Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 16
270
Views
5
CrossRef citations to date
0
Altmetric
Articles

Asymmetric α-hydroxylation of β-dicarbonyl compounds by C-2′ modified cinchonine-derived phase-transfer catalysts in batch and flow microreactors

, , , , , , , & show all
Pages 2478-2487 | Received 30 Sep 2019, Published online: 24 Jun 2020

References

  • (a) Fukuyama, T.; Rahman, M. T.; Sato, M.; Ryu, I. Adventures in Inner Space: Microflow Systems for Practical Organic Synthesis. Synlett 2008, 2008, 151–163. DOI: 10.1055/s-2007-1000884. (b) Hessel, V. Novel Process Windows – Gate to Maximizing Process Intensification via Flow Chemistry. Chem. Eng. Technol. 2009, 32, 1655–1681. DOI: 10.1002/ceat.200900474. (c) Webb, D.; Jamison, T. F. Continuous Flow Multi-Step Organic Synthesis. Chem. Sci. 2010, 1, 675. DOI: 10.1039/c0sc00381f. (d) Malet-Sanz, L.; Susanne, F. J. Continuous Flow Synthesis. A Pharma Perspective. J. Med. Chem. 2012, 55, 4062–4098. DOI: 10.1021/jm2006029. (e) Su, Y.; Straathof, N. J. W.; Hessel, V.; Noël, T. Photochemical Transformations Accelerated in Continuous-Flow Reactors: Basic Concepts and Applications. Chemistry 2014, 20, 10562–10589. DOI: 10.1002/chem.201400283. (f) Gutmann, B.; Cantillo, D.; Kappe, C. O. Continuous-Flow Technology—A Tool for the Safe Manufacturing of Active Pharmaceutical Ingredients. Angew. Chem. Int. Ed. Engl. 2015, 54, 6688–6728. DOI: 10.1002/anie.201409318. (g) Munirathinam, R.; Huskens, J.; Verboom, W. Supported Catalysis in Continuous-Flow Microreactors. Adv. Synth. Catal. 2015, 357, 1093–1123. DOI: 10.1002/adsc.201401081. (h) Porta, R.; Benaglia, M.; Puglisi, A. Flow Chemistry: Recent Developments in the Synthesis of Pharmaceutical Products. Org. Process Res. Dev 2016, 20, 2–25. DOI: 10.1021/acs.oprd.5b00325.
  • (a) Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Greener Approaches to Organic Synthesis Using Microreactor Technology. Chem. Rev. 2007, 107, 2300–2318. DOI: 10.1021/cr050944c. (b) Hartman, R. L.; McMullen, J. P.; Jensen, K. F. Deciding Whether to Go with the Flow: Evaluating the Merits of Flow Reactors for Synthesis. Angew. Chem. Int. Ed. Engl. 2011, 50, 7502–7519. DOI: 10.1002/anie.201004637. (c) Yoshida, J.; Kim, H.; Nagaki, A. Green and Sustainable Chemical Synthesis Using Flow Microreactors. ChemSusChem 2011, 4, 331–340. DOI: 10.1002/cssc.201000271. (d) Hartman, R. L. Managing Solids in Microreactors for the Upstream Continuous Processing of Fine Chemicals. Org. Process Res. Dev. 2012, 16, 870–887. DOI: 10.1021/op200348t. (e) Wiles, C.; Watts, P. Continuous Flow Reactors: A Perspective. Green Chem 2012, 14, 38–54. DOI: 10.1039/C1GC16022B.
  • (a) Wiles, C.; Watts, P. Continuous Flow Reactors – A Tool for the Modern Synthetic Chemist. Eur. J. Org. Chem. 2008, 2008, 1655–1671. DOI: 10.1002/ejoc.200701041. (b) Wiles, C.; Watts, P. Continuous-Flow Organic Synthesis: A Tool for the Modern Medicinal Chemist. Future Med Chem 2009, 1, 1593–1612. DOI: 10.4155/fmc.09.132. (c) Atodiresei, I.; Vila, C; Rueping, M. ACS Catal. 2015, 5, 1972. DOI: 10.1021/acscatal.5b00002. (d) Gemoets, H. P. L.; Su, Y.; Shang, M.; Hessel, V.; Luque, R.; Noël, T. Liquid Phase Oxidation Chemistry in Continuous-Flow Microreactors. Chem. Soc. Rev. 2016, 45, 83–117. DOI: 10.1039/C5CS00447K.
  • (a) Hu, R.; Lei, M.; Xiong, H.; Mu, X.; Wang, Y.; Yin, X. Highly Selective Acylation of Ferrocene Using Microfluidic Chip Reactor. Tetrahedron Lett. 2008, 49, 387–389. DOI: 10.1016/j.tetlet.2007.11.035. (b) Bogdan, A. R.; Poe, S. L.; Kubis, D. C.; Broadwater, S. J.; McQuade, D. T. The Continuous-Flow Synthesis of Ibuprofen. Angew. Chem. Int. Ed. Engl. 2009, 48, 8547–8550. DOI: 10.1002/anie.200903055. (c) Baumann, M.; Baxendale, I. R.; Martin, L. J.; Ley, S. V. Development of Fluorination Methods Using Continuous-Flow Microreactors. Tetrahedron 2009, 65, 6611–6625. DOI: 10.1016/j.tet.2009.05.083. (d) Tomida, Y.; Nagaki, A.; Yoshida, J. Asymmetric Carbolithiation of Conjugated Enynes: A Flow Microreactor Enables the Use of Configurationally Unstable Intermediates before They Epimerize. J. Am. Chem. Soc. 2011, 133, 3744–3747. DOI: 10.1021/ja110898s. (e) Palde, P. B.; Jamison, T. F. Safe and Efficient Tetrazole Synthesis in a Continuous-Flow Microreactor. Angew. Chem. Int. Ed. Engl 2011, 50, 3525–3528. DOI: 10.1002/anie.201006272. (f)Wang, X.; Cuny, G. D.; Noël, T. A Mild, One-Pot Stadler-Ziegler Synthesis of Arylsulfides Facilitated by Photoredox Catalysis in Batch and Continuous-Flow. Angew. Chem. Int. Ed. Engl. 2013, 52, 7860–7864. DOI: 10.1002/anie.201303483. (g) Loponov, K. N.; Lopes, J.; Barlog, M.; Astrova, E. V.; Malkov, A. V.; Lapkin, A. A. Optimization of a Scalable Photochemical Reactor for Reactions with Singlet Oxygen. Org. Process Res. Dev. 2014, 18, 1443–1454. DOI: 10.1021/op500181z. (h) Chandrasekhar, D.; Borra, S.; Nanubolu, J. B.; Maurya, R. A. Visible Light Driven Photocascade Catalysis: Ru(Bpy)3(PF6)2/TBHP-Mediated Synthesis of Fused β-Carbolines in Batch and Flow Microreactors. Org. Lett. 2016, 18, 2974–2977. DOI: 10.1021/acs.orglett.6b01321. (i) Jadhav, A. S.; Anand, R. V. 1,6-Conjugate Addition of Zinc Alkyls to Para-Quinone Methides in a Continuous-Flow Microreactor. Org. Biomol. Chem. 2017, 15, 56–60. DOI: 10.1039/C6OB02277D. (j) Borra, S.; Chandrasekhar, D.; Adhikary, S.; Rasala, S.; Gokulnath, S.; Maurya, R. A. Visible-Light Driven Photocascade Catalysis: Union of N,N-Dimethylanilines and α-Azidochalcones in Flow Microreactors. J. Org. Chem. 2017, 82, 2249–2256. DOI: 10.1021/acs.joc.6b02932.
  • (a) Mak, X. Y.; Laurino, P.; Seeberger, P. H. Asymmetric Reactions in Continuous Flow. Beilstein J. Org. Chem. 2009, 5, 19. DOI: 10.3762/bjoc.5.19. (b) Zhao, D.; Ding, K. Recent Advances in Asymmetric Catalysis in Flow. ACS Catal. 2013, 3, 928–944. DOI: 10.1021/cs300830x. (c) Hayashi, T.; Kikuchi, S.; Asano, Y.; Endo, Y.; Yamada, T. Homogeneous Enantioselective Catalysis in a Continuous-Flow Microreactor: Highly Enantioselective Borohydride Reduction of Ketones Catalyzed by Optically Active Cobalt Complexes. Org. Process Res. Dev. 2012, 16, 1235–1240. DOI: 10.1021/op300061k.
  • (a) Lévesque, F.; Seeberger, P. H. Highly Efficient Continuous Flow Reactions Using Singlet Oxygen as a "Green" Reagent. Org. Lett. 2011, 13, 5008–5011. DOI: 10.1021/ol2017643. (b) Neumann, M.; Zeitler, K. Application of Microflow Conditions to Visible Light Photoredox Catalysis. Org. Lett. 2012, 14, 2658–2661. DOI: 10.1021/ol3005529. (c) Rossi, S.; Benaglia, M.; Puglisi, A.; Filippo, C.; Maggini, M. Continuous-Flow Stereoselective Synthesis in Microreactors: Nucleophilic Additions to Nitrostyrenes Organocatalyzed by a Chiral Bifunctional Catalyst. J. Flow Chem. 2015, 5, 17–21. DOI: 10.1556/JFC-D-14-00030. (d) Angelis, S. D.; Renzo, M. D.; Carlucci, C.; Degennaro, L.; Luisi, R. A Convenient Enantioselective CBS-Reduction of Arylketones in Flow-Microreactor Systems. Org. Biomol. Chem. 2016, 14, 4304–4311. DOI: 10.1039/C6OB00336B. (e) Dai, W.; Mi, Y.; Lv, Y.; Chen, B.; Li, G.; Chen, G.; Gao, S. Development of a Continuous-Flow Microreactor for Asymmetric Sulfoxidation Using a Biomimetic Manganese Catalyst. Adv. Synth. Catal. 2016, 358, 667–671. DOI: 10.1002/adsc.201501023. (f) Dai, W.; Mi, Y.; Lv, Y.; Shang, S.; Li, G.; Chen, G.; Gao, S. Recent Progress on Copper-Mediated Directing-Group-Assisted C(sp2)–H Activation. Synthesis 2016, 48, 4381–4399. DOI: 10.1055/s-0035-1561955. (g) Rehm, T. H.; Gros, S.; Löb, P.; Renken, A. Photonic Contacting of Gas–Liquid Phases in a Falling Film Microreactor for Continuous-Flow Photochemical Catalysis with Visible Light. React. Chem. Eng. 2016, 1, 636–648. DOI: 10.1039/C6RE00169F. (h) Zhang, X.; Jing, L.; Wei, L.; Zhang, F.; Yang, H. Semipermeable Organic–Inorganic Hybrid Microreactors for Highly Efficient and Size-Selective Asymmetric Catalysis. ACS Catal. 2017, 7, 6711–6718. DOI: 10.1021/acscatal.7b01659.
  • (a) Massi, A.; Cavazzini, A.; Zoppo, L. D.; Pandoli, O.; Costa, V.; Pasti, L.; Giovannini, P. P. Toward the Optimization of Continuous-flow Aldol and α-Amination Reactions by Means of Proline-Functionalized Silicon Packed-Bed Microreactors. Tetrahedron Lett 2011, 52, 619–622. DOI: 10.1016/j.tetlet.2010.11.157. (b) Greco, R.; Caciolli, L.; Zaghi, A.; Pandoli, O.; Bortolini, O.; Cavazzini, A.; De Risi, C.; Massi, A. A Monolithic 5-(Pyrrolidin-2-yl)Tetrazole Flow Microreactor for the Asymmetric Aldol Reaction in Water–Ethanol Solvent. React. Chem. Eng. 2016, 1, 183–193. DOI: 10.1039/C5RE00017C.
  • Carroccia, L.; Musio, B.; Degennaro, L.; Romanazzi, G.; Luisi, R. Microreactor-Mediated Organocatalysis: Towards the Development of Sustainable Domino Reactions. J. Flow Chem. 2013, 3, 29–33. DOI: 10.1556/JFC-D-13-00003.
  • (a) Kashid, M. N.; Gupta, A.; Renken, A.; Kiwi-Minsker, L. Numbering-up and Mass Transfer Studies of Liquid–Liquid Two-Phase Microstructured Reactors. Chem. Eng. J. 2010, 158, 233–240. DOI: 10.1016/j.cej.2010.01.020. (b) Mielke, E.; Roberge, D. M.; Macchi, A. Microreactor Mixing-Unit Design for Fast Liquid—Liquid Reactions. J. Flow Chem. 2016, 6, 279–287. DOI: 10.1556/1846.2016.00026. (c) Wang, K.; Li, L.; Xie, P.; Luo, G. Liquid–Liquid Microflow Reaction Engineering. React. Chem. Eng. 2017, 2, 611–627. DOI: 10.1039/C7RE00082K.
  • (a) Maurya, R. A.; Min, K.; Kim, D. Continuous Flow Synthesis of Toxic Ethyl Diazoacetate for Utilization in an Integrated Microfluidic System. Green Chem. 2014, 16, 116–120. DOI: 10.1039/C3GC41226A. (b) Gemoets, H. P. L.; Hessel, V.; Noël, T. Aerobic C-H Olefination of Indoles via a Cross-Dehydrogenative Coupling in Continuous Flow. Org. Lett. 2014, 16, 5800–5803. DOI: 10.1021/ol502910e. (c) Nagasawa, Y.; Tanba, K.; Tada, N.; Yamaguchi, E.; Itoh, A. A Study of Aerobic Photooxidation with a Continuous-Flow Microreactor. Synlett 2015, 26, 412–415. DOI: 10.1055/s-0034-1379698. (d) Plouffe, P.; Bittel, M.; Sieber, J.; Roberge, D. M.; Macchi, A. On the Scale-up of Micro-Reactors for Liquid–Liquid Reactions. Chem. Eng. Sci. 2016, 143, 216–225. DOI: 10.1016/j.ces.2015.12.009. (e) O'Brien, M.; Taylor, N.; Polyzos, A.; Baxendale, I. R.; Ley, S. V. Hydrogenation in Flow: Homogeneous and Heterogeneous Catalysis Using Teflon AF-2400 to Effect Gas–Liquid Contact at Elevated Pressure. Chem. Sci. 2011, 2, 1250. DOI: 10.1039/c1sc00055a.
  • Abdallah, R.; Meille, V.; Shaw, J.; Wenn, D.; Bellefon, C. d. Gas–Liquid and Gas–Liquid–Solid Catalysis in a Mesh Microreactor. Chem. Commun. 2004, 4, 372–373. DOI: 10.1039/B312290E.
  • Newton, S.; Ley, S. V.; Arcé, E. C.; Grainger, D. M. Asymmetric Homogeneous Hydrogenation in Flow Using a Tube-in-Tube Reactor. Adv. Synth. Catal. 2012, 354, 1805–1812. DOI: 10.1002/adsc.201200073.
  • Christoffers, J.; Baro, A.; Werner, T. α-Hydroxylation of β-Dicarbonyl Compounds. Adv. Synth. Catal 2004, 346, 143–151. DOI: 10.1002/adsc.200303140.
  • Tang, X.; Zhao, J.; Wu, Y.; Zheng, Z.; Feng, S.; Yu, Z.; Liu, G.; Meng, Q. Enantioselective Photooxygenation of β-Dicarbonyl Compounds in Batch and Flow Photomicroreactors. Org. Biomol. Chem. 2019, 17, 7938–7942. DOI: 10.1039/C9OB01379B.
  • (a) Wu, Y.; Singh, R. P.; Deng, L. J. Asymmetric Olefin Isomerization of Butenolides via Proton Transfer Catalysis by an Organic Molecule. J. Am. Chem. Soc. 2011, 133, 12458–12461. DOI: 10.1021/ja205674x. (b) Wu, Y.; Deng, L. Asymmetric Synthesis of Trifluoromethylated Amines via Catalytic Enantioselective Isomerization of Imines. J. Am. Chem. Soc. 2012, 134, 14334–14337. DOI: 10.1021/ja306771n.
  • (a) Lian, M.; Li, Z.; Du, J.; Meng, Q.; Gao, Z. Asymmetric Direct α-Hydroxylation of β-Oxo Esters by Phase-Transfer Catalysis Using Chiral Quaternary Ammonium Salts. Eur. J. Org. Chem. 2010, 2010, 6525–6530. DOI: 10.1002/ejoc.201001175. (b) Yao, H.; Lian, M.; Li, Z.; Wang, Y.; Meng, Q. Asymmetric Direct α-Hydroxylation of β-Oxo Esters Catalyzed by Chiral Quaternary Ammonium Salts Derived from Cinchona Alkaloids. J. Org. Chem. 2012, 77, 9601–9608. DOI: 10.1021/jo3016242.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.