Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 19
237
Views
9
CrossRef citations to date
0
Altmetric
Articles

Synthesis and antibacterial activity of hydroxylated 2-arylbenzothiazole derivatives

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3007-3015 | Received 07 Apr 2020, Published online: 14 Jul 2020

References

  • Keri, R. S.; Patil, M. R.; Patil, S. A.; Budagumpi, S. A Comprehensive Review in Current Developments of Benzothiazole-based Molecules in Medicinal Chemistry. Eur. J. Med. Chem. 2015, 89, 207–251. DOI: 10.1016/j.ejmech.2014.10.059.
  • Stevens, M. F.; McCall, C. J.; Lelieveld, P.; Alexander, P.; Richter, A.; Davies, D. E. Structural Studies on Bioactive Compounds. 23. Synthesis of Polyhydroxylated 2-Phenylbenzothiazoles and a Comparison of Their Cytotoxicities and Pharmacological Properties with Genistein and Quercetin. J. Med. Chem. 1994, 37, 1689–1695. DOI: 10.1021/jm00037a020.
  • Yamamoto, K.; Fujita, M.; Tabashi, K.; Kawashima, Y.; Kato, E.; Oya, M.; Iso, T.; Iwao, J. Novel Calcium Antagonists. Synthesis and Structure-Activity Relationship Studies of Benzothiazoline Derivatives. J. Med. Chem. 1988, 31, 919–930. DOI: 10.1021/jm00400a006.
  • Tang, L.; Zou, Y.; Zhong, K.; Bian, Y. A Novel Benzothiazole-Based Enaminone as a Fluorescent Probe for Highly Selective and Sensitive Detection of CN. RSC Adv. 2016, 6, 48351–48356. DOI: 10.1039/C6RA07909A.
  • Yang, P.; Zhao, J.; Wu, W.; Yu, X.; Liu, Y. Accessing the Long-Lived Triplet Excited States in Bodipy-Conjugated 2-(2-Hydroxyphenyl) Benzothiazole/Benzoxazoles and Applications as Organic Triplet Photosensitizers for Photooxidations. J. Org. Chem. 2012, 77, 6166–6178. DOI: 10.1021/jo300943t.
  • Khan, K. M.; Mesaik, M. A.; Abdalla, O. M.; Rahim, F.; Soomro, S.; Halim, S. A.; Mustafa, G.; Ambreen, N.; Khalid, A. S.; Taha, M.; et al. The Immunomodulation Potential of the Synthetic Derivatives of Benzothiazoles: Implications in Immune System Disorders through in Vitro and in Silico Studies. Bioorg. Chem. 2016, 64, 21–28. DOI: 10.1016/j.bioorg.2015.11.004.
  • Khan, K. M.; Rahim, F.; Halim, S. A.; Taha, M.; Khan, M.; Perveen, S.; Ul-Haq, Z.; Mesaik, M. A.; Iqbal Choudhary, M. Synthesis of Novel Inhibitors of β-Glucuronidase Based on Benzothiazole Skeleton and Study of Their Binding Affinity by Molecular Docking. Bioorganic Med. Chem. 2011, 19, 4286–4294. DOI: 10.1016/j.bmc.2011.05.052.
  • Nagaraju, B.; Kovvuri, J.; Kumar, C. G.; Routhu, S. R.; Shareef, M. A.; Kadagathur, M.; Adiyala, P. R.; Alavala, S.; Nagesh, N.; Kamal, A. Synthesis and Biological Evaluation of Pyrazole Linked Benzothiazole-β-Naphthol Derivatives as Topoisomerase I Inhibitors with DNA Binding Ability. Bioorg. Med. Chem. 2019, 27, 708–720. DOI: 10.1016/j.bmc.2019.01.011.
  • Satam, M. A.; Telore, R. D.; Tathe, A. B.; Gupta, V. D.; Sekar, N. A Combined Theoretical and Experimental Investigation on the Solvatochromism of ESIPT3-(1,3-Benzothiazol-2-yl)-2-Hydroxynaphthalene-1-Carbaldehyde. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 127, 16–24. DOI: 10.1016/j.saa.2014.01.120.
  • Tang, L.; He, P.; Zhong, K.; Hou, S.; Bian, Y. A New Hydroxynaphthyl Benzothiazole Derived Fluorescent Probe for Highly Selective and Sensitive Cu(2+) detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 169, 246–251. DOI: 10.1016/j.saa.2016.06.045.
  • Liao, Y.-X.; Wang, M.-D.; Li, K.; Yang, Z.-X.; Hou, J.-T.; Wu, M.-Y.; Liu, Y.-H.; Yu, X.-Q. A Highly Sensitive and Selective “Turn-on” Fluorescent Probe for Hypochlorous Acid Monitoring. RSC Adv. 2015, 5, 18275–18278. DOI: 10.1039/C4RA14579H.
  • Goswami, S.; Das, A. K.; Manna, A.; Maity, A. K.; Fun, H.-K.; Quah, C. K.; Saha, P. A Colorimetric and Ratiometric Fluorescent Turn-on Fluoride Chemodosimeter and Application in Live Cell Imaging: High Selectivity via Specific SiO Cleavage in Semi Aqueous Media and Prompt Recovery of ESIPT along with the X-Ray Structures. Tetrahedron Lett. 2014, 55, 2633–2638. DOI: 10.1016/j.tetlet.2014.03.003.
  • Yang, X. F.; Huang, Q.; Zhong, Y.; Li, Z.; Li, H.; Lowry, M.; Escobedo, J. O.; Strongin, R. M. A Dual Emission Fluorescent Probe Enables Simultaneous Detection of Glutathione and Cysteine/Homocysteine. Chem. Sci. 2014, 5, 2177–2183. DOI: 10.1039/c4sc00308j.
  • Ren, Y.; Fan, D.; Ying, H.; Li, X. Rational Design of the Benzothiazole-Based Fluorescent Scaffold for Tunable Emission. Tetrahedron Lett. 2019, 60, 1060–1065. DOI: 10.1016/j.tetlet.2019.03.029.
  • Patil, V. S.; Padalkar, V. S.; Tathe, A. B.; Gupta, V. D.; Sekar, N. Synthesis, Photo-physical and DFT Studies of ESIPT Inspired Novel 2-(2',4'-dihydroxyphenyl) Benzimidazole, Benzoxazole and Benzothiazole. J. Fluoresc. 2013, 23, 1019–1029. DOI: 10.1007/s10895-013-1228-4.
  • Liu, Z.; Wang, Q.; Wang, H.; Su, W.; Dong, S. A Chloroacetate Based Ratiometric Fluorescent Probe for Cysteine Detection in Biosystems. Tetrahedron Lett. 2019, 60, 151218. DOI: 10.1016/j.tetlet.2019.151218.
  • Li, M.; Chen, H.; Liu, X.; Wang, Y.; Zhang, N.; Zheng, K. Development of Three Novel Benzothiazole-Based Ratiometric Fluorescent Chemosensor for Detecting of Hydrazine in Serum and Gas Phase via ESIPT Process and Different Recognition Sites. Tetrahedron Lett. 2019, 60, 151219. DOI: 10.1016/j.tetlet.2019.151219.
  • Kim, Y. H.; Roh, S. G.; Jung, S. D.; Chung, M. A.; Kim, H. K.; Cho, D. W. Excited-state Intramolecular Proton Transfer on 2-(2'-hydroxy-4'-R-phenyl)benzothiazole Nanoparticles and Fluorescence Wavelength Depending on Substituent and Temperature. Photochem. Photobiol. Sci. 2010, 9, 722–729. DOI: 10.1039/b9pp00102f.
  • Chaudhuri, A.; Venkatesh, Y.; Jena, B. C.; Behara, K. K.; Mandal, M.; Singh, N. D. P. Real-Time Monitoring of a Photoactivated Hydrogen Persulfide Donor for Biological Entities. Org. Biomol. Chem. 2019, 17, 8800–8805. DOI: 10.1039/c9ob01982k.
  • Banerjee, S.; Payra, S.; Saha, A. A Review on Synthesis of Benzothiazole Derivatives. Cocat. 2018, 4, 164–181. DOI: 10.2174/2213337205666180119143539.
  • Liu, X.; Dong, Z.-B. A Review on Domino Condensation/Cyclization Reactions for the Synthesis of 2-Substituted 1,3-Benzothiazole Derivatives. Eur. J. Org. Chem. 2020, 2020, 408–419. DOI: 10.1002/ejoc.201901502.
  • Sethiya, A.; Sahiba, N.; Soni, J.; Gandhi, D.; Agarwal, S. Contemporary Progress in the Synthesis and Reactions of 2-Arylbenzothiazole: A Review. Coc. 2019, 22, 2681–2716. DOI: 10.2174/1385272822666181122112226.
  • Chen, G. F.; Xiao, N.; Yang, J. S.; Li, H. Y.; Chen, B. H.; Han, L. F. A Simple and Eco-Friendly Process Catalyzed by Montmorillonite K-10, with Air as Oxidant, for Synthesis of 2-Substituted Benzothiazoles. Res. Chem. Intermed. 2015, 41, 5159–5166. DOI: 10.1007/s11164-014-1619-4.
  • Kiprof, P.; Carlson, J. C.; Anderson, D. R.; Nemykin, V. N. Systematic Color Tuning of a Family of Luminescent Azole-Based Organoboron Compounds Suitable for OLED Applications. Dalton Trans. 2013, 42, 15120–15132. DOI: 10.1039/c3dt51853a.
  • Coelho, F. L.; Campo, L. F. Synthesis of 2-Arylbenzothiazoles via Direct Condensation between in Situ Generated 2-Aminothiophenol from Disulfide Cleavage and Carboxylic Acids. Tetrahedron Lett. 2017, 58, 2330–2333. DOI: 10.1016/j.tetlet.2017.04.078.
  • Weekes, A. A.; Bagley, M. C.; Westwell, A. D. An Efficient Synthetic Route to Biologically Relevant 2- Phenylbenzothiazoles Substituted on the Benzothiazole Ring. Tetrahedron. 2011, 67, 7743–7747. DOI: 10.1016/j.tet.2011.08.004.
  • Kalkhambkar, R. G.; Laali, K. K. Pd(OAc) 2 Catalyzed Synthesis of 2-Aryl- and 2-Heteroaryl- Benzoxazoles and Benzothiazoles in Imidazolium Ionic Liquids (ILs) without Additives and with Recycling/Reuse of the IL. Tetrahedron Lett. 2012, 53, 4212–4215. DOI: 10.1016/j.tetlet.2012.05.155.
  • Bouchet, L. M.; Heredia, A. A.; Argüello, J. E.; Schmidt, L. C. Riboflavin as Photoredox Catalyst in the Cyclization of Thiobenzanilides: Synthesis of 2-Substituted Benzothiazoles. Org. Lett. 2020, 22, 610–614. DOI: 10.1021/acs.orglett.9b04384.
  • Wang, X.; Miao, D.; Li, X.; Hu, R.; Yang, Z.; Gu, R.; Han, S. Elemental Sulfur Mediated Cyclization via Redox Strategy: Synthesis of Benzothiazoles from o-Chloronitrobenzenes and Benzyl Chlorides. Tetrahedron. 2017, 73, 5194–5199. DOI: 10.1016/j.tet.2017.07.013.
  • Yang, Z.; Hu, R.; Li, X.; Wang, X.; Gu, R.; Han, S. One-Pot Copper-Catalyzed Synthesis of 2-Substituted Benzothiazoles from 2-Iodoanilines, Benzyl Chlorides and Elemental Sulfur. Tetrahedron Lett. 2017, 58, 2366–2369. DOI: 10.1016/j.tetlet.2017.05.004.
  • Huang, Y.; Zhou, P.; Wu, W.; Jiang, H. Selective Construction of 2-Substituted Benzothiazoles from o-Iodoaniline Derivatives S8 and N-Tosylhydrazones. J. Org. Chem. 2018, 83, 2460–2466. DOI: 10.1021/acs.joc.7b03118.
  • Zhang, J.; Qiao, M.; Chen, L.; Dong, Y.; Jiao, C.; Liao, S.; Wu, Y. Thiol Substrate-Promoted Dehydrogenative Cyclization of Arylmethyl Thiols with: Ortho -Substituted Amines: A Universal Approach to Heteroaromatic Compounds. Org. Chem. Front. 2019, 6, 2844–2849. DOI: 10.1039/C9QO00554D.
  • Zhang, J.; Zhao, X.; Liu, P.; Sun, P. TBHP/KI-Promoted Annulation of Anilines, Ethers, and Elemental Sulfur: Access to 2-Aryl-, 2-Heteroaryl-, or 2-Alkyl-Substituted Benzothiazoles. J. Org. Chem. 2019, 84, 12596–12605. DOI: 10.1021/acs.joc.9b02145.
  • Arora, A.; Weaver, J. D. Photocatalytic Generation of 2-Azolyl Radicals: Intermediates for the Azolylation of Arenes and Heteroarenes via C–H Functionalization. Org. Lett. 2016, 18, 3996–3999. DOI: 10.1021/acs.orglett.6b01718.
  • Cheung, C. W.; Buchwald, S. L. Palladium-Catalyzed Hydroxylation of Aryl and Heteroaryl Halides Enabled by the Use of a Palladacycle Precatalyst. J. Org. Chem. 2014, 79, 5351–5358. DOI: 10.1021/jo500662s.
  • Ranjit, S.; Liu, X. Direct Arylation of Benzothiazoles and Benzoxazoles with Aryl Boronic Acids. Chemistry 2011, 17, 1105–1108. DOI: 10.1002/chem.201002787.
  • Yang, P.; Wang, R.; Wu, H.; Du, Z.; Fu, Y. Pd-Catalyzed C−H Arylation of Benzothiazoles with Diaryliodonium Salt: One-Pot Synthesis of 2-Arylbenzothiazoles. Asian J. Org. Chem. 2017, 6, 184–188. DOI: 10.1002/ajoc.201600514.
  • Yang, B.; Wang, Z. X. Transition-Metal-Free Cross-Coupling of Aryl and Heteroaryl Thiols with Arylzinc Reagents. Org. Lett. 2017, 19, 6220–6223. DOI: 10.1021/acs.orglett.7b03145.
  • Stremski, Y.; Statkova-Abeghe, S.; Angelov, P.; Ivanov, I. Synthesis of Camalexin and Related Analogues. J. Heterocyclic Chem. 2018, 55, 1589–1595. DOI: 10.1002/jhet.3192.
  • Stremski, Y.; Kirkova, D.; Statkova-Abeghe, S.; Angelov, P.; Ivanov, I. Multicomponent Reactions for the Synthesis of Bis-Heterocyclic Pyrrole Derivatives. Bulg. Chem. Commun 2019, 51, 124–128.
  • Kadari, S.; Yerrabelly, H.; Yerrabelly, J. R.; Gogula, T.; Goud, Y.; Thalari, G.; Doda, S. R. Stereoselective Total Synthesis of Paecilomycin E and F and Its Two Congeners Cochliomycin C and 6- epi-Cochliomycin C. Synth. Commun. 2018, 48, 1867–1875. DOI: 10.1080/00397911.2018.1472282.
  • Mohapatra, D. K.; Reddy, D. S.; Mallampudi, N. A.; Gaddam, J.; Polepalli, S.; Jain, N.; Yadav, J. S. The Protecting-group Directed Diastereoselective Nozaki-Hiyama-Kishi (NHK) Reaction: Total Synthesis and Biological Evaluation of Zeaenol, 7-epi-zeaenol and Its Analogues. Org. Biomol. Chem. 2014, 12, 9683–9695. DOI: 10.1039/C4OB01811G.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.