Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 19
414
Views
17
CrossRef citations to date
0
Altmetric
Articles

Synthesis, EGFR-TK inhibition and anticancer activity of new quinoxaline derivatives

, , &
Pages 2924-2940 | Received 25 Mar 2020, Published online: 05 Jul 2020

References

  • El Newahie, A.; Nissan, Y.; Ismail, N.; Abou El Ella, D.; Khojah, S.; Abouzid, K. Design and Synthesis of New Quinoxaline Derivatives as Anticancer Agents and Apoptotic Inducers. Molecules 2019, 24, 1175–1196. DOI: 10.3390/molecules24061175.
  • Abdelbaset, M. S.; Abuo-Rahma, G. E.-D. A. A.; Abdelrahman, M. H.; Ramadan, M.; Youssif, B. G. M.; Bukhari, S. N. A.; Mohamed, M. F. A.; Abdel-Aziz, M. Novel Pyrrol-2(3H)-Ones and Pyridazin-3(2H)-Ones Carrying Quinoline Scaffold as Anti-Proliferative Tubulin Polymerization Inhibitors. Bioorg. Chem. 2018, 80, 151–163. DOI: 10.1016/j.bioorg.2018.06.003.
  • Mohamed, M. F. A.; Youssif, B. G. M.; Shaykoon, M.; Sh, A.; Abdelrahman, M. H.; Elsadek, B. E. M.; Aboraia, A. S.; Abuo-Rahma, G. E.-D. A. A. Utilization of Tetrahydrobenzo[4,5]Thieno[2,3-d]Pyrimidinone as a Cap Moiety in Design of Novel Histone Deacetylase Inhibitors. Bioorg. Chem. 2019, 91, 103127–103127. DOI: 10.1016/j.bioorg.2019.103127.
  • Mohamed, M. F. A.; Shaykoon, M. S. A.; Abdelrahman, M. H.; Elsadek, B. E. M.; Aboraia, A. S.; Abuo-Rahma, G. E.-D. A. A. Design, Synthesis, Docking Studies and Biological Evaluation of Novel Chalcone Derivatives as Potential Histone Deacetylase Inhibitors. Bioorg. Chem. 2017, 72, 32–41. DOI: 10.1016/j.bioorg.2017.03.005.
  • Abou-Zied, H. A.; Youssif, B. G. M.; Mohamed, M. F. A.; Hayallah, A. M.; Abdel-Aziz, M. EGFR Inhibitors and Apoptotic Inducers: Design, Synthesis, Anticancer Activity and Docking Studies of Novel Xanthine Derivatives Carrying Chalcone Moiety as Hybrid Molecules. Bioorg. Chem. 2019, 89, 102997. DOI: 10.1016/j.bioorg.2019.102997.
  • El Rayes, S. M.; AboElmagd, A.; Gomaa, M. S.; Ali, I. A. I.; Fathalla, W.; Pottoo, F. H.; Khan, F. A. Convenient Synthesis and Anticancer Activity of Methyl 2-[3-(3-Phenyl-Quinoxalin-2-Ylsulfanyl)Propanamido]Alkanoates and N-Alkyl 3-((3-Phenyl-Quinoxalin-2-yl)Sulfanyl)Propanamides. ACS Omega. 2019, 4, 18555–18566. DOI: 10.1021/acsomega.9b02320.
  • El Newahie, A. M. S.; Ismail, N. S. M.; Abou El Ella, D. A.; Abouzid, K. A. M. Quinoxaline-Based Scaffolds Targeting Tyrosine Kinases and Their Potential Anticancer Activity. Arch. Pharm. (Weinheim) 2016, 349, 309–326. DOI: 10.1002/ardp.201500468.
  • Ingle, R.; Marathe, R.; Magar, D.; Patel, H. M.; Surana, S. J. Sulphonamido-Quinoxalines: Search for Anticancer Agent. Eur. J. Med. Chem. 2013, 65, 168–186. DOI: 10.1016/j.ejmech.2013.04.028.
  • Noolvi, M. N.; Patel, H. M.; Bhardwaj, V.; Chauhan, A. Synthesis and in Vitro Antitumor Activity of Substituted Quinazoline and Quinoxaline Derivatives: Search for Anticancer Agent. Eur. J. Med. Chem. 2011, 46, 2327–2346. DOI: 10.1016/j.ejmech.2011.03.015.
  • Tseng, C.-H.; Chen, Y.-R.; Tzeng, C.-C.; Liu, W.; Chou, C.-K.; Chiu, C.-C.; Chen, Y.-L. Discovery of Indeno[1,2-b]Quinoxaline Derivatives as Potential Anticancer Agents. Eur. J. Med. Chem. 2016, 108, 258–273. DOI: 10.1016/j.ejmech.2015.11.031.
  • Liu, Q.-Q.; Lu, K.; Zhu, H.-M.; Kong, S.-L.; Yuan, J.-M.; Zhang, G.-H.; Chen, N.-Y.; Gu, C.-X.; Pan, C.-X.; Mo, D.-L.; Su, G.-F. Identification of 3-(Benzazol-2-yl)Quinoxaline Derivatives as Potent Anticancer Compounds: Privileged Structure-Based Design, Synthesis, and Bioactive Evaluation In Vitro and In Vivo. Eur. J. Med. Chem. 2019, 165, 293–308. DOI: 10.1016/j.ejmech.2019.01.004.
  • Abbas, H.-A. S.; Al-Marhabi, A. R.; Eissa, S. I.; Ammar, Y. A. Molecular Modeling Studies and Synthesis of Novel Quinoxaline Derivatives with Potential Anticancer Activity as Inhibitors of c-Met Kinase. Bioorg. Med. Chem. 2015, 23, 6560–6572. DOI: 10.1016/j.bmc.2015.09.023.
  • Alswah, M.; Bayoumi, A.; Elgamal, K.; Elmorsy, A.; Ihmaid, S.; Ahmed, H. Design, Synthesis and Cytotoxic Evaluation of Novel Chalcone Derivatives Bearing Triazolo[4,3-a]-Quinoxaline Moieties as Potent Anticancer Agents with Dual EGFR Kinase and Tubulin Polymerization Inhibitory Effects. Molecules 2017, 23, 48–63. DOI: 10.3390/molecules23010048.
  • Ismail, M. M. F.; Amin, K. M.; Noaman, E.; Soliman, D. H.; Ammar, Y. A. New Quinoxaline 1, 4-di-N-Oxides: Anticancer and Hypoxia-Selective Therapeutic Agents. Eur. J. Med. Chem. 2010, 45, 2733–2738. DOI: 10.1016/j.ejmech.2010.02.052.
  • Badran, M. M.; Moneer, A. A.; Refaat, H. M.; El-Malah, A. A. Synthesis and Antimicrobial Activity of Novel Quinoxaline Derivatives. J. Chinese Chem. Soc. 2007, 54, 469–478. DOI: 10.1002/jccs.200700066.
  • Alswah, M.; Ghiaty, A.; El-Morsy, A.; El-Gamal, K. Synthesis and Biological Evaluation of Some [1,2,4]Triazolo[4,3-a]Quinoxaline Derivatives as Novel Anticonvulsant Agents. ISRN Org. Chem. 2013, 2013, 1–7. DOI: 10.1155/2013/587054.
  • Abu-Hashem, A. A.; Gouda, M. A.; Badria, F. A. Synthesis of Some New Pyrimido[2',1':2,3]Thiazolo[4,5-b]Quinoxaline Derivatives as anti-Inflammatory and Analgesic Agents. Eur. J. Med. Chem. 2010, 45, 1976–1981. DOI: 10.1016/j.ejmech.2010.01.042.
  • Reddy, S. A. M.; Mudgal, J.; Bansal, P.; Vasanthraju, S. G.; Srinivasan, K. K.; Rao, C. M.; Kutty, N. G. Antioxidant, Anti-Inflammatory and Anti-Hyperglycaemic Activities of Heterocyclic Homoprostanoid Derivatives. Bioorg. Med. Chem. 2011, 19, 384–392. DOI: 10.1016/j.bmc.2010.11.016.
  • Szabó, G.; Kiss, R.; Páyer-Lengyel, D.; Vukics, K.; Szikra, J.; Baki, A.; Molnar, L.; Fischer, J.; Keserű, G. M. Hit-to-Lead Optimization of Pyrrolo[1,2-a]Quinoxalines as Novel Cannabinoid Type 1 Receptor Antagonists. Bioorg. Med. Chem. Lett. 2009, 19, 3471–3475. DOI: 10.1016/j.bmcl.2009.05.010.
  • Ishikawa, H.; Sugiyama, T.; Kurita, K.; Yokoyama, A. Synthesis and Antimicrobial Activity of 2,3-Bis(Bromomethyl)Quinoxaline Derivatives. Bioorg. Chem. 2012, 41–42, 1–5. DOI: 10.1016/j.bioorg.2011.12.002.
  • El-Zahabi, H. S. A. Synthesis, Characterization, and Biological Evaluation of Some Novel Quinoxaline Derivatives as Antiviral Agents. Arch. Pharm. Chem. Life. Sci. 2017, 350, 1700028. DOI: 10.1002/ardp.201700028.
  • Wilhelmsson, L. M.; Kingi, N.; Bergman, J. Interactions of Antiviral Indolo[2,3-b]Quinoxaline Derivatives with DNA. J. Med. Chem. 2008, 51, 7744–7750. DOI: 10.1021/jm800787b.
  • El Adnani, Z.; Sfaira, M. M. M.; Benzakour, M.; Benjelloun, A. T.; Ebn Touhami, M.; Hammouti, B.; Taleb, M. DFT Study of 7-R-3methylquinoxalin-2(1H)-Ones (R=H; CH3; Cl) as Corrosion Inhibitors in Hydrochloric Acid. Int. J. Electrochem. Sci. 2012, 7, 6738–6751.
  • Obot, I. B.; Obi-Egbedi, N. O.; Odozi, N. W. Acenaphtho [1,2-b] Quinoxaline as a Novel Corrosion Inhibitor for Mild Steel in 0.5 M H2SO4. Corros. Sci. 2010, 52, 923–926. DOI: 10.1016/j.corsci.2009.11.013.
  • Olasunkanmi, L. O.; Kabanda, M. M.; Ebenso, E. E. Quinoxaline Derivatives as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Medium: Electrochemical and Quantum Chemical Studies. Physica E 2016, 76, 109–126. DOI: 10.1016/j.physe.2015.10.005.
  • Pereira, J. A.; Pessoa, A. M.; Cordeiro, M. N. D. S.; Fernandes, R.; Prudêncio, C.; Noronha, J. P.; Vieira, M. Quinoxaline, Its Derivatives and Applications: A State of the Art Review. Eur. J. Med. Chem. 2015, 97, 664–672. DOI: 10.1016/j.ejmech.2014.06.058.
  • Kumar, A.; Kumar, S.; Saxena, A.; De, A.; Mozumdar, S. Ni-Nanoparticles: An Efficient Catalyst for the Synthesis of Quinoxalines. Catal. Commun. 2008, 9, 778–784. DOI: 10.1016/j.catcom.2007.08.021.
  • Islami, M. R.; Hassani, Z. One-Pot and Efficient Protocol for Synthesis of Quinoxaline Derivatives. Arkivoc (xv) 2008, 2008, 280–287. DOI: 10.3998/ark.5550190.0009.f24.
  • Haldar, P.; Dutta, B.; Guin, J.; Ray, J. K. Uncatalyzed Condensation between Aryl-1,2-Diamines and Diethyl Bromomalonate: A One-Pot Access to Substituted Ethyl 3-Hydroxyquinoxaline-2-Carboxylates., Tetrahedron Lett. 2007, 48, 5855–5857. DOI: 10.1016/j.tetlet.2007.06.065.
  • Chandrasekhar, S.; Reddy, N. K.; Kumar, V. P. Oxidation of Alkynes Using PdCl2/CuCl2 in PEG as a Recyclable Catalytic System: One-Pot Synthesis of Quinoxalines. Tetrahedron Lett. 2010, 51, 3623–3625. DOI: 10.1016/j.tetlet.2010.05.006.
  • Heravi, M. M.; Taheri, S.; Bakhtiari, K.; Oskooie, H. A. On Water: A Practical and Efficient Synthesis of Quinoxaline Derivatives Catalyzed by CuSO4. 5H2O. Catal. Commun. 2007, 8, 211–214. DOI: 10.1016/j.catcom.2006.06.013.
  • Raw, S. A.; Wilfred, C. D.; Taylor, R. J. K. Tandem Oxidation Processes for the Preparation of Nitrogen-Containing Heteroaromatic and Heterocyclic Compounds. Org. Biomol. Chem. 2004, 2, 788–796. DOI: 10.1039/B315689C.
  • More, S. V.; Sastry, M. N. V.; Yao, C.-F. Cerium (IV) Ammonium Nitrate (CAN) as a Catalyst in Tap Water: A Simple, Proficient and Green Approach for the Synthesis of Quinoxaline. Green Chem. 2006, 8, 91–95. DOI: 10.1039/B510677J.
  • Bhosale, R. S.; Sarda, S. R.; Ardhapure, S. S.; Jadhav, W. N.; Bhusare, S. R.; Pawar, R. P. An Efficient Protocol for the Synthesis of Quinoxaline Derivatives at Room Temperature Using Molecular Iodine as the Catalyst. Tetrahedron Lett. 2005, 46, 7183–7186. DOI: 10.1016/j.tetlet.2005.08.080.
  • Zhou, J. F.; Gong, G. X.; Shi, K. B.; Zhi, S. J. Catalyst-Free and Solvent-Free Method for the Synthesis of Quinoxalines under Microwave Irradiation. Chin. Chem. Lett. 2009, 20, 672–675. DOI: 10.1016/j.cclet.2009.02.007.
  • Moustafa, O. S. Synthesis and Some Reactions of Quioxalinecarboazides. J. Chinese Chem. Soc. 2000, 47, 351–357. DOI: 10.1002/jccs.200000046.
  • Chen, L.; Zhang, Y.; Liu, J.; Wang, W.; Li, X.; Zhao, L.; Wang, W.; Li, B. Novel 4-Arylaminoquinazoline Derivatives with (E)-Propen-1-yl Moiety as Potent EGFR Inhibitors with Enhanced Antiproliferative Activities against Tumor Cells. Eur. J. Med. Chem. 2017, 138, 689–697. DOI: 10.1016/j.ejmech.2017.06.023.
  • Dai, F.; Li, Q.; Wang, Y.; Ge, C.; Feng, C.; Xie, S.; He, H.; Xu, X.; Wang, C. Design, Synthesis, and Biological Evaluation of Mitochondria-Targeted Flavone-Naphthalimide-Polyamine Conjugates with Antimetastatic Activity. J. Med. Chem. 2017, 60, 2071–2083. DOI: 10.1021/acs.jmedchem.6b01846.
  • Tang, Q.; Zhao, Y.; Du, X.; Chong, L.; Gong, P.; Guo, C. Design, Synthesis, and Structure-Activity Relationships of Novel 6,7-Disubstituted-4-Phenoxyquinoline Derivatives as Potential Antitumor Agents. Eur. J. Med. Chem. 2013, 69, 77–89. DOI: 10.1016/j.ejmech.2013.08.019.
  • Youssif, B. G. M.; Abdelrahman, M. H.; Abdelazeem, A. H.; Abdelgawad, M. A.; Ibrahim, H. M.; Salem, O. I. A.; Mohamed, M. F. A.; Treambleau, L.; Nasir, S.; Bukhari, A. Design, Synthesis, Mechanistic and Histopathological Studies of Small-Molecules of Novel Indole-2-Carboxamides and Pyrazino[1,2-a]Indol-1(2H)-Ones as Potential Anticancer Agents Effecting the Reactive Oxygen Species Production. Eur. J. Med. Chem. 2018, 146, 260–273. DOI: 10.1016/j.ejmech.2018.01.042.
  • Manetti, F.; Locatelli, G. A.; Maga, G.; Schenone, S.; Modugno, M.; Forli, S.; Corelli, F.; Botta, M. A Combination of Docking/Dynamics Simulations and Pharmacophoric Modeling to Discover New Dual c-Src/Abl Kinase Inhibitors. J. Med. Chem. 2006, 49, 3278–3286. DOI: 10.1021/jm060236z.
  • Park, J. H.; Liu, Y.; Lemmon, M. A.; Radhakrishnan, R. Erlotinib Binds Both Inactive and Active Conformations of the EGFR Tyrosine Kinase Domain. Biochem. J. 2012, 448, 417–423. DOI: 10.1042/BJ20121513.
  • Wagner, E. C.; Millett, W. H. Benzimidazole. Organic Synth. 1939, 19, 12–14. DOI: 10.15227/orgsyn.019.0012.
  • Gowenlock, A. H.; Newbold, G. T.; Spring, F. S. Syntheses of 2-Monosubstituted and 2: 3-Disubstitutedquinoxalines. J. Chem. Soc. 1945, 1945, 622–625. DOI: 10.1039/jr9450000622.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.