Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 15
247
Views
32
CrossRef citations to date
0
Altmetric
Articles

Synthesis, cytotoxicity, in-vitro antibacterial screening and in-silico study of novel thieno[2,3-b]pyridines as potential pim-1 inhibitors

ORCID Icon, ORCID Icon, &
Pages 2376-2389 | Received 24 Mar 2020, Published online: 18 Jun 2020

References

  • Drygin, D.; Haddach, M.; Pierre, F.; Ryckman, D. M. Potential Use of Selective and Nonselective Pim Kinase Inhibitors for Cancer Therapy: Miniperspective. J. Med. Chem. 2012, 55, 8199–8208. DOI: 10.1021/jm3009234.
  • Merke, A. L.; Meggers, E.; Ocker, M. PIM1 Kinase as a Target for Cancer Therapy. Expert Opin Investig Drugs. 2012, 21, 425–436. DOI: 10.1517/13543784.2012.668527.
  • Morwick, T. Pim Kinase Inhibitors: A Survey of the Patent Literature. Expert Opin. Ther. Pat. 2010, 20, 193–212. DOI: 10.1517/13543770903496442.
  • Bachmann, M.; Hennemann, H.; Xing, P. X.; Hoffmann, I.; Möröy, T. The Oncogenic Serine/Threonine Kinase Pim-1 Phosphorylates and Inhibits the Activity of Cdc25C-Associated Kinase 1 (C-TAK1): A Novel Role for Pim-1 at the G2/M Cell Cycle Checkpoint. J. Biol. Chem. 2004, 279, 48319–48328. DOI: 10.1074/jbc.M404440200.
  • Guo, S.; Mao, X.; Chen, J.; Huang, B.; Jin, C.; Xu, Z.; Qiu, S. Overexpression of Pim-1 in Bladder Cancer. J. Exp. Clin. Cancer Res. 2010, 29, Article:161. DOI: 10.1186/1756-9966-29-161.
  • Brault, L.; Gasser, C.; Bracher, F.; Huber, K.; Knapp, S.; Schwaller, J. PIM Serine/Threonine Kinases in the Pathogenesis and Therapy of Hematologic Malignancies and Solid Cancers. Haematologica 2010, 95, 1004–1015. DOI: 10.3324/haematol.2009.017079.
  • Decker, S.; Finter, J.; Forde, A. J.; Kissel, S.; Schwaller, J.; Mack, T. S.; Kuhn, A.; Gray, N.; Follo, M.; Jumaa, H.; et al. PIM Kinases Are Essential for Chronic Lymphocytic Leukemia Cell Survival (PIM2/3) and CXCR4-Mediated Microenvironmental Interactions (PIM1). Mol. Cancer Ther. 2014, 13, 1231–1245. DOI: 10.1158/1535-7163.MCT-13-0575-T.
  • Naguib, B. H.; El-Nassan, H. B. Synthesis of New Thieno[2,3-b]Pyridine Derivatives as Pim-1 Inhibitors. J. Enzyme Inhib. Med. Chem. 2016, 31, 1718–1725. DOI: 10.3109/14756366.2016.1158711.
  • Feng, L.; Reynisdóttir, I.; Reynisson, J. The Effect of PLC-γ2 Inhibitors on the Growth of Human Tumour Cells. Eur. J. Med. Chem. 2012, 54, 463–469. DOI: 10.1016/j.ejmech.2012.05.029.
  • Pevet, I.; Brulé, C.; Tizot, A.; Gohier, A.; Cruzalegui, F.; Boutin, J. A.; Goldstein, S. Synthesis and Pharmacological Evaluation of Thieno[2,3-b]Pyridine Derivatives as Novel c-Src Inhibitors. Bioorg. Med. Chem. 2011, 19, 2517–2528. DOI: 10.1016/j.bmc.2011.03.021.
  • Zeng, X.-X.; Zheng, R.-L.; Zhou, T.; He, H.-Y.; Liu, J.-Y.; Zheng, Y.; Tong, A.-P.; Xiang, M.-L.; Song, X.-R.; Yang, S.-Y.; et al. Novel Thienopyridine Derivatives as Specific Anti-Hepatocellular Carcinoma (HCC) Agents: Synthesis, Preliminary Structure-Activity Relationships, and In Vitro Biological Evaluation. Bioorg. Med. Chem. Lett. 2010, 20, 6282–6285. DOI: 10.1016/j.bmcl.2010.08.088.
  • Willemann, C.; Grünert, R.; Bednarski, P. J.; Troschütz, R. Synthesis and Cytotoxic Activity of 5,6-Heteroaromatically Annulated Pyridine-2,4-Diamines. Bioorg. Med. Chem. 2009, 17, 4406–4419. DOI: 10.1016/j.bmc.2009.05.016.
  • Al-Trawneh, S. A.; El-Abadelah, M. M.; Zahra, J. A.; Al-Taweel, S. A.; Zani, F.; Incerti, M.; Cavazzoni, A.; Vicini, P. Synthesis and Biological Evaluation of Tetracyclic Thienopyridones as Antibacterial and Antitumor Agents. Bioorg. Med. Chem. 2011, 19, 2541–2548. DOI: 10.1016/j.bmc.2011.03.018.
  • Bernardino, A. M. R.; da Silva Pinheiro, L. C.; Rodrigues, C. R.; Loureiro, N. I.; Castro, H. C.; Lanfredi-Rangel, A.; Sabatini-Lopes, J.; Borges, J. C.; Carvalho, J. M.; Romeiro, G. A.; et al. Design, Synthesis, SAR, and Biological Evaluation of New 4-(Phenylamino)Thieno[2,3-b]Pyridine Derivatives. Bioorg. Med. Chem. 2006, 14, 5765–5770. DOI: 10.1016/j.bmc.2006.03.013.
  • Shuck-Lee, D.; Chen, F. F.; Willard, R.; Raman, S.; Ptak, R.; Hammarskjold, M.-L.; Rekosh, D. Heterocyclic Compounds That Inhibit Rev-RRE Function and Human Immunodeficiency Virus Type 1 Replication. Antimicrob. Agents Chemother. 2008, 52, 3169–3179. DOI: 10.1128/AAC.00274-08.
  • Schnute, M. E.; Anderson, D. J.; Brideau, R. J.; Ciske, F. L.; Collier, S. A.; Cudahy, M. M.; Eggen, M.; Genin, M. J.; Hopkins, T. A.; Judge, T. M.; et al. 2-Aryl-2-Hydroxyethylamine Substituted 4-Oxo-4,7-Dihydrothieno[2,3-b]Pyridines as Broad-Spectrum Inhibitors of Human Herpesvirus Polymerases. Bioorg. Med. Chem. Lett. 2007, 17, 3349–3353. DOI: 10.1016/j.bmcl.2007.03.102.
  • Madhusudana, K.; Shireesha, B.; Naidu, V. G.; Ramakrishna, S.; Narsaiah, B.; Rao, A. R.; Diwan, P. V. Anti-Inflammatory Potential of Thienopyridines as Possible Alternative to NSAIDs. Eur. J. Pharmacol. 2012, 678, 48–54. DOI: 10.1016/j.ejphar.2011.12.019.
  • Boschelli, D. H.; Wu, B.; Barrios Sosa, A. C.; Chen, J.; Asselin, M.; Cole, D. C.; Lee, J.; Yang, X.; Chaudhary, D. Synthesis and PKCtheta Inhibitory Activity of a Series of 4-(Indol-5-Ylamino)Thieno[2,3-b]Pyridine-5-Carbonitriles. Bioorg. Med. Chem. Lett. 2008, 18, 2850–2853. DOI: 10.1016/j.bmcl.2008.03.077.
  • Nathan , Tumey, L.; Boschelli, D. H.; Lee, J.; Chaudhary, D. 2-Alkenylthieno[2,3-b]Pyridine-5-Carbonitriles: Potent and Selective Inhibitors of PKCtheta. Bioorg. Med. Chem. Lett. 2008, 18, 4420–4423. DOI: 10.1016/j.bmcl.2008.06.040.
  • Bahekar, R. H.; Jain, M. R.; Jadav, P. A.; Prajapati, V. M.; Patel, D. N.; Gupta, A. A.; Sharma, A.; Tom, R.; Bandyopadhya, D.; Modi, H.; Patel, P. R. Synthesis and Antidiabetic Activity of 2,5-Disubstituted-3-Imidazol-2-yl-Pyrrolo[2,3-b]Pyridines and Thieno[2,3-b]Pyridines. Bioorg. Med. Chem. 2007, 15, 6782–6795. DOI: 10.1016/j.bmc.2007.08.005.
  • Kamata, M.; Yamashita, T.; Kina, A.; Funata, M.; Mizukami, A.; Sasaki, M.; Tani, A.; Funami, M.; Amano, N.; Fukatsu, K. Design, Synthesis, and Structure-Activity Relationships of Novel Spiro-Piperidines as Acetyl-CoA Carboxylase Inhibitors. Bioorg. Med. Chem. Lett. 2012, 22, 3643–3647. DOI: 10.1016/j.bmcl.2012.04.047.
  • Adachi, I.; Yamamori, T.; Hiramatsu, Y.; Sakai, K.; Mihara, S.; Kawakami, M.; Masui, M.; Uno, O.; Ueda, M. Studies on Dihydropyridines. III. Synthesis of 4,7-Dihydrothieno[2,3-b]Pyridines with Vasodilator and Antihypertensive Activities. Chem. Pharm. Bull. 1988, 36, 4389–4402. DOI: 10.1248/cpb.36.4389.
  • Ueda, M.; Matsumura, S.; Masui, M.; Matsuura, E.; Kawakami, M.; Fujitomo, H.; Umeda, T.; Kagawa, H.; Hirohata, S.; Shima, K. Pharmacological Studies on a New Dihydrothienopyridine Calcium Antagonist. 3rd Communication: Antihypertensive Effects of S-(+)-Methyl-4,7-Dihydro-3-Isobutyl-6-Methyl-4-(3-Nitrophenyl)Thieno[2,3-b]Pyridine-5-Carboxylate in Hypertensive Rats and Dogs. Arzneimittelforschung. 1993, 43, 1282–1290.
  • Ohba, S.; Nakajima, K.; Komiyama, Y.; Kugimiya, F.; Igawa, K.; Itaka, K.; Moro, T.; Nakamura, K.; Kawaguchi, H.; Takato, T.; Chung, U. I. A Novel Osteogenic Helioxanthin-Derivative Acts in a BMP-Dependent Manner. Biochem. Biophys. Res. Commun. 2007, 357, 854–860. DOI: 10.1016/j.bbrc.2007.03.173.
  • Saito, K.; Nakao, A.; Shinozuka, T.; Shimada, K.; Matsui, S.; Oizumi, K.; Yano, K.; Ohata, K.; Nakai, D.; Nagai, Y.; Naito, S. Discovery and Structure-Activity Relationship of Thienopyridine Derivatives as Bone Anabolic Agents. Bioorg. Med. Chem. 2013, 21, 1628–1642. DOI: 10.1016/j.bmc.2013.01.071.
  • Mohi El-Deen, E. M.; Abd El-Meguid, E. A.; Hasabelnaby, S.; Karam, E. A.; Nossier, E. S. Synthesis, Docking Studies, and In Vitro Evaluation of Some Novel Thienopyridines and Fused Thienopyridine–Quinolines as Antibacterial Agents and DNA Gyrase Inhibitors. Molecules 2019, 24, 3650–3669. DOI: 10.3390/molecules24203650.
  • Buchstaller, H. P.; Siebert, C. D.; Steinmetz, R.; Frank, I.; Berger, M. L.; Gottschlich, R.; Leibrock, J.; Krug, M.; Steinhilber, D.; Noe, C. R. Synthesis of Thieno[2,3-b]Pyridinones Acting as Cytoprotectants and as Inhibitors of [3H]Glycine Binding to the N-Methyl-D-Aspartate (NMDA) Receptor. J. Med. Chem. 2006, 49, 864–871. DOI: 10.1021/jm0503493.
  • Said, S. A.; El-Sayed, H. A.; Amr, A. E.; Abdalla, M. M. Selective and Orally Bioavailable CHK1 Inhibitors of Some Synthesized Substituted Thieno[2,3-b]Pyridine Candidates. Int. J. Pharmacol. 2015, 11, 659–671. DOI:ijp.2015.659.671. DOI: 10.3923/ijp.2015.659.671.
  • Lockman, J. W.; Reeder, M. D.; Suzuki, K.; Ostanin, K.; Hoff, R.; Bhoite, L.; Austin, H.; Baichwal, V.; Willardsen, J. A. Inhibition of eEF2-K by Thieno[2,3-b]Pyridine Analogues. Bioorg. Med. Chem. Lett. 2010, 20, 2283–2286. DOI: 10.1016/j.bmcl.2010.02.005.
  • Mohamed, M. S.; Mansour, Y. E.; Amin, H. K.; El-Araby, M. E. Molecular Modelling Insights into a Physiologically Favourable Approach to Eicosanoid Biosynthesis Inhibition through Novel Thieno[2,3-b]Pyridine Derivatives. J. Enzyme Inhib. Med. Chem. 2018, 33, 755–767. DOI: 10.1080/14756366.2018.1457657.
  • Sanad, S. M. H.; Ahmed, A. M. A.; Mekky, A. E. M. Efficient Synthesis and Molecular Docking of Novel Antibacterial Pyrimidines and Their Related Fused Heterocyclic Derivatives. J. Heterocyclic Chem. 2020, 57, 590–605. DOI: 10.1002/jhet.3789.
  • Sanad, S. M. H.; Ahmed, A. A. M.; Mekky, A. E. M. Synthesis, In-Vitro and in-Silico Study of Novel Thiazoles as Potent Antibacterial Agents and MurB Inhibitors. Arch. Pharm. (Weinheim) 2020, 353, e1900309. DOI: 10.1002/ardp.201900309.
  • Ahmed, A. A. M.; Mekky, A. E. M.; Elwahy, A. H. M.; Sanad, S. M. H. Facile Synthesis and Characterization of Novel Benzo-Fused Macrocyclic Dicarbonitriles and Pyrazolo-Fused Macrocycles Containing Thiazole Subunits. Synth. Commun. 2020, 50, 796–804. DOI: 10.1080/00397911.2019.1689269.
  • Mekky, A. E. M.; Sanad, S. M. H. Synthesis, Characterization, and Antimicrobial Evaluation of Novel Thiohydrazonates and Pyrazolo[3,4-b]Pyridines. Polycycl. Aromat. Comp. 2019. DOI: 10.1080/10406638.2019.1631194.
  • Sanad, S. M. H.; Hanna, D. H.; Mekky, A. E. M. Regioselective Synthesis of Novel Antibacterial Pyrazole-Benzofuran Hybrids: 2D NMR Spectroscopy Studies and Molecular Docking. J. Mol. Struct. 2019, 1188, 214–226. DOI: 10.1016/j.molstruc.2019.03.088.
  • Sanad, S. M. H.; Mekky, A. E. M. Synthesis, In-Vitro Antibacterial and Anticancer Screening of Novel Nicotinonitrile-Coumarin Hybrids Utilizing Piperazine Citrate. Synth. Commun. 2020, 50, 1468–1485. DOI: 10.1080/00397911.2020.1743318.
  • Sanad, S. M. H.; Abdel Fattah, A. M.; Attaby, F. A.; Elneairy, M. A. A. Synthesis and Characterization of Novel Bis(Pyridine-2(1H)-Thiones) and Their Bis(2-Methylsulfanylpyridines) Incorporating 2,6-Dibromophenoxy Moiety. Can. J. Chem. 2019, 97, 53–60. DOI: 10.1139/cjc-2017-0721.
  • Mekky, A. E. M.; Sanad, S. M. H. Synthesis of Novel Bis(Chromenes) and Bis(Chromeno[3,4-c]Pyridine) Incorporating Piperazine Moiety. Synth. Commun. 2019, 49, 1385–1395. DOI: 10.1080/00397911.2019.1595658.
  • Sanad, S. M. H.; Mekky, A. E. M. Piperazine-Mediated Tandem Synthesis of Bis(Thieno[2,3-b]Pyridines): Versatile Precursors for Related Fused [1,2,4]Triazolo[4,3-a]Pyrimidines. J. Heterocyclic Chem. 2020. DOI: 10.1002/jhet.4021.
  • Mekky, A. E. M.; Sanad, S. M. H.; Ahmed, A. A. M.; Ahmed, A. A. M. Microwave Assisted Three Component One-Pot Synthesis of Bis(Aminoazolo[1,5-a]Pyrimidines) and Bis(Aminoazino[1,2-a]Benzimidazoles). Bearing Thiazole Moiety. ChemistrySelect 2019, 4, 9710–9715. DOI: 10.1002/slct.201902828.
  • Sanad, S. M. H.; Abdel Fattah, A. M.; Attaby, F. A.; Elneairy, M. A. A. Pyridine-2(1H)-Thiones: Versatile Precursors for Novel Pyrazolo[3,4-b]Pyridine, Thieno[2,3-b]Pyridines and Their Fused Azines. J. Heterocyclic Chem. 2019, 56, 651–662. DOI: 10.1002/jhet.3444.
  • Sanad, S. M. H.; Hefny, M. I. M.; Ahmed, A. A. M.; Elneairy, M. A. A. Synthesis of Novel Bis[(5-Cyanopyridin-6-yl)Sulfanyl]Butanes, Bis(2-S-Alkylpyridines) and Bis(3-Aminothieno[2,3-b]Pyridines) Incorporating 2,6-Dibromophenoxy Moiety. J. Heterocyclic Chem. 2018, 55, 2046–2054. DOI: 10.1002/jhet.3239.
  • Warren, G. L.; Andrews, C. W.; Capelli, A.-M.; Clarke, B.; LaLonde, J.; Lambert, M. H.; Lindvall, M.; Nevins, N.; Semus, S. F.; Senger, S.; et al. A Critical Assessment of Docking Programs and Scoring Functions. J. Med. Chem. 2006, 49, 5912–5931. DOI: 10.1021/jm050362n.
  • Scholz, C.; Knorr, S.; Hamacher, K.; Schmidt, B. DOCKTITE-A Highly Versatile Step-by-Step Workflow for Covalent Docking and Virtual Screening in the Molecular Operating Environment. J. Chem. Inf. Model. 2015, 55, 398–406. DOI: 10.1021/ci500681r.
  • Vilar, S.; Cozza, G.; Moro, S. Medicinal Chemistry and the Molecular Operating Environment (MOE): Application of QSAR and Molecular Docking to Drug Discovery. Curr. Top. Med. Chem. 2008, 8, 1555–1572. DOI: 10.2174/156802608786786624.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.