Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 17
239
Views
7
CrossRef citations to date
0
Altmetric
Articles

Rh-catalyzed C–N coupling of N-sulfonyl-1,2,3-trizales with secondary amines for regioselective synthesis of phenylvinyl-1,2-diamines

ORCID Icon, , , , , , & ORCID Icon show all
Pages 2685-2697 | Received 26 Mar 2020, Published online: 07 Jul 2020

References

  • For selected reviews, see: (a) Hartwig, J. F. Transition Metal Catalyzed Synthesis of Arylamines and Aryl Ethers from Aryl Halides and Triflates: Scope and Mechanism. Angew. Chem., Int. Ed 1998, 37, 2046–2067. DOI: 10.1002/(SICI)1521-3773(19980817)37:15<2046::AID-ANIE2046>3.0.CO;2-L. (b) Bariwal, J.; Eycken, E. V. C–N Bond Forming Cross-Coupling Reactions: An Overview. Chem. Soc. Rev. 2013, 42, 9283–9303. DOI: 10.1039/c3cs60228a. (c) Magano, J.; Dunetz, J. R. Large-Scale Applications of Transition Metal-Catalyzed Couplings for the Synthesis of Pharmaceuticals. Chem. Rev. 2011, 111, 2177–2250. DOI: 10.1021/cr100346g. (d) Sambiagio, C.; Marsden, S. P.; Blacker, A. J.; McGowan, P. C. Copper Catalysed Ullmann Type Chemistry: From Mechanistic Aspects to Modern Development. Chem. Soc. Rev. 2014, 43, 3525–3550. DOI: 10.1039/C3CS60289C. (e) Surry, D. S.; Buchwald, S. L. Diamine Ligands in Copper-Catalyzed Reactions. Chem. Sci. 2010, 1, 13–31. DOI: 10.1039/c0sc00107d. (f) Monnier, F.; Taillefer, M. Catalytic C–C, C–N, and C–O Ullmann-Type Coupling Reactions. Angew. Chem. Int. Ed. 2009, 48, 6954–6971. DOI: 10.1002/anie.200804497.
  • For selected examples, see: (a) Choy, P. Y.; Chung, K. H.; Yang, Q.; So, C. M.; Sun, R. W.-Y.; Kwong, F. Y. A General Palladium–Phosphine Complex to Explore Aryl Tosylates in the N-Arylation of Amines: Scope and Limitations. Chem. Asian J. 2018, 13, 2465–2474. DOI: 10.1002/asia.201800575. (b) Morofuji, T.; Shimizu, A.; Yoshida, J.-I. Direct C−N Coupling of Imidazoles with Aromatic and Benzylic Compounds via Electrooxidative C−H Functionalization. J. Am. Chem. Soc. 2014, 136, 4496–4499. DOI: 10.1021/ja501093m. (c) Kong, L.; Zhou, Y.; Huang, H.; Yang, Y.; Liu, Y.; Li, Y. Copper-Catalyzed Synthesis of Substituted Quinolines via C−N Coupling/Condensation from ortho-Acylanilines and Alkenyl Iodides. J. Org. Chem. 2015, 80, 1275–1278. DOI: 10.1021/jo502630t. (d) Arthuis, M.; Pontikis, R.; Florent, J.-C. Palladium-Catalyzed Domino C,N-Coupling/Carbonylation/Suzuki Coupling Reaction: An Efficient Synthesis of 2-Aroyl-/Heteroaroylindoles. Org. Lett. 2009, 11, 4608–4611. DOI: 10.1021/ol901875z. (e) Liao, Q.; Wang, Y.; Zhang, L.; Xi, C. A General Copper-Catalyzed Coupling of Azoles with Vinyl Bromides. J. Org. Chem. 2009, 74, 6371–6373. DOI: 10.1021/jo901105r.
  • (a) Adessi, C.; Soto, C. Converting a Peptide into a Drug: Strategies to Improve Stability and Bioavailability. Curr. Med. Chem. 2002, 9, 963–978. DOI: 10.2174/0929867024606731. (b) Aycock, R. A.; Vogt, D. B.; Jui, N. T.; Aycock, R. A.; Vogt, D. B.; Jui, N. T. Practical and Scalable System for Heteroaryl Amino Acid Synthesis. Chem. Sci. 2017, 8, 7998–8003. DOI: 10.1039/C7SC03612D. (c) Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274. DOI: 10.1021/jm501100b. (d) Ritchie, T. J.; Macdonald, S. J. F.; Peace, S.; Pickett, S. D.; Luscombe, C. N. The Developability of Heteroaromatic and Heteroaliphatic Rings – Do Some Have a Better Pedigree as Potential Drug Molecules than Others? Med. Chem. Commun. 2012, 3, 1062–1069. DOI: 10.1039/c2md20111a.
  • (a) Deng, Q.-H.; Zou, Y.-Q.; Lu, L.-Q.; Tang, Z.-L.; Chen, J.-R.; Xiao, W.-J. De Novo Synthesis of Imidazoles by Visible-Light-Induced Photocatalytic Aerobic Oxidation/[3 + 2] Cycloaddition/Aromatization Cascade. Chem. Asian J. 2014, 9, 2432–2435. DOI: 10.1002/asia.201402443. (b) Li, Y.-J.; Li, X.; Zhang, S.-X.; Zhao, Y.-L.; Liu, Q. Copper(II)-Catalyzed Oxidative [3 + 2] Cycloaddition Reactions of Secondary Amines with α-Diazo Compounds: A Facile and Efficient Synthesis of 1,2,3-Triazoles. Chem. Commun. 2015, 51, 11564–11567. DOI: 10.1039/C5CC02092A.
  • (a) Huo, C.; Yuan, Y.; Chen, F.; Tang, J.; Wang, Y. Copper-Catalyzed Aerobic Oxidative Dehydrogenative Formal [2 + 3] Cyclization of Glycine Esters with α-Angelicalactone: Approach to Construct Polysubstituted Pyrrolidones. Org. Lett. 2015, 17, 4208–4211. DOI: 10.1021/acs.orglett.5b01985. (b) Li, H.; Huang, S.; Wang, Y.; Huo, C. Oxidative Dehydrogenative [2 + 3]-Cyclization of Glycine Esters with Aziridines Leading to Imidazolidines. Org. Lett. 2018, 20, 92–95. DOI: 10.1021/acs.orglett.7b03448.
  • (a) Ren, J.; Pi, C.; Wu, Y.; Cui, X. Copper-Catalyzed Oxidative [4 + 2]-Cyclization Reaction of Glycine Esters with Anthranils: Access to 3,4-Dihydroquinazolines. Org. Lett. 2019, 21, 4067–4071. DOI: 10.1021/acs.orglett.9b01246. (b) Xie, J.; Huang, Y.; Song, H.; Liu, Y.; Wang, Q. Copper-Catalyzed Aerobic Oxidative [2 + 3] Cyclization/Aromatization Cascade Reaction: Atom-Economical Access to Tetrasubstituted 4,5-Biscarbonyl Imidazoles. Org. Lett. 2017, 19, 6056–6059. DOI: 10.1021/acs.orglett.7b02767.
  • (a) Yu, B.; Yang, K.-F.; Bai, X.-F.; Cao, J.; Zheng, Z.-J.; Cui, Y.-M.; Xu, Z.; Li, L.; Xu, L.-W. Ligand-Controlled Inversion of Diastereo- and Enantioselectivity in Silver-Catalyzed Azomethine Ylide-Imine Cycloaddition of Glycine Aldimino Esters with Imines. Org. Lett. 2018, 20, 2551–2554. DOI: 10.1021/acs.orglett.8b00702. (b) Nie, J.; Hua, M.-Q.; Xiong, H.-Y.; Zheng, Y.; Ma, J.-A. Asymmetric Phase-Transfer-Catalyzed Conjugate Addition of Glycine Imine to Exocyclic α,β-Unsaturated Ketones: Construction of Polycyclic Imines Containing Three Stereocenters. J. Org. Chem. 2012, 77, 4209–4216. DOI: 10.1021/jo300500r.
  • Xie, J.; Huang, Z.-Z. Cross-Dehydrogenative Coupling Reactions by Transition-Metal and Aminocatalysis for the Synthesis of Amino Acid Derivatives. Angew. Chem. Int. Ed. Engl. 2010, 49, 10181–10185. DOI: 10.1002/anie.201004940.
  • (a) Gao, X.-W.; Meng, Q.-Y.; Li, J.-X.; Zhong, J.-J.; Lei, T.; Li, X.-B.; Tung, C.-H.; Wu, L.-Z. Visible Light Catalysis Assisted Site-Specific Functionalization of Amino Acid Derivatives by C-H Bond Activation without Oxidant: Cross-Coupling Hydrogen Evolution Reaction. ACS Catal. 2015, 5, 2391–2396. DOI: 10.1021/acscatal.5b00093. (b) Gao, X.-W.; Meng, Q.-Y.; Xiang, M.; Chen, B.; Feng, K.; Tung, C.-H.; Wu, L.-Z. Combining Visible Light Catalysis and Transition Metal Catalysis for the Alkylation of Secondary Amines. Adv. Synth. Catal. 2013, 355, 2158–2164. DOI: 10.1002/adsc.201300311. (c) Xu, Z.; Yu, X.; Feng, X.; Bao, M. Arylglycine-Derivative Synthesis via Oxidative sp3 C–H Functionalization of α-Amino Esters. Beilstein J. Org. Chem. 2012, 8, 1564–1568. DOI: 10.3762/bjoc.8.178. (d) Zhang, G.; Zhang, Y.; Wang, R. Catalytic Asymmetric Activation of a Csp3H Bond Adjacent to a Nitrogen Atom: A Versatile Approach to Optically Active a-Alkyl aAmino Acids and C1-Alkylated Tetrahydroisoquinoline Derivatives. Angew. Chem. Int. Ed. 2011, 50, 10429–10432. DOI: 10.1002/anie.201105123.
  • Zhao, L.; Li, C.-J. Functionalizing Glycine Derivatives by Direct C-C Bond Formation. Angew. Chem. Int. Ed. 2008, 47, 7075–7078. DOI: 10.1002/anie.200801367.
  • Zhu, Z.-Q.; Bai, P.; Huang, Z.-Z. Dehydrogenative Cross-Coupling Reaction by Cooperative Transition-Metal and Brønsted Acid Catalysis for the Synthesis of β-Quinolinyl α-Amino Acid Esters. Org. Lett. 2014, 16, 4881–4883. DOI: 10.1021/ol502402s.
  • Yoo, W.-J.; Tanoue, A.; Kobayashi, S. Zinc(II) Hexachloroantimonate-Catalyzed Oxidative Allylation of Glycine Derivatives. Asian J. Org. Chem 2014, 3, 1066–1069. DOI: 10.1002/ajoc.201402108.
  • (a) Huo, C.; Wang, C.; Wu, M.; Jia, X.; Xie, H.; Yuan, Y. Copper(I) Chloride-Catalyzed Aerobic Oxidative Arylation of Glycine Ester and Amide Derivatives. Adv. Synth. Catal. 2014, 356, 411–415. DOI: 10.1002/adsc.201300535. (b) Zhu, S.; Rueping, M. Merging Visible-Light Photoredox and Lewis Acid Catalysis for the Functionalization and Arylation of Glycine Derivatives and Peptides. Chem. Commun. (Camb). 2012, 48, 11960–11962. DOI: 10.1039/c2cc36995h. (c) Huo, C.; Wang, C.; Sun, C.; Jia, X.; Wang, X.; Chang, W.; Wu, M. Triarylaminium Salt-Initiated Aerobic Double Friedel–Crafts Reaction of Glycine Derivatives with Indoles. Adv. Synth. Catal. 2013, 355, 1911–1916. DOI: 10.1002/adsc.201300276. (d) Xu, Z.; Yu, X.; Feng, X.; Bao, M. Oxidative Coupling of Indoles with Ethyl 2-(Disubstituted Amino)Acetates: An Approach to Achieve Indolylglycine Derivatives. J. Org. Chem. 2012, 77, 7114–7118. DOI: 10.1002/chin.201252107. (e) Wang, Z.-Q.; Hu, M.; Huang, X.-C.; Gong, L.-B.; Xie, Y.-X.; Li, J.-H. Direct α-Arylation of α-Amino Carbonyl Compounds with Indoles Using Visible Light Photoredox Catalysis. J. Org. Chem. 2012, 77, 8705–8711. DOI: 10.1021/jo301691h.
  • Xie, Z.; Liu, X.; Liu, L. Copper-Catalyzed Aerobic Enantioselective Cross-Dehydrogenative Coupling of N-Aryl Glycine Esters with Terminal Alkynes. Org. Lett. 2016, 18, 2982–2985. DOI: 10.1021/acs.orglett.6b01328.
  • Wei, X.-H.; Wang, G.-W.; Yang, S.-D. Enantioselective Synthesis of Arylglycine Derivatives by Direct C–H Oxidative Cross-Coupling. Chem. Commun. (Camb) 2015, 51, 832–835. DOI: 10.1039/C4CC07361D.
  • (a) Wei, W.-T.; Song, R.-J.; Li, J.-H. Copper-Catalyzed Oxidative α-Alkylation of a-Amino Carbonyl Compounds with Ethers via Dual C(sp3)-H Oxidative Cross Coupling. Adv. Synth. Catal. 2014, 356, 1703–1707. DOI: 10.1002/adsc.201301091. (b) Peng, H.; Yu, J.-T.; Jiang, Y.; Yang, H.; Cheng, J. Di-Tert-Butyl Peroxide-Promoted α-Alkylation of α-Amino Carbonyl Compounds by Simple Alkanes. J. Org. Chem. 2014, 79, 9847–9853. DOI: 10.1021/jo5017426.
  • For reviews on Rh-catalyzed ring opening of N-sulfonyl-1,2,3-trizoles, see: (a) Chattopadhyay, B.; Gevorgyan, V. Transition-Metal-Catalyzed Denitrogenative Transannulation: Converting Triazoles into Other Heterocyclic Systems. Angew. Chem. Int. Ed. Engl. 2012, 51, 862–872. DOI: 10.1002/anie.201104807. (b) Gulevich, A. V.; Gevorgyan, V. Versatile Reactivity of Rhodium-Iminocarbenes Derived from NSulfonyl Triazoles. Angew. Chem. Int. Ed. Engl. 2013, 52, 1371–1373. DOI: 10.1002/anie.201209338. (c) Davies, H. M. L.; Alford, J. S. Reactions of Metallocarbenes Derived from N-Sulfonyl-1,2,3-Triazoles. Chem. Soc. Rev. 2014, 43, 5151–5162. DOI: 10.1039/C4CS00072B. (d) Anbarasan, P.; Yadagiri, D.; Rajasekar, S. Recent Advances in Transition-Metal-Catalyzed Denitrogenative Transformations of 1,2,3-Triazoles and Related Compounds. Synthesis 2014, 46, 3004–3023. DOI: 10.1055/s-0034-1379303. (e) Jiang, Y.; Sun, R.; Tang, X.-Y.; Shi, M. Recent Advances in the Synthesis of Heterocycles and Related Substances Based on α-Imino Rhodium Carbene Complexes Derived from N-Sulfonyl-1,2,3-Triazoles. Chemistry 2016, 22, 17910–17924. DOI: 10.1002/chem.201601703.
  • For transannulation, see: (a) Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.; Fokin, V. V. Rhodium-Catalyzed Transannulation of 1,2,3-Triazoles with Nitriles. J. Am. Chem. Soc. 2008, 130, 14972–14974. DOI: 10.1021/ja805079v. (b) Chattopadhyay, B.; Gevorgyan, V. Rh-Catalyzed Transannulation of N-Tosyl-1,2,3-Triazoles with Terminal Alkynes. Org. Lett. 2011, 13, 3746–3749. DOI: 10.1021/ol2014347. (c) Schultz, E. E.; Sarpong, R. Application of in Situ-Generated Rh-Bound Trimethylenemethane Variants to the Synthesis of 3,4-Fused Pyrroles. J. Am. Chem. Soc. 2013, 135, 4696–4699. DOI: 10.1021/ja401380d. (d) Spangler, J. E.; Davies, H. M. L. Catalytic Asymmetric Synthesis of Pyrroloindolines via a Rhodium(II)-Catalyzed Annulation of Indoles. J. Am. Chem. Soc. 2013, 135, 6802–6805. DOI: 10.1021/ja4025337. (e) Chuprakov, S.; Kwok, S. W.; Fokin, V. V. Transannulation of 1-Sulfonyl-1,2,3-Triazoles with Heterocumulenes. J. Am. Chem. Soc. 2013, 135, 4652–4655. DOI: 10.1021/ja400350c. (f) Yang, J.-M.; Zhu, C.-Z.; Tang, X.-Y.; Shi, M. Rhodium(II)-Catalyzed Intramolecular Annulation of 1-Sulfonyl-1,2,3-Triazoles with Pyrrole and Indole Rings: Facile Synthesis of N-Bridgehead Azepine Skeletons. Angew. Chem. Int. Ed. Engl. 2014, 53, 5142–5146. DOI: 10.1002/anie.201400881. (g) Miura, T.; Funakoshi, Y.; Fujimoto, Y.; Nakahashi, J.; Murakami, M. Facile Synthesis of 2,5-Disubstituted Thiazoles from Terminal Alkynes, Sulfonyl Azides, and Thionoesters. Org. Lett. 2015, 17, 2454–2457. DOI: 10.1021/acs.orglett.5b00960. (h) Yadagiri, D.; Reddy, A. C. S.; Anbarasan, P. Rhodium Catalyzed Diastereoselective Synthesis of 2,2,3,3-Tetrasubstituted Indolines from N-Sulfonyl-1,2,3-Triazoles and ortho-Vinylanilines. Chem. Sci. 2016, 7, 5934–5938. DOI: 10.1039/C6SC01075J.
  • For cycloaddition reactions, see: (a) Zibinsky, M.; Fokin, V. V. Sulfonyl-1,2,3-Triazoles: Convenient Synthones for Heterocyclic Compounds. Angew. Chem. Int. Ed. Engl. 2013, 52, 1507–1510. DOI: 10.1002/anie.201206388. (b) Miura, T.; Tanaka, T.; Hiraga, K.; Stewart, S. G.; Murakami, M. Stereoselective Synthesis of 2, 3-Dihydropyrroles from Terminal Alkynes, Azides, and α,β-Unsaturated Aldehydes via N-Sulfonyl-1,2,3-Triazoles. J. Am. Chem. Soc. 2013, 135, 13652–13655. DOI: 10.1021/ja407166r. (c) Li, Y.; Zhang, Q.; Du, Q.; Zhai, H. Rh-Catalyzed [3 + 2] Cycloaddition of 1-Sulfonyl-1,2,3-Triazoles: Access to the Framework of Aspidosperma and Kopsia Indole Alkaloids. Org. Lett 2016, 18, 4076–4079. DOI: 10.1021/acs.orglett.6b01968. (d) Cheng, W.; Tang, Y.; Xu, Z.-F.; Li, C.-Y. Synthesis of Multifunctionalized 2-Carbonylpyrrole by Rhodium-Catalyzed Transannulation of 1-Sulfonyl-1,2,3-Triazole with β-Diketone. Org. Lett. 2016, 18, 6168–6171. DOI: 10.1021/acs.orglett.6b03179. (e) Chen, W.; Bai, Y.-L.; Luo, Y.-C.; Xu, P.-F. Rh(II)-Catalyzed High Order Cycloadditions of 8-Azaheptafulvenes with N-Sulfonyl-1,2,3-Triazloes or α-Oxo Diazo Compounds. Org. Lett. 2017, 19, 364–367. DOI: 10.1021/acs.orglett.6b03542. (f) Wang, Y.; Lei, X.; Tang, Y. Rh(II)-Catalyzed Cycloadditions of 1-Tosyl 1,2,3-Triazoles with 2H-Azirines: Switchable Reactivity of Rh-Azavinylcarbene as [2C]- or Aza-[3C]-Synthon. Chem. Commun. 2015, 51, 4507–4510. DOI: 10.1039/C5CC00268K.
  • (a) Culhane, J. C.; Fokin, V. V. Synthesis and Reactivity of Sulfamoyl Azides and 1-Sulfamoyl-1,2,3-Triazoles. Org. Lett. 2011, 13, 4578–4580. DOI: 10.1021/ol201705k. (b) Zibinsky, M.; Fokin, V. V. Reactivity of N-(1,2,4-Triazolyl)-Substituted 1,2,3-Triazoles. Org. Lett. 2011, 13, 4870–4872. DOI: 10.1021/ol201949h. (c) Parr, B. T.; Davies, H. M. L. Rhodium-Catalyzed Tandem Cyclopropanation/Cope Rearrangement of 4-Alkenyl-1-Sulfonyl-1,2,3-Triazoles with Dienes. Angew. Chem. Int. Ed. Engl. 2013, 52, 10044–10047. DOI: 10.1002/anie.201304310. (d) Miura, T.; Nakamuro, T.; Liang, C.-J.; Murakami, M. Synthesis of trans-Cycloalkenes via Enantioselective Cyclopropanation and Skeletal Rearrangement. J. Am. Chem. Soc. 2014, 136, 15905–15908. DOI: 10.1021/ja5096045. (e) Xing, Y.; Sheng, G.; Wang, J.; Lu, P.; Wang, Y. Preparation of Triazoloindoles via Tandem Copper Catalysis and Their Utility as α-Imino Rhodium Carbene Precursors. Org. Lett 2014, 16, 1244–1247. DOI: 10.1021/ol5002347. (f) Chuprakov, S.; Kwok, S. W.; Zhang, L.; Lercher, L.; Fokin, V. V. Rhodium-Catalyzed Enantioselective Cyclopropanation of Olefins with N-Sulfonyl 1,2,3-Triazoles. J. Am. Chem. Soc. 2009, 131, 18034–18035. DOI: 10.1021/ja908075u.
  • (a) Miura, T.; Funakoshi, Y.; Morimoto, M.; Biyajima, T.; Murakami, M. Synthesis of Enaminones by Rhodium-Catalyzed Denitrogenative Rearrangement of 1-(N-Sulfonyl-1,2,3-Triazol-4-yl) Alkanols. J. Am. Chem. Soc. 2012, 134, 17440–17443. DOI: 10.1021/ja308285r. (b) Selander, N.; Worrell, B. T.; Fokin, V. V. Ring Expansion and Rearrangements of Rhodium-(II)-Azavinyl Carbenes. Angew. Chem. Int. Ed. Engl. 2012, 51, 13054–13057. DOI: 10.1002/anie.201207820. (c) Liu, R.; Zhang, M.; Winston-McPherson, G.; Tang, W. Ring Expansion of Alkynyl Cyclopropanes to Highly Substituted Cyclobutenes via a N-Sulfonyl-1,2,3-Triazole Intermediate. Chem. Commun. 2013, 49, 4376–4378. DOI: 10.1039/C2CC34609E.
  • (a) Miura, T.; Tanaka, T.; Matsumoto, K.; Murakami, M. One Pot Synthesis of 2,5-Dihydropyrroles from Terminal Alkynes, Azides, and Propargylic Alcohols by Relay Actions of Copper, Rhodium, and Gold. Chemistry 2014, 20, 16078–16082. DOI: 10.1002/chem.201405357. (b) Xu, H.-D.; Jia, Z.-H.; Xu, K.; Zhou, H.; Shen, M.-H. One-Pot Protocol to Functionalized Benzopyrrolizidine Catalyzed Successively by Rh2(OAc)4 and Cu(OTf)2: A Transition Metal-Lewis Acid Catalysis Relay. Org. Lett. 2015, 17, 66–69. DOI: 10.1021/ol503247t. (c) He, J.; Shi, Y.; Cheng, W.; Man, Z.; Yang, D.; Li, C.-Y. Rhodium-Catalyzed Synthesis of 4-Bromo-1,2-Dihydroisoquinolines: Access to Bromonium Ylides by the Intramolecular Reaction of a Benzyl Bromide and an α-Imino Carbene. Angew. Chem. Int. Ed. 2016, 55, 4557–4561. DOI: 10.1002/anie.201512015.
  • For insertion reactions, see: (a) Park, S.; Yong, W. S.; Kim, S.; Lee, P. H. Diastereoselective N-Sulfonylaminoalkenylation of Azulenes from Terminal Alkynes and Azides via N-Sulfonyl-1,2,3-Triazoles. Org. Lett. 2014, 16, 4468–4471. DOI: 10.1021/ol502208w. (b) Yadagiri, D.; Anbarasan, P. Rhodium Catalyzed Direct Arylation of α-Diazoimines. Org. Lett. 2014, 16, 2510–2513. DOI: 10.1021/ol500874p. (c) Miura, T.; Nakamuro, T.; Miyakawa, S.; Murakami, M. A syn-Selective Aza-Aldol Reaction of Boron aza-Enolates Generated from N-Sulfonyl-1,2,3-Triazoles and 9-BBN-H. Angew. Chem. Int. Ed. Engl. 2016, 55, 8732–8735. DOI: 10.1002/anie.201603270. (d) Kahar, N. M.; Nabar, K. U.; Jadhav, P. P.; Dawande, S. G. Rhodium(II)-Catalyzed Highly Stereoselective C3 Functionalization of Indolizines with N-Sulfonyl- 1,2,3-Triazoles. Asian J. Org. Chem. 2019, 8, 79–82. DOI: 10.1002/ajoc.201800631.
  • (a) Hu, F.; Xia, Y.; Ma, C.; Zhang, Y.; Wang, J. C−H Bond Functionalization Based on Metal Carbene Migratory Insertion. Chem. Commun. (Camb) 2015, 51, 7986–7995. DOI: 10.1039/C5CC00497G. (b) Miura, T.; Fujimoto, Y.; Funakoshi, Y.; Murakami, M. A Reaction of Triazoles with Thioesters to Produce β-Sulfanyl Enamides by Insertion of an Enamine Moiety into the Sulfur−Carbonyl Bond. Angew. Chem. Int. Ed. Engl. 2015, 54, 9967–9970. DOI: 10.1002/anie.201504013. (c) Man, Z.; Dai, H.; Shi, Y.; Yang, D.; Li, C.-Y. Synthesis of 5-Iodo-1,2,3,4-Tetrahydropyridines by Rhodium-Catalyzed Tandem Nucleophilic Attacks Involving 1-Sulfonyl-1,2,3-Triazoles and Iodides. Org. Lett. 2016, 18, 4962–4965. DOI: 10.1021/acs.orglett.6b02428. (d) Funakoshi, Y.; Miura, T.; Murakami, M. Synthesis of Penta-2,4-Dien-1-Imines and 1,2-Dihydropyridines by Rhodium-Catalyzed Reaction of N-Sulfonyl-1,2,3-Triazoles with 2-(Siloxy) Furans. Org. Lett. 2016, 18, 6284–6287. DOI: 10.1021/acs.orglett.6b03143.
  • Chuprakov, S.; Worrell, B. T.; Selander, N.; Sit, R. K.; Fokin, V. V. Stereoselective 1,3-Insertions of Rhodium(II) Azavinyl Carbenes. J. Am. Chem. Soc. 2014, 136, 195–202. DOI: 10.1021/ja408185c.
  • Lee, D. J.; Yoo, E. J. Efficient Synthesis of C–N-Coupled Heterobiaryls by Sequential N–H Functionalization Reactions. Org. Lett. 2015, 17, 1830–1833. DOI: 10.1021/acs.orglett.5b00625.
  • (a) Zuo, Y.; He, X.; Ning, Y.; Wu, Y.; Shang, Y. Selective Synthesis of Aminoisoquinolines via Rh(III)-Catalyzed C-H/N-H Bond Functionalization of N-Aryl Amidines with Cyclic 2-Diazo-1,3-Diketones. J. Org. Chem. 2018, 83, 13463–13472. DOI: 10.1021/acs.joc.8b02286. (b) Zuo, Y.; He, X.; Ning, Y.; Tang, Q.; Xie, M.; Hu, W.; Shang, Y. Substituent-oriented C–N bond formation via N-H insertion or Wolff rearrangement of 5-aryl-1H-pyrazoles and diazo compounds. Org. Biomol. Chem. 2019, 17, 9766–9771. DOI: 10.1039/c9ob01868a.
  • (a) Miura, T.; Biyajima, T.; Fujii, T.; Murakami, M. Synthesis of α-Amino Ketones from Terminal Alkynes via Rhodium-Catalyzed Denitrogenative Hydration of N-Sulfonyl-1,2,3-Triazoles. J. Am. Chem. Soc. 2012, 134, 194–196. DOI: 10.1002/chin.201224041. (b) Mi, P.; Kumar, R.; Ki, Liao, P.; Bi, X. Tandem O–H Insertion/[1,3]-Alkyl Shift of Rhodium Azavinyl Carbenoids with Benzylic Alcohols: A Route to Convert C–OH Bonds into C-C Bonds. Org. Lett. 2016, 18, 4998–5001. DOI: 10.1021/acs.orglett.6b02459. (c) Ogunlana, A. A.; Zou, J.; Bao, X. Insights into the Mechanisms and Chemoselectivities of Carbamates and Amides in Reactions Involving Rh(II)-Azavinylcarbene: A Computational Study. J. Org. Chem. 2019, 84, 8151–8159. DOI: 10.1021/acs.joc.9b01070.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.