Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 17
418
Views
2
CrossRef citations to date
0
Altmetric
Articles

Organocatalyzed regioselective and enantioselective synthesis of 1,4- and 1,2-dihydropyridines

, , , &
Pages 2673-2684 | Received 31 Mar 2020, Published online: 04 Aug 2020

References

  • Isambert, N.; Lavilla, R. Heterocycles as Key Substrates in Multicomponent Reactions: The Fast Lane towards Molecular Complexity. Chemistry. 2008, 14, 8444–8454. DOI: 10.1002/chem.200800473.
  • Bull, J. A.; Mousseau, J. J.; Pelletier, G.; Charette, A. B. Synthesis of Pyridine and Dihydropyridine Derivatives by Regio- and Stereoselective Addition to N-Activated Pyridines. Chem. Rev. 2012, 112, 2642–2713. DOI: 10.1021/cr200251d.
  • Suryavanshi, P. A.; Sridharan, V.; Maiti, S.; Menéndez, J. C. Fully Diastereoselective Synthesis of Polysubstituted, Functionalized Piperidines and Decahydroquinolines Based on Multicomponent Reactions Catalyzed by Cerium(IV) Ammonium Nitrate. Chemistry. 2014, 20, 8791–8799. DOI: 10.1002/chem.201402607.
  • Faruk Khan, M. O.; et al. Isoquinuclidines: A Review of Chemical and Pharmacological Properties. In Studies in Natural Products Chemistry; Attaur, R., Ed.; Elsevier: Amsterdam, 2008; pp 753–787
  • Hubert, C.; Moreau, J.; Batany, J.; Duboc, A.; Hurvois, J.-P.; Renaud, J.-L. Brønsted Acid-Catalyzed Synthesis of Pyransvia a Formal [3 + 3] Cycloaddition. Adv. Synth. Catal. 2008, 350, 40–42. DOI: 10.1002/adsc.200700375.
  • Moreau, J.; Hubert, C.; Batany, J.; Toupet, L.; Roisnel, T.; Hurvois, J.-P.; Renaud, J.-L. Metal-Free Brønsted Acid Catalyzed Formal [3 + 3] Annulation. Straightforward Synthesis of Dihydro-2H-Chromenones, Pyranones, and Tetrahydroquinolinones. J. Org. Chem. 2009, 74, 8963–8973. DOI: 10.1021/jo901238y.
  • Boschi, D.; Caron, G.; Visentin, S.; Di Stilo, A.; Rolando, B.; Fruttero, R.; Gasco, A. Searching for Balanced Hybrid NO-Donor 1,4-Dihydropyridines with Basic Properties. Pharm. Res. 2001, 18, 987–991. DOI: 10.1023/A:1010992412549.
  • Thu Pham, H.; Chataigner, I.; Renaud, aJ-L. New Approaches to Nitrogen Containing Heterocycles: Enantioselective Organocatalyzed Synthesis of Dihydropyridines (DHP’s), Quinolizidine Derivatives and Dihydropyrimidine(DHPM’s.) COC. 2012, 16, 1754–1775. DOI: 10.2174/138527212802651322.
  • Moreau, J.; Duboc, A.; Hubert, C.; Hurvois, J.-P.; Renaud, J.-L. Metal-Free Brønsted Acids Catalyzed Synthesis of Functional 1,4-Dihydropyridines. Tetrahedron Lett. 2007, 48, 8647–8650. DOI: 10.1016/j.tetlet.2007.10.040.
  • Kaur, V. R.; Christian, B.; Jean-Luc, R. Lewis Acid-Catalyzed Sequential Transformations: Straightforward Preparation of Functional Dihydropyridines. Adv. Synth. Catal. 2006, 348, 2571–2574.
  • Lavilla, R. Recent Developments in the Chemistry of Dihydropyridines. J. Chem. Soc, Perkin Trans. 2002, 1, 1141–1156. DOI: 10.1039/b101371h.
  • Saini, A.; Kumar, S.; Sandhu, J. S. Hantzsch Reaction: Recent Advances in Hantzsch 1,4-Dihydropyridines. J. Sci. Ind. Res. 2008, 67, 95–111.
  • Zhang, X.; Staples, R. J.; Rheingold, A. L.; Wulff, W. D. Catalytic Asymmetric α-Iminol Rearrangement: New Chiral Platforms. J. Am. Chem. Soc. 2014, 136, 13971–13974. DOI: 10.1021/ja5065685.
  • Ingle, G. K.; Liang, Y.; Mormino, M. G.; Li, G.; Fronczek, F. R.; Antilla, J. C. Chiral Magnesium BINOL Phosphate-Catalyzed Phosphination of Imines: Access to Enantioenriched α-Amino Phosphine Oxides. Org. Lett. 2011, 13, 2054–2057. DOI: 10.1021/ol200456y.
  • Larson, S. E.; Li, G.; Rowland, G. B.; Junge, D.; Huang, R.; Woodcock, H. L.; Antilla, J. C. Catalytic Asymmetric Aza-Darzens Reaction with a Vaulted Biphenanthrol Magnesium Phosphate Salt. Org. Lett. 2011, 13, 2188–2191. DOI: 10.1021/ol200407r.
  • David, T.; Gabriela, M.-A.; Fernando, G.-T. A Convenient Domino Access to Substituted Alkyl 1,2-Dihydropyridine-3-Carboxylates from Propargyl Enol Ethers and Primary Amines. Chem. A Eur. J. 2010, 16, 428–431.
  • Zhang, Z.; Antilla, J. C. Enantioselective Construction of Pyrroloindolines Catalyzed by Chiral Phosphoric Acids: total Synthesis of (-)-Debromoflustramine B. Angew. Chem. Int. Ed. Engl. 2012, 51, 11778–11782. DOI: 10.1002/anie.201203553.
  • Wang, H.; Jain, P.; Antilla, J. C.; Houk, K. N. Origins of Stereoselectivities in Chiral Phosphoric Acid Catalyzed Allylborations and Propargylations of Aldehydes. J. Org. Chem. 2013, 78, 1208–1215. DOI: 10.1021/jo302787m.
  • Zhang, Z.; Zheng, W.; Antilla, J. C. Highly Enantioselective Catalytic Benzoyloxylation of 3-Aryloxindoles Using Chiral VAPOL Calcium Phosphate. Angew. Chem. Int. Ed. Engl. 2011, 50, 1135–1138. DOI: 10.1002/anie.201006595.
  • Silva, A.; Silva, E.; Rocha, D. Diels–Alder Reactions of 1,2-Dihydropyridines: An Efficient Tool for the Synthesis of Isoquinuclidines. Synthesis. 2018, 50, 1773–1782. DOI: 10.1055/s-0037-1609418.
  • Li, G.; Liang, T.; Wojtas, L.; Antilla, J. C. An Asymmetric Diels-Alder Reaction Catalyzed by Chiral Phosphate Magnesium Complexes: highly Enantioselective Synthesis of Chiral Spirooxindoles. Angew. Chem. Int. Ed. Engl. 2013, 52, 4628–4632. DOI: 10.1002/anie.201209295.
  • Nimmagadda, S. K.; Zhang, Z.; Antilla, J. C. Asymmetric One-Pot Synthesis of 1,3-Oxazolidines and 1,3-Oxazinanes via Hemiaminal Intermediates. Org. Lett. 2014, 16, 4098–4101. DOI: 10.1021/ol501789c.
  • Liang, T.; Li, G.; Wojtas, L.; Antilla, J. C. Chiral Metal Phosphate Catalysis: highly Asymmetric hetero-Diels-Alder Reactions. Chem. Commun. (Camb.) 2014, 50, 14187–14190. DOI: 10.1039/c4cc06520d.
  • Ingle, G.; Mormino, M. G.; Antilla, J. C. Lithium BINOL Phosphate Catalyzed Desymmetrization of meso-Epoxides with Aromatic Thiols. Org. Lett. 2014, 16, 5548–5551. DOI: 10.1021/ol502527q.
  • Groenendaal, B.; Ruijter, E.; Orru, R. V. A. 1-Azadienes in Cycloaddition and Multicomponent Reactions towards N-Heterocycles. Chem. Commun. 2008, 44, 5474–5489. DOI: 10.1039/b809206k.
  • Girling, P. R.; Kiyoi, T.; Whiting, A. Mannich-Michael versus formal aza-Diels-Alder approaches to piperidine derivatives. Org. Biomol. Chem. 2011, 9, 3105–3121. DOI: 10.1039/c0ob00996b.
  • Duttwyler, S.; Chen, S.; Lu, C.; Mercado, B. Q.; Bergman, R. G.; Ellman, J. A. Regio- and Stereoselective 1,2-Dihydropyridine Alkylation/Addition Sequence for the Synthesis of Piperidines with Quaternary Centers. Angew. Chem. Int. Ed. Engl. 2014, 53, 3877–3880. DOI: 10.1002/anie.201310517.
  • J, M. J.; A, B. J.; B, C. A. Copper-Catalyzed Direct Alkenylation of N-Iminopyridinium Ylides. Angew. Chem. Int. Ed. 2010, 49, 1115–1118.
  • Richard, V.; Ipouck, M.; Mérel, D. S.; Gaillard, S.; Whitby, R. J.; Witulski, B.; Renaud, J.-L. Iron(II)-Catalysed [2 + 2+2] Cycloaddition for Pyridine Ring Construction. Chem. Commun. (Camb.) 2014, 50, 593–595. DOI: 10.1039/c3cc47700b.
  • Weding, N.; Hapke, M. Preparation and Synthetic Applications of Alkene Complexes of Group 9 Transition Metals in [2 + 2+2] Cycloaddition Reactions. Chem. Soc. Rev. 2011, 40, 4525–4538. DOI: 10.1039/c0cs00189a.
  • Domínguez, G.; Pérez-Castells, J. Recent Advances in [2 + 2+2] Cycloaddition Reactions. Chem. Soc. Rev. 2011, 40, 3430–3444. DOI: 10.1039/c1cs15029d.
  • Hao, W.; et al. Synthesis of Substituted 1,2-Dihydropyridines from Propargyl Vinyl Ethers and Allenic Vinyl Ethers by Gold-Catalyzed Claisen Rearrangement and 6π-Aza-Electrocyclization. Adv. Synth. Catal. 2010, 352, 2450–2454.
  • Gross, K. M. B.; Jun, Y. M.; Beak, P. Asymmetric Deprotonations: Lithiation of N-(tert-Butoxycarbonyl)Indoline with sec-Butyllithium/(−)-Sparteine. J. Org. Chem. 1997, 62, 7679–7689. DOI: 10.1021/jo9708856.
  • Ren-Shi, L.; et al. Highly Efficient Asymmetric Michael Reaction of Aldehydes to Nitroalkenes with Diphenylperhydroindolinol Silyl Ethers as Organocatalysts. Adv. Synth. Catal. 2009, 351, 2449–2459.
  • Bhaskar Kanth, J. V.; Periasamy, M. Convenient Method for the Synthesis of Chiral α,α-Diphenyl-2-Pyrrolidinemethanol. Tetrahedron. 1993, 49, 5127–5132. DOI: 10.1016/S0040-4020(01)81877-9.
  • Sibi, M. P.; Manyem, S. Lanthanide Lewis Acid-Mediated Enantioselective Conjugate Radical Additions. Org. Lett. 2002, 4, 2929–2932. DOI: 10.1021/ol026327h.
  • Li, K.; Zhou, Z.; Wang, L.; Chen, Q.; Zhao, G.; Zhou, Q.; Tang, C. Asymmetric Carbonyl Reduction with Borane Catalyzed by Chiral Phosphinamides Derived from l-Amino Acid. Tetrahedron Asym. 2003, 14, 95–100. DOI: 10.1016/S0957-4166(02)00789-9.
  • Randive, N. A.; Kumar, V.; Nair, V. A. A Facile Approach to Substituted Acrylates by Regioselective and Stereoselective Addition of Thiols and Amines to an Alkynyl Ester in Water. Monatsh. Chem. 2010, 141, 1329–1332. DOI: 10.1007/s00706-010-0399-9.
  • Noole, A.; Borissova, M.; Lopp, M.; Kanger, T. Enantioselective Organocatalytic Aza-Ene-Type Domino Reaction Leading to 1,4-Dihydropyridines. J. Org. Chem. 2011, 76, 1538–1545. DOI: 10.1021/jo200095e.
  • Choudhary, S.; Pawar, A. P.; Yadav, J.; Sharma, D. K.; Kant, R.; Kumar, I. One-Pot Synthesis of Chiral Tetracyclic Dibenzo[ b, f][1,4]oxazepine-Fused 1,2-Dihydropyridines (DHPs) under Metal-Free Conditions. J. Org. Chem. 2018, 83, 9231–9239. DOI: 10.1021/acs.joc.8b01232.
  • Auria-Luna, F.; Marqués-López, E.; Gimeno, M. C.; Heiran, R.; Mohammadi, S.; Herrera, R. P. Asymmetric Organocatalytic Synthesis of Substituted Chiral 1,4-Dihydropyridine Derivatives. J. Org. Chem. 2017, 82, 5516–5523. DOI: 10.1021/acs.joc.7b00176.
  • Kobayashi, T.; Hatano, S.; Tsuchikawa, H.; Katsumura, S. A Novel Strategy for the Synthesis of 2-Arylpyridines Using One-Pot 6π-Azaelectrocyclization. Tetrahedron Lett. 2008, 49, 4349–4351. DOI: 10.1016/j.tetlet.2008.05.048.
  • Sydorenko, N.; Hsung, R. P.; Vera, E. L. Torquoselective 6pi-Electron Electrocyclic Ring Closure of 1-Azatrienes Containing Acyclic Chirality at the C-Terminus. Org. Lett. 2006, 8, 2611–2614. DOI: 10.1021/ol060932t.
  • Francisco, P.; et al. Cycloaddition Reactions of Neutral 2‐Azadienes with Enamines − Regiospecific Synthesis of Highly Substituted Dihydropyridines and Pyridines. Eur. J. Org. Chem. 2001, 2001, 2115–2122.
  • Colby, D. A.; Bergman, R. G.; Ellman, J. A. Synthesis of Dihydropyridines and Pyridines from Imines and Alkynes via C-H activation. J. Am. Chem. Soc. 2008, 130, 3645–3651. DOI: 10.1021/ja7104784.
  • Duttwyler, S.; Lu, C.; Rheingold, A. L.; Bergman, R. G.; Ellman, J. A. Highly Diastereoselective Synthesis of Tetrahydropyridines by a C–H Activation-Cyclization-Reduction Cascade. J. Am. Chem. Soc. 2012, 134, 4064–4067. DOI: 10.1021/ja2119833.
  • Liu, H.; Zhang, Q.; Wang, L.; Tong, X. PPh3-Catalyzed [2 + 2 + 2] and [4 + 2] Annulations: synthesis of Highly Substituted 1,2-Dihydropyridines (DHPs). Chem. Commun. (Camb.) 2010, 46, 312–314. DOI: 10.1039/b915825a.
  • Yamakawa, T.; Yoshikai, N. Annulation of α,β-Unsaturated Imines and Alkynes via Cobalt-Catalyzed Olefinic C-H Activation. Org. Lett. 2013, 15, 196–199. DOI: 10.1021/ol303259m.
  • Harschneck, T.; Kirsch, S. F. One-Pot Synthesis of 1,2-Dihydropyridines: Expanding the Diverse Reactivity of Propargyl Vinyl Ethers. J. Org. Chem. 2011, 76, 2145–2156. DOI: 10.1021/jo102545m.
  • Binder, J. T.; Kirsch, S. F. Synthesis of Highly Substituted Pyrroles via a Multimetal-Catalyzed Rearrangement-Condensation-Cyclization Domino Approach. Org. Lett. 2006, 8, 2151–2153. DOI: 10.1021/ol060664z.
  • Suhre, M. H.; Reif, M.; Kirsch, S. F. Gold(I)-Catalyzed Synthesis of Highly Substituted Furans. Org. Lett. 2005, 7, 3925–3927. DOI: 10.1021/ol0514101.
  • Kumar, A.; Maurya, R. A. Organocatalysed Three-Component Domino Synthesis of 1,4-Dihydropyridines Under Solvent Free Conditions. Tetrahedron. 2008, 64, 3477–3482. DOI: 10.1016/j.tet.2008.02.022.
  • Franke, P. T.; Johansen, R. L.; Bertelsen, S.; Jørgensen, K. A. Organocatalytic Enantioselective One-Pot Synthesis and Application of Substituted 1,4-Dihydropyridines-Hhantzsch Ester Analogues. Chem Asian J. 2008, 3, 216–224. DOI: 10.1002/asia.200700360.
  • Seebach, D.; Grošelj, U.; Badine, M. D.; W. Bernd, S.; Beck, A. K. Isolation and X‐Ray Structures of Reactive Intermediates of Organocatalysis with Diphenylprolinol Ethers and with Imidazolidinones. Helv. Chim. Acta. 2008, 91, 1999–2034.
  • Grošelj, U.; Seebach, D.; Badine, D. M.; Schweizer, W. B.; Albert K. B.; Krossing, I.; Klose P.; Hayashi Y.; Uchimaru, T. Structures of the Reactive Intermediates in Organocatalysis with Diarylprolinol Ethers. Helv. Chim. Acta. 2009, 92, 1225–1259.
  • Sami, L.; Roland, A.; Herbert, M. How Does Electrostatic Activation Control Iminium‐Catalyzed Cyclopropanations? Angew. Chem. Int. Ed. 2009, 48, 5034–5037.
  • Kunz, R. K.; MacMillan, D. W. C. Enantioselective Organocatalytic Cyclopropanations. The Identification of a New Class of Iminium Catalyst Based upon Directed Electrostatic Activation. J. Am. Chem. Soc. 2005, 127, 3240–3241. DOI: 10.1021/ja042774b.
  • E, Z. L.; Christof, S.; Ryan, G. Fluorine Conformational Effects in Organocatalysis: An Emerging Strategy for Molecular Design. Angew. Chem. Int. Ed. 2011, 50, 11860–11871.
  • Christof, S.; et al. Theoretical and X‐Ray Crystallographic Evidence of a Fluorine‐Imine Gauche Effect: An Addendum to Dunathan’s Stereoelectronic Hypothesis. Chem. Eur. J. 2011, 17, 8850–8857.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.