Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 15
296
Views
5
CrossRef citations to date
0
Altmetric
Articles

Competitive cascade cyclization of 2′-tosyloxychalcones: An easy access to thioflavones and thioaurones

, , &
Pages 2347-2354 | Received 07 Jan 2020, Published online: 08 Jun 2020

References

  • Dong, J.; Zhang, Q.; Meng, Q.; Wang, Z.; Li, S.; Cui, J. The Chemistry and Biological Effects of Thioflavones. Mini Rev. Med. Chem. 2018, 18, 1714–1732. DOI: 10.2174/1389557518666180515145633.
  • Konieczny, M. T.; Konieczny, W. Synthesis and Reactivity of Thioaurones over the past One Hundred Years. Heterocycles 2005, 65, 451–464. DOI: 10.3987/REV-04-590.
  • Razdan, R. K.; Bruni, R. J.; Mehta, A. C.; Weinhardt, K. K.; Papanastassiou, Z. B. A New Class of Antimalarial Drugs: Derivatives of Benzothiopyrans. J. Med. Chem. 1978, 21, 643–649. DOI: 10.1021/jm00205a010.
  • Hoettecke, N.; Rotzoll, S.; Albrecht, U.; Lalk, M.; Fischer, C.; Langer, P. Synthesis and Antimicrobial Activity of 2-Alkenylchroman-4-Ones, 2-Alkenylthiochroman-4-Ones and 2-Alkenylquinol-4-Ones. Bioorg. Med. Chem. 2008, 16, 10319–10325. DOI: 10.1016/j.bmc.2008.10.043.
  • Nussbaumer, P.; Lehr, P.; Billich, A. 2-Substituted 4-(Thio)Chromenone 6-O-Sulfamates: Potent Inhibitors of Human Steroid Sulfatase. J. Med. Chem. 2002, 45, 4310–4320. DOI: 10.1021/jm020878w.
  • Kataoka, T.; Watanabe, S.; Mori, E.; Kadomoto, R.; Tanimura, S.; Kohno, M. Synthesis and Structure-Activity Relationships of Thioflavone Derivatives as Specific Inhibitors of the ERK-MAP Kinase Signaling Pathway. Bioorg. Med. Chem. 2004, 12, 2397–2407. DOI: 10.1016/j.bmc.2004.02.002.
  • Wang, H.-K.; Bastow, K. F.; Cosentino, L. M.; Lee, K.-H. Antitumor Agents. 166. Synthesis and Biological Evaluation of 5,6,7,8-Substituted-2-Phenylthiochromen-4-Ones. J. Med. Chem. 1996, 39, 1975–1980. DOI: 10.1021/jm960008c.
  • Perrier, E.; Okombi, S.; Rival, D.; Boumendjel, A.; Mariotte, D. Eur. Pat. Appl. EP17099642A2, 2006.
  • (a) Wiedbrauk, S.; Dube, H. Hemithioindigo—An Emerging Photoswitch. Tetrahedron Lett. 2015, 56, 4266–4274. DOI: 10.1016/j.tetlet.2015.05.022. (b) Maerz, B.; Wiedbrauk, S.; Oesterling, S.; Samoylova, E.; Nenov, A.; Mayer, P.; Regina, V.-R.; Zinth, W.; Dube, H. Making Fast Photoswitches Faster-Using Hammett Analysis to Understand the Limit of Donor-Acceptor Approaches for Faster Hemithioindigo Photoswitches. Chemistry 2014, 20, 13984–13992. DOI: 10.1002/chem.201403661. (c) Zweig, J. E.; Newhouse, T. R. Isomer-Specific Hydrogen Bonding as a Design Principle for Bidirectionally Quantitative and Redshifted Hemithioindigo Photoswitches. J. Am. Chem. Soc. 2017, 139, 10956–10959. DOI: 10.1021/jacs.7b04448. (d) Wiedbrauk, S.; Maerz, B.; Amoylova, E.; Reiner, A.; Trommer, F.; Mayer, P.; Zinth, W.; Dube, H. Twisted Hemithioindigo Photoswitches: Solvent Polarity Determines the Type of Light-Induced Rotations. J. Am. Chem. Soc. 2016, 138, 12219–12227. DOI: 10.1021/jacs.6b05981. (e) Guentner, M.; Schildhauer, M.; Thumser, S.; Mayer, P.; Stephenson, D.; Mayer, P.; Dube, H. Sunlight-Powered kHz Rotation of a Hemithioindigo-Based Molecular Motor. Nat. Commun. 2015, 6, 8406. DOI: 10.1038/ncomms9406. (f) Plötner, J.; Dreuw, A. Molecular Mechanism of the Z/E-Photoisomerization of Hemithioindigo Hemistilbene†. J. Phys. Chem. A 2009, 113, 11882–11887. DOI: 10.1021/jp903156j. (g) Eggers, K.; Fyles, T. M.; Montoya-Pelaez, P. J. Synthesis and Characterization of Photoswitchable Lipids Containing Hemithioindigo Chromophores. J. Org. Chem. 2001, 66, 2966–2977. DOI: 10.1021/jo0056848.
  • (a) Fukuda, N.; Ikemoto, T. Scalable and Straightforward Synthesis of a 2-Alkyl-7-Arylbenzo-Thiophene as a GPR52 Agonist via a Hemithioindigo Derivative. Synthesis 2015, 47, 3467–3472. DOI: 10.1055/s-0034-1378746. (b) Jia, J.; Yu, A.; Ma, S.; Zhang, Y.; Li, K.; Meng, X. Solvent-Controlled Switchable Domino Reactions of MBH Carbonate: Synthesis of Benzothiophene Fused α-Pyran, 2,3-Dihydrooxepine, and Oxatricyclodecene Derivatives. Org. Lett. 2017, 19, 6084–6087. DOI: 10.1021/acs.orglett.7b02916.
  • (a) Kumar, P.; Rao, A. T.; Pandey, B. An Efficient Approach to the Synthesis of 4H-1-Benzothiopyran-4-Ones via Intramolecular Wittig Reaction. J. Chem. Soc. Chem. Commun. 1992, 21, 1580–1581. DOI: 10.1039/c39920001580. (b) Kumar, P.; Rao, A. T.; Pandey, B. Chemoselective Reduction of Vinylogous Thioesters of Thiochromones. Synth. Commun. 1994, 24, 3297–3306. DOI: 10.1080/00397919408010253. (c) Park, J.-W.; Kim, J.-S.; Lee, K.-Y.; Park, T.-J.; Kim, S.-H. Factors Associated with Premenstrual Syndrome in High School Students. Korean J. Fam. Med. 2009, 30, 710–712. DOI: 10.4082/kjfm.2009.30.9.710. (d) Kumar, P.; Bodas, M. S. A New Synthesis of 4H-1-Benzothiopyran-4-Ones Using (Trimethylsilyl)Methylenetriphenylphosphorane. Tetrahedron 2001, 57, 9755–9758. DOI: 10.1016/S0040-4020(01)00977-2. (e) Lee, J. I.; Kim, M. J. A Practical Synthesis of Thioflavones and Heterocyclic Analogues by Intramolecular Rearrangement of S-2-Acetophenyl Benzothioates as a Key Step. Bull. Korean Chem. Soc. 2011, 32, 1383–1386. DOI: 10.5012/bkcs.2011.32.4.1383.
  • Kobayashi, K.; Kobayashi, A.; Ezaki, K. A Convenient Synthesis of 2-Arylthiochromen-4-Ones (Thioflavones) by Iodine-Mediated Cyclization of 3-Aryl-1-[2-(1,1-Dimethylethylsulfanyl)Phenyl]Prop-2-en-1-Ones. Heterocycles 2012, 85, 1997–2004. DOI: 10.3987/COM-12-12508.
  • (a) Lee, J. I.; Choi, J. S. Practical and Versatile Synthesis of Thioflavones from 2-Bromobenzoyl Chlorides. J. Korean Chem. Soc. 2015, 59, 253–256. DOI: 10.5012/jkcs.2015.59.3.253. (b) Fuchs, F. C.; Eller, G. A.; Holzer, W. Heterocyclic Analogs of Thioflavones: synthesis and NMR Spectroscopic Investigations. Molecules 2009, 14, 3814–3832. DOI: 10.3390/molecules14093814. (c) Willy, B.; Frank, W.; Muller, T. J. J. Microwave-Assisted Three-Component Coupling-addition-S(N)Ar (CASNAR) Sequences to Annelated 4H-Thiopyran-4-Ones. Org. Biomol. Chem. 2010, 8, 90–95. DOI: 10.1039/B917627F. (d) Willy, B.; Muller, T. J. J. A Novel Consecutive Three-ComponentCoupling-Addition-S N Ar (CASNAR) Synthesisof 4 H -Thiochromen-4-Ones. SynLett 2009, 2009, 1255–1260. DOI: 10.1055/s-0029-1216735. (e) Wang, D.; Sun, P.; Jia, P.; Peng, J.; Yue, Y.; Chen, C. Electrophilic Ring Opening of Small Heterocycles. Synthesis 2017, 49, 5307–4320. DOI: 10.1055/s-0036-1588466.
  • Vargas, E.; Echeverri, F.; Velez, I. D.; Robledo, S. M.; Upegui, Y. A.; Quinones, W. Synthesis and Evaluation of Thiochroman-4-One Derivatives as Potential Leishmanicidal Agents. Molecules 2017, 22, 2041–2057. DOI: 10.3390/molecules22122041.
  • Kim, H. Y.; Song, E.; Oh, K. Unified Approach to (Thio)chromenones via One-Pot Friedel-Crafts Acylation/Cyclization: Distinctive Mechanistic Pathways of β-Chlorovinyl Ketones. Org. Lett. 2017, 19, 312–315. DOI: 10.1021/acs.orglett.6b03348.
  • Taylor, A. W.; Dean, D. K. A New Synthesis of Thioflavones. Tetrahedron Lett. 1988, 29, 1845–1848. DOI: 10.1016/S0040-4039(00)82060-2.
  • Sangeetha, S.; Sekar, G. Copper-Catalyzed One-Pot Synthesis of 2-Arylthiochromenones: An in Situ Recycle of Waste Byproduct as Useful Reagent. Org. Lett. 2019, 21, 75–79. DOI: 10.1021/acs.orglett.8b03508.
  • (a) Xu, J.; Zhang, F.; Zhang, S.; Zhang, L.; Yu, X.; Yan, J.; Song, Q. Radical Promoted C(sp2)-S Formation and C(sp3)-S Bond Cleavage: Access to 2-Substituted Thiochromones. Org. Lett. 2019, 21, 1112–1115. DOI: 10.1021/acs.orglett.9b00023. (b) Inami, T.; Kurahashi, T.; Matsubara, S. Nickel-Catalyzed Reaction of Thioisatins and Alkynes: A Facile Synthesis of Thiochromones. Org. Lett. 2014, 16, 5660–5662. DOI: 10.1021/ol5026102.
  • (a) Kamila, S.; Mukherjee, C.; Pradhan, T. K.; De, A. Synthetic studies in sulfur heterocycles. One-pot synthesis of “thioaurones” and their conversion into [1]benzothieno[3,2-b]pyrans via tandem reactions. Arkivoc 2006, 2006, 45–60. (b) Cabiddu, M. G.; Cabiddu, S.; Cadoni, E.; Montis, S. D.; Fattuoni, C.; Melis, S.; Usai, M. One-Step Synthesis of Thioaurones. Synthesis 2002, 2002, 875–878. DOI: 10.1055/s-2002-28523.
  • Nguyen, T. B.; Retailleau, P. Cooperative Activating Effect of Tertiary Amine/DMSO on Elemental Sulfur: Direct Access to Thioaurones from 2′-Nitrochalcones under Mild Conditions. Org. Lett. 2018, 20, 186–189. DOI: 10.1021/acs.orglett.7b03547.
  • (a) Venkateswarlu, S.; Panchagnula, G. K.; Gottumukkala, A. L.; Subbaraju, G. V. Synthesis, Structural Revision, and Biological Activities of 4′-Chloroaurone, a Metabolite of Marine Brown Alga Spatoglossum Variabile. Tetrahedron 2007, 63, 6909–6914. DOI: 10.1016/j.tet.2007.04.048. (b) Venkateswarlu, S.; Panchagnula, G. K.; Guraiah, M. B.; Subbaraju, G. V. Isoaurones: synthesis and Stereochemical Assignments of Geometrical Isomers. Tetrahedron 2006, 62, 9855–9860. DOI: 10.1016/j.tet.2006.08.048. (c) Venkateswarlu, S.; Murty, G. N.; Satyanarayana, M. On Water Synthesis of Aurones: first Synthesis of 4,5,3′,4′,5′-Pentamethoxy-6-Hydroxyaurone from Smilax Riparia. Arkivoc 2017, 2017, 303–314. DOI: 10.24820/ark.5550190.p009.918. (d) Venkateswarlu, S.; Murty, G. N.; Satyanarayana, M.; Siddaiah, V. Efficient PEG-Mediated Green Synthesis of Isoaurones: First Synthesis of 4′,6-Dihydroxy-4-Methoxyisoaurone Isolated from Trichosanthes Kirilowii. Synth. Commun. 2017, 47, 1495–1500. DOI: 10.1080/00397911.2017.1333618.
  • Gormley, T. R.; O’Sullivan, W. I. Flavanoid Epoxides—XIII. Tetrahedron 1973, 29, 369–373. DOI: 10.1016/S0040-4020(01)93304-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.