Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 12
205
Views
5
CrossRef citations to date
0
Altmetric
SYNTHETIC COMMUNICATIONS REVIEWS

Claisen-Schmidt, aza-Michael, cyclization via cascade strategy toward microwave promoted synthesis of imidazo[2,1-b]quinazolines

&
Pages 1813-1834 | Received 06 Nov 2019, Published online: 24 Apr 2020

References

  • Zhang, L.; Peng, X. M.; Damu, G. L. V.; Geng, R. X.; Zhou, C. H. Comprehensive Review in Current Developments of Imidazole Based Medicinal Chemistry. Med. Res. Rev. 2014, 34, 340–437. DOI: 10.1002/med.21290.
  • Jacqueline, A. U.; Campbell, R. W.; Benakli, K.; Upcroft, P.; Vanelle, P. Efficacy of New 5-Nitroimidazoles against Metronidazole-Susceptible and -Resistant Giardia, Trichomonas, and Entamoeba Spp. Antimicrob. Agents Chemother. 1999, 43, 73–76. DOI: 10.1128/AAC.43.1.73.
  • Gangneux, J. P.; Dullin, M.; Sulahian, A.; Garin, Y. J. F.; Derouin, F. Experimental Evaluation of Second-Line Oral Treatments of Visceral Leishmaniasis Caused by Leishmania infantum. Antimicrob. Agents Chemother. 1999, 43, 172–174. DOI: 10.1128/AAC.43.1.172.
  • Khalil, E. A. G.; Nur, N. M.; Zijlstra, E. E.; El Hassan, A. M.; Davidson, R. N. Failure of a Combination of Two Antifungal Drugs, Terbinafine plus Itraconazole, in Sudanese Post-Kala-Azar Dermal Leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 1996, 90, 187–188. DOI: 10.1016/S0035-9203(96)90134-0.
  • Shallal, A. H.; Muhammed, M. A. Literature Review on the Imidazole. International J. Multidiscip. Res. Rev. 2019, 5, 1–11.
  • Verma, A.; Joshi, S.; Singh, D. Imidazole: Having Versatile Biological Activities. J. Org. Chem. 2013, 2013, 1–329412. DOI: 10.1155/2013/329412.
  • Bedi, P. M. S.; Kumar, V.; Mahajan, M. P. Synthesis and Biological Activity of Novel Antibacterial Quinazolines. Bioorg. Med. Chem. Lett. 2004, 14, 5211–5213. DOI: 10.1016/j.bmcl.2004.07.065.
  • Yang, W.-C.; Li, J.; Li, J.; Chen, Q.; Yang, G.-F. Novel Synthetic Methods for N-Cyano-1H-Imidazole-4-Carboxamides and Their Fungicidal Activity. Bioorg. Med. Chem. Lett. 2012, 22, 1455–1458. DOI: 10.1016/j.bmcl.2011.11.115.
  • Aguirre, G. 1.; Boiani, M.; Cerecetto, H.; Gerpe, A.; González, M.; Sainz, Y. F.; Denicola, A.; De Ocáriz, C. O.; Nogal, J. J.; Montero, D.; et al. Novel Antiprotozoal Products: Imidazole and Benzimidazole N-Oxide Derivatives and Related Compounds. Arch. Pharm. Pharm. Med. Chem. 2004, 337, 259–270. DOI: 10.1002/ardp.200300840.
  • Carini, D. J.; Duncia, J. V.; Aldrich, P. E.; Chiu, A. T.; Johnson, A. L.; Pierce, M. E.; Price, W. A.; Santella, J. B.; Wells, G. J.; Wexler, R. R. Nonpeptide Angiotensin II Receptor Antagonists: The Discovery of a Series of N-(Biphenylylmethyl) Imidazoles as Potent, Orally Active Antihypertensives. J. Med. Chem. 1991, 34, 2525–2547. DOI: 10.1021/jm00112a031.
  • Yang, J. J.; Landier, W.; Yang, W.; Liu, C.; Hageman, L.; Cheng, C.; Pei, D.; Chen, Y.; Crews, K. R.; Kornegay, N.; et al. Inherited NUDT15 Variant is a Genetic Determinant of Mercaptopurine Intolerance in Children with Acute Lymphoblastic Leukemia. JCO. 2015, 33, 1235–1242. DOI: 10.1200/JCO.2014.59.4671.
  • Samira, I.; Patel, S.; Hasmin, M.; Patel, S. Biological Profile of Quinazoline. Int. J. Pharm. Chem. 2012, 1, 1863–1872.
  • Singh, V. K.; Singh, S. K.; Gangwar, L. Synthesis and Antimicrobial Activity of Novel Fused 4-(3H) Quinazolinone Derivatives. Int. J. Recent Sci. Res 2013, 2, 425–428.
  • Paul, R. G.; Cyrus, T.; Kate, E. J.; Kym, N. L.; Joan, M. C.; William, N.; Adrian, E. D.; Hayley, E. B.; Boris, P.; Sandra, D.; Jonathan, B. B.; Craig, A. H..; et al. Optimization of 2-Anilino 4-Amino Substituted Quinazolines into Potent Antimalarial Agents with Oral in Vivo Activity. J. Med. Chem. 2017, 60, 1171–1188.
  • Ghorab, M. M.; Ismail, Z.; Radwan, A. A.; Abdalla, M. Synthesis and Pharmacophore Modeling of Novel Quinazolines Bearing a Biologically Active Sulfonamide Moiety. Acta Pharmacol. Sin. 2013, 63, 1–18. DOI: 10.2478/acph-2013-0006.
  • Al-Amiery, A. A.; Kadhum, A. A. H.; Shamel, M.; Satar, M.; Khalid, Y.; Mohamad, A. B. Antioxidant and Antimicrobial Activities of Novel Quinazolinones. Med. Chem. Res. 2014, 23, 236–242. DOI: 10.1007/s00044-013-0625-1.
  • Alagarsamy, V.; Solomon, V. R.; Dhanabal, K. Synthesis and Pharmacological Evaluation of Some 3-Phenyl-2-Substituted-3H -Quinazolin-4-One as Analgesic, Anti-Inflammatory Agents. Bioorg. Med. Chem. Lett. 2007, 15, 235–241. DOI: 10.1016/j.bmc.2006.09.065.
  • Baba, A.; Kawamura, N.; Makino, H.; Ohta, Y.; Taketomi, S.; Sohda, T. Studies on Disease-Modifying Antirheumatic Drugs: Synthesis of Novel Quinoline and Quinazoline Derivatives and Their Anti-Inflammatory Effect. J. Med. Chem. 1996, 39, 5176–5182. DOI: 10.1021/jm9509408.
  • Jafari, E.; Khajouei, M. R.; Hassanzadeh, F.; Hakimelahi, G. H.; Khodarahmi, G. A. Quinazolinone and Quinazoline Derivatives: Recent Structures with Potent Antimicrob. Cytotoxic Act. Res. Pharm. Sci. 2016, 11, 1–14.
  • Rahman, M. U.; Jeyabalan, G.; Saraswat, P.; Parveen, G.; Khan, S.; Yar, M. S. Quinazolines and Anticancer Activity: A Current Perspectives. Synth. Commun. 2017, 47, 379–408. DOI: 10.1080/00397911.2016.1269926.
  • Eryılmaz, E.; Canpolat, C. Novel Agents for the Treatment of Childhood Leukemia: An Update. OTT. 2017, 10, 3299–3306. DOI: 10.2147/OTT.S126368.
  • Bansal, Y.; Silakari, O. The Therapeutic Journey of Benzimidazoles: A Review. Bioorg. Med. Chem. 2012, 20, 6208–6236. DOI: 10.1016/j.bmc.2012.09.013.
  • Itoh, T. Fluorescence and Phosphorescence from Higher Excited States of Organic Molecules. Chem. Rev. 2012, 112, 4541–4568. DOI: 10.1021/cr200166m.
  • Hirano, K.; Oderaotoshi, Y.; Minakata, S.; Komatsu, M. Unique Fluorescent Properties of 1-Aryl-3,4-Diphenylpyrido[1,2-a]Benzimidazoles. Chem. Lett. 2001, 30, 1262–1263. DOI: 10.1246/cl.2001.1262.
  • Xie, C.; Huang, N. Y.; Ding, M. W. New Efficient Synthesis of Imidazo [2, 1-b] Quinazoline-2, 5 (1H, 3H)-Diones by a Consecutive Aza-Wittig/Heterocumulene-Mediated Annulation. ARKIVOC. 2009, 10, 220–232.
  • Hasan, H. A.; Abdulmalek, E.; Saleh, T. A.; Rahman, A.; Basyaruddin, M.; Shaari, K. B.; Yamin, B. M.; Chan, K. W. Synthesis of Novel 6-Substituted-5,6-Dihydrobenzo[4,5] Imidazo[1,2-c] Quinazoline Compounds and Evaluation of Their Properties. J. Mol. Struct. 2019, 1193, 482–494. DOI: 10.1016/j.molstruc.2019.04.111.
  • Chen, D.; Huang, L.; Yang, J.; Ma, J.; Zheng, Y.; Luo, Y.; Shen, Y.; Wu, J.; Feng, C.; Lv, X. Copper-Catalyzed C–N Coupling/C–H Functionalization: A Tandem Approach to Azole-Fused Quinazoline Derivatives. Tetrahedron Lett. 2018, 59, 2005–2009. DOI: 10.1016/j.tetlet.2018.04.020.
  • Kumar, N.; Shiv, N.; Kumar, D. H.; Kumar, S. I.; Kumar, A. Synthesis of Quinazolinones, Imidazo[1,2c]Quinazolines and Imidazo[4,5c]Quinolines through Tandem Reductive Amination of Aryl Halides and Oxidative Amination of C(sp3)–H Bonds. Eur. J. Org. Chem. 2017, 2017, 514–522. DOI: 10.1002/ejoc.201601329.
  • Devipriya, D.; Roopan, S. M. UV-Light Intervened Synthesis of Imidazo Fused Quinazoline and Its Solvatochromism, Antioxidant, Antifungal and Luminescence Properties. J. Photochem. Photobiol. B. 2019, 190, 42–49. DOI: 10.1016/j.jphotobiol.2018.11.003.
  • Yuvaraj, P.; Kathirvelan, D.; Reddy, B. S. R. Synthesis of β-Aminoketone by Reaction of Amine and Activated Chalcone in Microwave Irradiation. Indian J Chem B. 2015, 46, 828. DOI: 10.1002/chin.201546122.
  • Yaragorla, S.; Dada, R. Amine-Triggered Highly Facile Oxidative Benzannulation Reaction for the Synthesis of Anthranilates under Solvent-Free Calcium(II) Catalysis. ACS Omega. 2017, 2, 4859–4869. DOI: 10.1021/acsomega.7b00753.
  • Polo, E.; Ferrer-Pertuz, K.; Trilleras, J.; Quiroga, J.; GutíErrez, M. Microwave-Assisted One-Pot Synthesis in Water of Carbonylpyrazolo[3,4-b]Pyridine Derivatives Catalyzed by InCl3 and Sonochemical Assisted Condensation with Aldehydes to Obtain New Chalcone Derivatives Containing the Pyrazolopyridinic Moiety. RSC Adv. 2017, 7, 50044–50055. DOI: 10.1039/C7RA10127A.
  • Bezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Villar, L. S.; Escaleira, L. A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta. 2008, 76, 965–977. DOI: 10.1016/j.talanta.2008.05.019.
  • Mason, R. L.; Gunst, R. F.; Hess, J. L. Statistical Design and Analysis of Experiments. 2003, 1–760, ISBN: 978-0-471-37216-5.
  • Lizotte, D. J.; Greiner, R.; Schuurmans, D. An Experimental Methodology for Response Surface Optimization Methods. J. Glob. Optim. 2012, 53, 699–736. DOI: 10.1007/s10898-011-9732-z.
  • Ghoreishi, S. M.; Moein, P. Biodiesel Synthesis from Waste Vegetable Oil via Transesterification Reaction in Supercritical Methanol. J. Supercrit. Fluids. 2013, 76, 24–31. DOI: 10.1016/j.supflu.2013.01.011.
  • Sivaraos, K. R.; Milkey, A. R.; Samsudin, A. K.; Dubey, P. The Mechanical Properties of Fly Ash-Based Geopolymer Concrete with Alkaline Activators. Kidd. J. Mech. Ind. Eng. 2014, 8, 35–42.
  • Varatharajulu, M.; Jayaprakash, G.; Baskar, N.; Suresh Kumar, B. Application of RSM and Taguchi Methods for Optimizing the Transesterification of Waste Cooking Oil Catalyzed by Solid Ostrich and Chicken-Eggshell Derived CaO. Asian J. Res. Soc. Sci. Humanit. 2017, 7, 1237–1251.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.