Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 14
376
Views
17
CrossRef citations to date
0
Altmetric
SYNTHETIC COMMUNICATIONS REVIEWS

An experimental and computational study of pyrimidine based bis-uracil derivatives as efficient candidates for optical, nonlinear optical, and drug discovery applications

, ORCID Icon, ORCID Icon, ORCID Icon, , , & show all
Pages 2199-2225 | Received 28 Feb 2020, Published online: 19 Jun 2020

References

  • Karakas, A.; Karakaya, M.; Ceylan, Y.; El Kouari, Y.; Taboukhat, S.; Boughaleb, Y.; Sofiani, Z. Ab-Initio and DFT Methodologies for Computing Hyperpolarizabilities and Susceptibilities of Highly Conjugated Organic Compounds for Nonlinear Optical Applications. Opt. Mater. 2016, 56, 8–17. DOI: 10.1016/j.optmat.2016.01.036.
  • Esme, A.; Segdinc, S. G. Molecular Structures, Spectroscopic (FT–IR, NMR, UV) Studies, NBO Analysis and NLO Properties for Tautomeric Forms of 1,3-Dimethyl-5-(phenylazo)-6-aminouracil by Density Functional Method. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 188, 443–455. DOI: 10.1016/j.saa.2017.07.034.
  • Tejkiran, P. J.; Brahma Teja, M. S.; Kumar, P. S. S.; Sankar, P.; Philip, R.; Naveen, S.; Lokanath, N. K.; Nageswara Rao, G. D-A-π-D Synthetic Approach for Thienyl Chalcones – NLO – A Structure Activity Study. J. Photochem. Photobiol. A Chem. 2016, 324, 33–39. DOI: 10.1016/j.jphotochem.2016.03.009.
  • Farag, A. A. M.; Roushdy, N.; Halim, S. A.; El-Gohary, N. M.; Ibrahim, M. A.; Said, S. Synthesis, Molecular, Electronic Structure, Linear and Non-Linear Optical and Phototransient Properties of 8-Methyl-1,2-dihydro-4H-chromeno[2,3-b]quinoline-4,6(3H)-dione (MDCQD): Experimental and DFT Investigations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 191, 478–490. DOI: 10.1016/j.saa.2017.10.014.
  • Bendikov, M.; Wudl, F.; Perepichka, D. F. Tetrathiafulvalenes, Oligoacenenes, and Their Buckminsterfullerene Derivatives: The Brick and Mortar of Organic Electronics. Chem. Rev. 2004, 104, 4891–4945. DOI: 10.1021/cr030666m.
  • Coe Benjamin, J. Switchable Nonlinear Optical Metallochromophores with Pyridinium Electron Acceptor Groups. Acc. Chem. Res. 2006, 39, 383–393. DOI: 10.1021/ar050225k.
  • Martín, N.; Ortí, E. Chapter 6 - Quinonoid π-Extended Tetrathiafulvalenes (TTFs). In Handbook of Advanced Electronic and Photonic Materials and Devices, Academic Press, 2001; pp 245–265. DOI: 10.1016/B978-012513745-4/50032-9.
  • Kondo, J.; Westhof, E. Classification of Pseudo Pairs between Nucleotide Bases and Amino Acids by Analysis of Nucleotide-Protein Complexes. Nucleic Acids Res. 2011, 39, 8628–8637. DOI: 10.1093/nar/gkr452.
  • Desiraju, G. R. Hydrogen Bridges in Crystal Engineering: Interactions Without Borders. Acc. Chem. Res. 2002, 35, 565–573. DOI: 10.1021/ar010054t.
  • Longley, D. B.; Harkin, D.; Johnston, P. G. 5-Fluorouracil: Mechanisms of Action and Clinical Strategies. Nat. Rev. Cancer 2003, 3, 330–338. DOI: 10.1038/nrc1074.
  • Porter, D. J. T.; Chestnut, W. G.; Merrill, B. M.; Spector, T. Mechanism-Based Inactivation of Dihydropyrimidine Dehydrogenase by 5-Ethynyluracil. J. Biol. Chem. 1992, 267, 5236–5242.
  • (a) Taniguchi, M.; Lindsey, J. S. Database of Absorption and Fluorescence Spectra of >300 Common Compounds for Use in PhotochemCAD. Photochem. Photobiol. 2018, 94, 290–327. DOI: 10.1111/php.12860. (b) Campbell, J. M.; Sonntag, C. V.; Schulte-Frohlinde, D. Photolysis of 5-Bromouracil and Some Related Compounds in Solution. Z. Naturforsch. 1974, 29, 750–757.
  • Sanduja, A. M.; Gupta, J.; Singh, H.; Pagare, P. P.; Rana, A. Uracil-Coumarin Based Hybrid Molecules as Potent Anti-Cancer and Anti-Bacterial Agents. J. Saudi Chem. Soc. 2019, 24, 251–266. DOI: 10.1016/j.jscs.2019.12.001.
  • Kumar, S.; Lim, S. M.; Ramasamy, K.; Vasudevan, M.; Shah, S. A. A.; Selvaraj, M.; Narasimhan, B. Synthesis, Molecular Docking and Biological Evaluation of Bis-Pyrimidine Schiff Base Derivatives. Chem. Cent. J. 2017, 11, 89. DOI: 10.1186/s13065-017-0322-0.
  • Murugavel, S.; Velan, V. V.; Kannan, D.; Bakthadoss, M. Synthesis, Crystal Structure Analysis, Spectral Investigations, DFT Computations, Biological Activities and Molecular Docking of Methyl(2E)-2-{[N-(2-Formylphenyl)(4-Methylbenzene) Sulfonamido]Methyl}-3-(4-Fluorophenyl)Prop-2-Enoate, a Potential Bioactive Agent. J. Mol. Struct. 2016, 1108, 150–167. DOI: 10.1016/j.molstruc.2015.11.047.
  • Ju, Y.; Varma, R. S. Aqueous N-heterocyclization of Primary Amines and Hydrazines with Dihalides: Microwave-Assisted Syntheses of N-azacycloalkanes, Isoindole, Pyrazole, Pyrazolidine, and Phthalazine Derivatives. J. Org. Chem. 2006, 71, 135–141. DOI: 10.1021/jo051878h.
  • Buntrock, R. E. Review of Heterocyclic Chemistry. J. Chem. Educ. 2012, 89, 1349–1350. https://doi.org/10.1021/ed300616t
  • Arshad, M. N.; Birinji, A. S.; Khalid, M.; Asiri, A. M.; Al-Amry, K. A.; Aqlan, F. M.; Braga, A. A. Synthesis, Spectroscopic, Single Crystal Diffraction and Potential Nonlinear Optical Properties of Novel Pyrazoline Derivatives: Interplay of Experimental and Computational Analyses. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 202, 146–158. DOI: 10.1016/j.saa.2018.04.069.
  • Zhou, Y.; Rodriguez, A. L.; Williams, R.; Weaver, C. D.; Conn, P. J.; Lindsley, C. W. Synthesis and SAR of Novel, Non-MPEP Chemotype mGluR5 NAMs Identified by Functional HTS. Bioorg. Med. Chem. Lett. 2009, 19, 6502–6506. DOI: 10.1016/j.bmcl.2009.10.059.
  • Roberts, J. C.; Kapernaum, N.; Song, Q.; Nonnenmacher, D.; Ayub, K.; Giesselmann, F.; Lemieux, R. P. Design of Liquid Crystals with “de Vries-like” Properties: Frustration between SmA- and SmC-Promoting Elements. J. Am. Chem. Soc. 2010, 132, 364–370. DOI: 10.1021/ja9087727.
  • Yoon, H. G.; Agra-Kooijman, D. M.; Ayub, K.; Lemieux, R. P.; Kumar, S. Direct Observation of Diffuse Cone Behavior in de Vries smectic-A and -C Phases of Organosiloxane Mesogens. Phys. Rev. Lett. 2011, 106, 087801. DOI: 10.1103/PhysRevLett.106.087801.
  • Schubert, C. P.; Bogner, A.; Porada, J. H.; Ayub, K.; Andrea, T.; Giesselmann, F.; Lemieux, R. P. Design of Liquid Crystals with ‘de Vries-Like’ Properties: Carbosilane-Terminated 5-Phenylpyrimidine Mesogens Suitable for Chevron-Free FLC Formulations. J. Mater. Chem. C 2014, 2, 4581–4589. DOI: 10.1039/C4TC00393D.
  • Merkel, K.; Kocot, A.; Vij, J. K.; Stevenson, P. J.; Panov, A.; Rodriguez, D. Anomalous Temperature Dependence of Layer Spacing of de Vries Liquid Crystals: Compensation Model. Appl. Phys. Lett. 2016, 108, 243301. DOI: 10.1063/1.4953598.
  • Hussain, A.; Khan, M. U.; Ibrahim, M.; Khalid, M.; Ali, A.; Hussain, S.; Saleem, M.; Ahmad, N.; Muhammad, S.; Al-Sehemi, A. G.; et al. Structural Parameters, Electronic, Linear and Nonlinear Optical Exploration of Thiopyrimidine Derivatives: A Comparison between DFT/TDDFT and Experimental Study. J. Mol. Struct. 2020, 1201, 127183. DOI: 10.1016/j.molstruc.2019.127183.
  • Roy, S.; Bauza, A.; Banik, R.; Biswas, S. C.; Frontera, A.; Das, S. Structural Basis for Molecular Recognition, Theoretical Studies and anti-Bacterial Properties of Three Bis-Uracil Derivatives. Tetrahedron 2014, 70, 6931–6937. DOI: 10.1016/j.tet.2014.07.098.
  • Das, S.; Thakur, A. J.; Medhi, T.; Das, B. An Efficient Stereo-Controlled Synthesis of Bis-Pyrimido-[4,5-d]-Pyrimidine Derivatives via aza-Diels–Alder Methodology and Their Preliminary Bioactivity. RSC Adv. 2013, 3, 3407–3413. DOI: 10.1039/c3ra22089c.
  • Das, S.; Thakur, A. J. A Clean, Highly Efficient and One-Pot Green Synthesis of Aryl/Alkyl/Heteroaryl-Substituted Bis(6-Amino-1,3-Dimethyluracil-5-yl)Methanes in Water. Eur. J. Org. Chem. 2011, 2011, 2301–2308. DOI: 10.1002/ejoc.201001581.
  • Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. DOI: 10.1038/srep42717.
  • Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures; University of Goettingen: Gottingen, Germany, 1997.
  • Gondia, N. K.; Sharma, S. K. Quantum Yield and Photometric Parameters of Some Transition Metal Ion Schiff Base Complexes. Opt. Quant. Electron. 2017, 49, 303. DOI: 10.1007/s11082-017-1138-9.
  • Larsen, A. F.; Dumat, B.; Wranne, M. S.; Lawson, C. P.; Preus, S.; Bood, M.; Graden, H.; Wilhelmsson, L. M.; Grotli, M. Development of Bright Fluorescent Quadracyclic Adenine Analogues: TDDFT-Calculation Supported Rational Design. Sci. Rep. 2015, 5, 12653. DOI: 10.1038/srep12653.
  • Olmsted, J. Calorimetric Determinations of Absolute Fluorescence Quantum Yields. J. Phys. Chem. 1979, 83, 2581–2584. DOI: 10.1021/j100483a006.
  • Kumar, S.; Kumar, G.; Tripathi, A. K.; Seena, S.; Koh, J. Enhanced Fluorescence Norfloxacin Substituted Naphthalimide Derivatives: Molecular Docking and Antibacterial Activity. J. Mol. Struct. 2018, 1157, 292–299. DOI: 10.1016/j.molstruc.2017.12.067.
  • Tari, L. W.; Trzoss, M.; Bensen, D. C.; Li, X.; Chen, Z.; Lam, T.; Zhang, J.; Creighton, C. J.; Cunningham, M. L.; Kwan, B.; et al. Pyrrolopyrimidine Inhibitors of DNA Gyrase B (GyrB) and Topoisomerase IV (ParE). Part I: Structure Guided Discovery and Optimization of Dual Targeting Agents with Potent, Broad-Spectrum Enzymatic Activity. Bioorg. Med. Chem. Lett. 2013, 23, 1529–1536. DOI: 10.1016/j.bmcl.2012.11.032.
  • Panchaud, P.; Bruyère, T.; Blumstein, A.-C.; Bur, D.; Chambovey, A.; Ertel, E. A.; Gude, M.; Hubschwerlen, C.; Jacob, L.; Kimmerlin, T.; et al. Discovery and Optimization of Isoquinoline Ethyl Ureas as Antibacterial Agents. J. Med. Chem. 2017, 60, 3755–3775. DOI: 10.1021/acs.jmedchem.6b01834.
  • Marasini, B. P.; Baral, P.; Aryal, P.; Ghimire, K. R.; Neupane, S.; Dahal, N.; Singh, A.; Ghimire, L.; Shrestha, K. Evaluation of Antibacterial Activity of Some Traditionally Used Medicinal Plants against Human Pathogenic Bacteria. Bio. Med. Res. Int. 2015, 2015, 1–6. DOI: 10.1155/2015/265425.
  • Hussain, A. I.; Anwar, F.; Chatha, S. A. S.; Jabbar, A.; Mahboob, S.; Nigam, P. S. Rosmarinus Officinalis Essential Oil: Antiproliferative, Antioxidant and Antibacterial Activities. Braz. J. Microbiol. 2010, 41, 1070–1078. DOI: 10.1590/S1517-83822010000400027.
  • Konaté, K.; Hilou, A.; Mavoungou, J. F.; Lepengué, A. N.; Souza, A.; Barro, N.; Datté, J. Y.; M’batchi, B.; Nacoulma, O. G. Antimicrobial Activity of Polyphenol-Rich Fractions from Sida Alba L. (Malvaceae) against co-Trimoxazol-Resistant Bacteria Strains. Ann. Clin. Microbiol. Antimicrob. 2012, 11, 5–10. DOI: 10.1186/1476-0711-11-5.
  • Negi, B. S.; Dave, B. P. In Vitro Antimicrobial Activity of Acacia Catechu and Its Phytochemical Analysis. Indian J. Microbiol. 2010, 50, 369–374. DOI: 10.1007/s12088-011-0061-1.
  • Khurram, M.; Khan, M. A.; Hameed, A.; Abbas, N.; Qayum, A.; Inayat, H. Antibacterial Activities of Dodonaea Viscosa Using Contact Bioautography Technique. Molecules 2009, 14, 1332–1341. DOI: 10.3390/molecules14031332.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A., et al. Gaussian 16, Revision A.03; Gaussian Inc.: Wallingford, CT, 2016.
  • Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215–241. DOI: 10.1007/s00214-007-0310-x.
  • Muhammad, S.; Xu, H.; Janjua, M. R. S. A.; Su, Z.; Nadeem, M. Quantum Chemical Study of Benzimidazole Derivatives to Tune the Second-Order Nonlinear Optical Molecular Switching by Proton Abstraction. Phys. Chem. Chem. Phys. 2010, 12, 4791–4799. DOI: 10.1039/b924241d.
  • Muhammad, S.; Kumar, S.; Koh, J.; Saravanabhavan, M.; Ayub, K.; Chaudhary, M. Synthesis, Characterisation, Optical and Nonlinear Optical Properties of Thiazole and Benzothiazole Derivatives: A Dual Approach. Mol. Simul. 2018, 44, 1191–1199. DOI: 10.1080/08927022.2018.1475737.
  • Muhammad, S.; Al-Sehemi, A. G.; Irfan, A.; Chaudhry, A. R. Tuning the Push-Pull Configuration for Efficient Second-Order Nonlinear Optical Properties in Some Chalcone Derivatives. J. Mol. Graph. Model. 2016, 68, 95–105. DOI: 10.1016/j.jmgm.2016.06.012.
  • Kumar, S.; Muhammad, S.; Koh, J.; Khalid, M.; Ayub, K. A Combined Experimental and Computational Study of 2,2’-(Diazene-1,2-Diylbis(4,1-Phenylene))Bis(6-(Butylamino)-1H-Benzo[de]Isoquinoline-1,3(2H)-Dione): Synthesis, Optical and Nonlinear Optical Properties. Optik. 2019, 192, 162952. DOI: 10.1016/j.ijleo.2019.162952.
  • Muhammad, S. Quantum Chemical Design of Triple Hybrid Organic, Inorganic and Organometallic Materials: An Efficient Two-Dimensional Second-Order Nonlinear Optical Material. Mater. Chem. Phys. 2018, 220, 286–292. DOI: 10.1016/j.matchemphys.2018.09.009.
  • Tahir, H.; Kosar, N.; Ayub, K.; Mahmood, T. Outstanding NLO Response of Thermodynamically Stable Single and Multiple Alkaline Earth Metals Doped C20 Fullerene. J. Mol. Liq. 2020, 305, 112875. DOI: 10.1016/j.molliq.2020.112875.
  • Muhammad, S.; Al-Sehemi, A. G.; Irfan, A.; Algarni, H.; Qiu, Y.; Xu, H.; Su, Z.; Iqbal, J. The Substitution Effect of Heterocyclic Rings to Tune the Optical and Nonlinear Optical Properties of Hybrid Chalcones: A Comparative Study. J. Mol. Graph. Model. 2018, 81, 25–31. DOI: 10.1016/j.jmgm.2018.02.005.
  • Ullah, F.; Kosar, N.; Arshad, M. N.; Gilani, M. A.; Ayub, K.; Mahmood, T. Design of Novel Superalkali Doped Silicon Carbide Nanocages with Giant Nonlinear Optical Response. Opt. Laser Technol. 2020, 122, 105855. DOI: 10.1016/j.optlastec.2019.105855.
  • Kosar, N.; Mahmood, T.; Ayub, K.; Tabassum, S.; Arshad, M.; Gilani, M. A. Doping Superalkali on Zn12O12 Nanocage Constitutes a Superior Approach to Fabricate Stable and High-Performance Nonlinear Optical Materials. Opt. Laser Technol. 2019, 120, 105753. DOI: 10.1016/j.optlastec.2019.105753.
  • Ullah, F.; Kosar, N.; Ali, A.; Tariq Mahmood, M.; Ayub, K. Alkaline Earth Metal Decorated Phosphide Nanoclusters for Potential Applications as High Performance NLO Materials: A First Principle Study. Physica E Low Dimens. Syst. Nanostruct. 2020, 118, 113906. DOI: 10.1016/j.physe.2019.113906.
  • Ahsan, A.; Ayub, K. Extremely Large Nonlinear Optical Response and Excellent Electronic Stability of True Alkaline Earthides Based on Hexaammine Complexant. J. Mol. Liq. 2020, 297, 111899. DOI: 10.1016/j.molliq.2019.111899.
  • Muhammad, S.; Xu, H.; Su, Z.; Fukuda, K.; Kishi, R.; Shigeta, Y.; Nakano, M. A New Type of Organic-Inorganic Hybrid NLO-Phore with Large off-Diagonal First Hyperpolarizability Tensors: A Two-Dimensional Approach. Dalton Trans. 2013, 42, 15053–15062. DOI: 10.1039/c3dt51331a.
  • Muhammad, S.; Nakano, M.; Al-Sehemi, A. G.; Irfan, A.; Chaudhry, A. R.; Tonami, T.; Ito, S.; Kishi, R.; Kitagawa, Y. Exploring the Novel Donor-Nanotube Archetype as an Efficient Third-Order Nonlinear Optical Material: Asymmetric Open-Shell Carbon Nanotubes. Nanoscale 2018, 10, 16499–16507. DOI: 10.1039/c8nr03009j.
  • Mohan, B.; Choudhary, M.; Bharti, S.; Jana, A.; Das, N.; Muhammad, S.; Al-Sehemi, A. G.; Kumar, S. Syntheses, Characterizations, Crystal Structures and Efficient NLO Applications of New Organic Compounds Bearing 2-Methoxy-4-Nitrobenzeneamine Moiety and Copper (II) Complex of (E)-N’-(3,5-Dichloro-2-Hydroxybenzylidene) Benzohydrazide. J. Mol. Struct. 2019, 1190, 54–67. DOI: 10.1016/j.molstruc.2019.04.059.
  • Mohan, B.; Jana, A.; Das, N.; Bharti, S.; Choudhary, M.; Muhammad, S.; Kumar, S.; Al-Sehemi, A. G.; Algarni, H. A Dual Approach to Study the Key Features of Nickel (II) and Copper (II) Coordination Complexes: Synthesis, Crystal Structure, Optical and Nonlinear Properties. Inorg. Chim. Acta 2019, 484, 148–159. DOI: 10.1016/j.ica.2018.09.037.
  • Dahlin, J. L.; Inglese, J.; Walters, M. A. Mitigating Risk in Academic Preclinical Drug Discovery. Nat. Rev. Drug Discov. 2015, 14, 279–294. DOI: 10.1038/nrd4578.
  • Tian, S.; Wang, S. J.; Li, Y.; Li, D.; Xu, L.; Hou, T. The Application of in Silico Drug-Likeness Predictions in Pharmaceutical Research. Adv. Drug Deliv. Rev. 2015, 86, 2–10. DOI: 10.1016/j.addr.2015.01.009.
  • Daina, A.; Michielin, O.; Zoete, V. iLOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. J. Chem. Inf. Model. 2014, 54, 3284–3301. DOI: 10.1021/ci500467k.
  • Daina, A.; Zoete, V. A BOILED-Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. Chem. Med. Chem. 2016, 11, 1117–1121. DOI: 10.1002/cmdc.201600182.
  • Bruns, R. F.; Watson, I. A. Rules for Identifying Potentially Reactive or Promiscuous Compounds. J. Med. Chem. 2012, 55, 9763–9772. DOI: 10.1021/jm301008n.
  • Morgan‐Linnell, S. K.; Hiasa, H.; Zechiedrich, L.; Nitiss, J. L. Assessing Sensitivity to Antibacterial Topoisomerase II Inhibitors. Curr. Protoc. Pharmacol. 2007, 39, 3–13. DOI: 10.1002/0471141755.ph0313s39.
  • Kumar, G.; Patnaik, R. Inhibition of Gelatinases (MMP-2 and MMP-9) by Withania Somnifera Phytochemicals Confers Neuroprotection in Stroke: An In Silico Analysis. Interdiscip. Sci. 2018, 10, 722–733. DOI: 10.1007/s12539-017-0231-x.
  • Banso, A.; Adeyemo, S. O. The Phytochemical and Antimicrobial Evaluation of Ethanolic Extract of Dracaena mannii. Nig. J. Biotechnol. 2007, 18, 27–32.
  • Radhika, P.; Sastry, B. S.; Madhu, H. B. Antimicrobial screening of Andrographis paniculata (Acanthaceae) root extracts. Res. J. Biotechnol. 2008, 2, 62–63.
  • Farrugia, L. J. ORTEP-3 for Windows e a Version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30, 565–565. DOI: 10.1107/S0021889897003117.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.