coupling of Benzamides with 2,2-Difluorovinyl Tosylate: Diverse Synthesis of Fluorinated Heterocycles. J. Am. Chem. Soc. 2017, 139, 3537–3545. DOI: 10.1021/jacs.7b00118. (e) Yu, B.; Chen, Y.; Hong, M.; Duan, P.; Gan, S.; Chao, H.; Zhao, Z.; Zhao, J. Rhodium-Catalyzed C–H Activation of Hydrazines Leads to Isoquinolones with Tunable Aggregation-Induced Emission Properties. Chem. Commun. 2015, 51, 14365–14368. DOI: 10.1039/C5CC05239D. (f) Barber, J. S.; Scales, S.; Tran-Dubé, M.; Wang, F.; Sach, N. W.; Bernier, L.; Collins, M. R.; Zhu, J.; McAlpine, I. J.; Patman, R. L. Rhodium(III)-Catalyzed C–H Activation: Ligand-Controlled Regioselective Synthesis of 4-Methyl-Substituted Dihydroisoquinolones. Org. Lett. 2019, 21, 5689–5693. DOI: 10.1021/acs.orglett.9b02029. (g) Wu, Y.; Sun, P.; Zhang, K.; Yang, T.; Yao, H.; Lin, A. Rh(III)-Catalyzed Redox-Neutral Annulation of Primary Benzamides with Diazo Compounds: Approach to Isoquinolinones. J. Org. Chem. 2016, 81, 2166–2173. DOI: 10.1021/acs.joc.5b02824. (h) Song, L.; Tian, G.; Van der Eycken, E. V. Rhodium(III)-Catalyzed Intermolecular Cascade Annulation through C–H Activation: Concise Synthesis of Rosettacin. Mol. Catal. 2018, 459, 129–134. DOI: 10.1016/j.mcat.2018.09.004. (i) Zhu, H.; Zhuang, R.; Zheng, W.; Fu, L.; Zhao, Y.; Tu, L.; Chai, Y.; Zeng, L.; Zhang, C.; Zhang, J. Synthesis of Isoquinolone via Rhodium(III)-Catalyzed C–H Activation with 1,4,2-Dioxazol-5-Ones as Oxidizing Directing Group. Tetrahedron 2019, 75, 3108–3112. DOI: 10.1016/j.tet.2019.04.054.
  • (a) Manoharan, R.; Jeganmohan, M. Cobalt-Catalyzed Cyclization of Benzamides with Alkynes: A Facile Route to Isoquinolones with Hydrogen Evolution. Org. Biomol. Chem. 2018, 16, 8384–7011. DOI: 10.1039/C8OB01924J. (b) Kalsi, D.; Dutta, S.; Barsu, N.; Rueping, M.; Sundararaju, B. Room-Temperature C–H Bond Functionalization by Merging Cobalt and Photoredox Catalysis. ACS Catal. 2018, 8, 8115–8120. DOI: 10.1021/acscatal.8b02118. (c) Kathiravan, S.; Nicholls, I. A. Cobalt Catalyzed, Regioselective C(sp2)–H Activation of Amides with 1,3-Diynes. Org. Lett. 2017, 19, 4758–4761. DOI: 10.1021/acs.orglett.7b02119. (d) Ling, F.; Zhang, C.; Ai, C.; Lv, Y.; Zhong, W. Metal-Oxidant-Free Cobalt-Catalyzed C(sp2)–H Carbonylation of ortho -Arylanilines: An Approach toward Free (NH)-Phenanthridinones. J. Org. Chem. 2018, 83, 5698–5706. DOI: 10.1021/acs.joc.8b00730.
  • (a) Zhong, H.; Yang, D.; Wang, S.; Huang, J. Pd-Catalysed Synthesis of Isoquinolinones and Analogues via C–H and N–H Bonds Double Activation. Chem. Commun. 2012, 48, 3236–3238. DOI: 10.1039/c2cc17859a. (b) Xu, G.-D.; Huang, Z.-Z. A Cascade Dehydrogenative Cross-Coupling/Annulation Reaction of Benzamides with β-Keto Esters for the Synthesis of Isoquinolinone Derivatives. Org. Lett. 2017, 19, 6265–6267. DOI: 10.1021/acs.orglett.7b02978. (c) Zhao, J.; Li, H.; Li, P.; Wang, L. Annulation of Benzamides with Arynes Using Palladium with Photoredox Dual Catalysis. J. Org. Chem. 2019, 84, 9007–9016. DOI: 10.1021/acs.joc.9b00893. (d) Xie, C.; Dai, Z.; Niu, Y.; Ma, C. Cascade One-Pot Method to Synthesize Isoquinolin-1(2H)-Ones with α-Bromo Ketones and Benzamides via Pd-Catalyzed C–H Activation. J. Org. Chem. 2018, 83, 2317–2323. DOI: 10.1021/acs.joc.7b03224.
  • (a) Takamatsu, K.; Hirano, K.; Miura, M. Copper-Mediated Decarboxylative Coupling of Benzamides with Ortho-Nitrobenzoic Acids by Directed C–H Cleavage. Angew. Chem. Int. Ed. 2017, 56, 5353–5357. DOI: 10.1002/anie.201701918. (b) Chen, F.; Lai, S.-Q.; Zhu, F.-F.; Meng, Q.; Jiang, Y.; Yu, W.; Han, B. Cu-Catalyzed Radical Cascade Annulations of Alkyne-Tethered N-Alkoxyamides with Air: Facile Access to Isoxazolidine/1,2-Oxazinane-Fused Isoquinolin-1(2H)-Ones. ACS Catal. 2018, 8, 8925–8931. DOI: 10.1021/acscatal.8b02445.
  • (a) Tian, Q.; Chen, B.; Zhang, G. Silver-Initiated Radical Ring Expansion/Fluorination of Ethynyl Cyclobutanols: Efficient Synthesis of Monofluoroethenyl Cyclopentanones. Green Chem. 2016, 18, 6236–6240. DOI: 10.1039/C6GC02656G. ; (b) Zhang, X.; Teo, W. T.; Chan, P. W. H. Ytterbium(III) Triflate Catalyzed Tandem Friedel-Crafts Alkylation/Hydroarylation of Propargylic Alcohols with Phenols as an Expedient Route to Indenols. Org. Lett. 2009, 11, 4990–4993. DOI: 10.1021/ol901981s. (c) Hashmi, A. S. K.; Wang, T.; Shi, S.; Rudolph, M. Regioselectivity Switch: Gold(I)-Catalyzed Oxidative Rearrangement of Propargyl Alcohols to 1,3-Diketones. J. Org. Chem. 2012, 77, 7761–7767. DOI: 10.1021/jo301381z. (d) Wang, Y.-B.; Wang, Y.-M.; Zhang, W.-Z.; Lu, X.-B. Fast CO2 Sequestration, Activation, and Catalytic Transformation Using N -Heterocyclic Olefins. J. Am. Chem. Soc. 2013, 135, 11996–12003. DOI: 10.1021/ja405114e. (e) Markham, J. P.; Staben, S. T.; Toste, F. D. Gold(I)-Catalyzed Ring Expansion of Cyclopropanols and Cyclobutanols. J. Am. Chem. Soc. 2005, 127, 9708–9709. DOI: 10.1021/ja052831g. (f) Han, Y.-P.; Song, X.-R.; Qiu, Y.-F.; Li, X.-S.; Zhang, H.-R.; Zhu, X.-Y.; Liu, X.-Y.; Liang, Y.-M. Lewis Acid Catalyzed Cyclization of Propargylic Alcohols with 2-Vinylphenol. Org. Lett. 2016, 18, 3866–3869. DOI: 10.1021/acs.orglett.6b01875.
  • Wu, X.; Wang, B.; Zhou, Y.; Liu, H. Propargyl Alcohols as One-Carbon Synthons: Redox-Neutral Rhodium(III)-Catalyzed C–H Bond Activation for the Synthesis of Isoindolinones Bearing a Quaternary Carbon. Org. Lett. 2017, 19, 1294–1297. DOI: 10.1021/acs.orglett.7b00089.
  • Wu, X.; Ji, H. Rhodium-Catalyzed [4 + 1] Cyclization via C–H Activation for the Synthesis of Divergent Heterocycles Bearing a Quaternary Carbon. J. Org. Chem. 2018, 83, 4650–4656. DOI: 10.1021/acs.joc.8b00397.
  • (a) Jiang, X.; Chen, J.; Zhu, W.; Cheng, K.; Liu, Y.; Su, W.-K.; Yu, C. Cobalt(III)-Catalyzed Fast and Solvent-Free C–H Allylation of Indoles Using Mechanochemistry. J. Org. Chem. 2017, 82, 10665–10672. DOI: 10.1021/acs.joc.7b01695. (b) Zhang, L.; Zheng, X.; Chen, J.; Cheng, K.; Jin, L.; Jiang, X.; Yu, C. Ru(ii)-Catalyzed C6-Selective C–H Amidation of 2-Pyridones. Org. Chem. Front. 2018, 5, 2969–2973. DOI: 10.1039/C8QO00795K. (c) Zhang, L.; Chen, J.; Chen, J.; Jin, L.; Zheng, X.; Jiang, X.; Yu, C. Synthesis of 2-Substituted Indoles by Iridium (III)-Catalyzed C H Functionalization of N-Phenylpyridin-2-Amines. Tetrahedron Lett. 2019, 60, 1053–1056. DOI: 10.1016/j.tetlet.2019.03.027. (d) Chen, J.; Jin, L.; Zhou, J.; Jiang, X.; Yu, C. Cobalt-Catalyzed Electrochemical C H/N H Functionalization of N-(Quinolin-8-yl)Benzamide with Isocyanides. Tetrahedron Lett. 2019, 60, 2054–2058. DOI: 10.1016/j.tetlet.2019.06.060.
  • (a) Jiang, X.; Zhu, W.; Yang, L.; Zheng, Z.; Yu, C. Hypervalent Iodine-Mediated Cyclization of Homotryptamine Derivatives. Eur. J. Org. Chem. 2019, 2019, 2268–2274. DOI: 10.1002/ejoc.201801842. (b) Jiang, X.; Zheng, C.; Lei, L.; Lin, K.; Yu, C. Synthesis of 2-Oxindoles from Substituted Indoles by Hypervalent-Iodine Oxidation. Eur. J. Org. Chem. 2018, 2018, 1437–1442. DOI: 10.1002/ejoc.201701807. (c) Jiang, X.; Yang, L.; Yang, W.; Zhu, Y.; Fang, L.; Yu, C. Controllable Synthesis of 3-Chloro- and 3,3-Dichloro-2-Oxindoles via Hypervalent Iodine-Mediated Chlorooxidation. Org. Biomol. Chem. 2019, 17, 6920–6924. DOI: 10.1039/C9OB01173K. (d) Jiang, X.; Zhu, B.; Lin, K.; Wang, G.; Su, W.-K.; Yu, C. Metal-Free Synthesis of 2,2-Disubstituted Indolin-3-Ones. Org. Biomol. Chem. 2019, 17, 2199–2203. DOI: 10.1039/C8OB03057J. (e) Jiang, X.; Yang, L.; Ye, Z.; Du, X.; Fang, L.; Zhu, Y.; Chen, K.; Li, J.; Yu, C. Electrosynthesis of C3 Alkoxylated Quinoxalin-2(1H)-Ones through Dehydrogenative C–H/O–H Cross-Coupling. Eur. J. Org. Chem. 2020, 2020, 1687–1694. DOI: 10.1002/ejoc.201901928.
  • (a) Phatake, R. S.; Patel, P.; Ramana, C. V. Ir(III)-Catalyzed Carbenoid Functionalization of Benzamides: Synthesis of N-Methoxyisoquinolinediones and N -Methoxyisoquinolinones. Org. Lett. 2016, 18, 2828–2831. DOI: 10.1021/acs.orglett.6b01072. (b) Huang, J.-R.; Bolm, C. Microwave-Assisted Synthesis of Heterocycles by Rhodium(III)-Catalyzed Annulation of N-Methoxyamides with α-Chloroaldehydes. Angew. Chem. Int. Ed. 2017, 56, 15921–15925. DOI: 10.1002/anie.201710776. (c) Xu, Y.; Li, B.; Zhang, X.; Fan, X. One-Pot Synthesis of Fused N,O-Heterocycles through Rh(III)-Catalyzed Cascade Reactions of Aromatic/Vinylic N Alkoxy-Amides with 4-Hydroxy-2-Alkynoates. Adv. Synth. Catal. 2018, 360, 2613–2620. DOI: 10.1002/adsc.201800190.
  • (a) Xu, Y.; Zheng, G.; Yang, X.; Li, X. Rhodium(Iii)-Catalyzed Chemodivergent Annulations between N-Methoxybenzamides and Sulfoxonium Ylides via C–H Activation. Chem. Commun. 2018, 54, 670–673. DOI: 10.1039/C7CC07753J. (b) Xiong, H.; Xu, S.; Sun, S.; Cheng, J. Cp*Rh(Iii)-Catalyzed Annulation of N-Methoxybenzamide with 1,4,2-Bisoxazol-5-One toward 2-Aryl Quinazolin-4(3H)-One Derivatives. Org. Chem. Front. 2018, 5, 2880–2884. DOI: 10.1039/C8QO00800K.
  • Wu, X.; Wang, B.; Zhou, S.; Zhou, Y.; Liu, H. Ruthenium-Catalyzed Redox-Neutral [4 + 1] Annulation of Benzamides and Propargyl Alcohols via C–H Bond Activation. ACS Catal. 2017, 7, 2494–2499. DOI: 10.1021/acscatal.7b00031.
  • (a) Ackermann, L.; Lygin, A. V.; Hofmann, N. Ruthenium-Catalyzed Oxidative Annulation by Cleavage of C–H/N–H Bonds. Angew. Chem. Int. Ed. 2011, 50, 6379–6382. S6379/6371-S6379/6369; DOI: 10.1002/anie.201101943. (b) Bian, M.; Ma, L.; Wu, M.; Wu, L.; Gao, H.; Yi, W.; Zhang, C.; Zhou, Z. Rh(III)-Catalyzed Redox-Neutral [4 + 2] Annulation for Direct Assembly of 3-Acyl Isoquinolin-1(2H)-Ones as Potent Antitumor Agents. ChemPlusChem 2020, 85, 405–410. DOI: 10.1002/cplu.201900616. (c) Pan, J.-L.; Liu, C.; Chen, C.; Liu, T.-Q.; Wang, M.; Sun, Z.; Zhang, S.-Y. Dual Directing-Groups-Assisted Redox-Neutral Annulation and Ring Opening of N-Aryloxyacetamides with 1-Alkynylcyclobutanols via Rhodium(III)-Catalyzed C–H/C–C Activations. Org. Lett. 2019, 21, 2823–2827. DOI: 10.1021/acs.orglett.9b00812.
  • Lian, B.; Zhang, L.; Fang, D.-C. A Computational Study on Ruthenium-Catalyzed [4 + 1] Annulation via C–H Activation: The Origin of Selectivity and the Role of the Internal Oxidizing Group. Org. Chem. Front. 2019, 6, 2600–2606. DOI: 10.1039/C9QO00154A.
  • Hu, X.; Chen, X.; Zhu, Y.; Deng, Y.; Zeng, H.; Jiang, H.; Zeng, W. Rh(III)-Catalyzed Carboamination of Propargyl Cycloalkanols with Arylamines via Csp2–H/Csp3–Csp3 Activation. Org. Lett. 2017, 19, 3474–3477. DOI: 10.1021/acs.orglett.7b01372.
  • (a) Huang, H.; Ji, X.; Wu, W.; Jiang, H. Transition metal-catalyzed C–H functionalization of N-oxyenamine internal oxidants. Chem. Soc. Rev. 2015, 44, 1155–1171. DOI: 10.1039/C4CS00288A. (b) Patureau, F. W.; Glorius, F. Oxidizing directing groups enable efficient and innovative C–H Activation Reactions. Angew. Chem. Int. Ed. 2011, 50, 1977–1979. DOI: 10.1002/anie.201007241.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.