Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 21
388
Views
2
CrossRef citations to date
0
Altmetric
Articles

A simple and efficient approach for the preparation of dihydroxanthyletin, xanthyletin, decursinol and marmesin

&
Pages 3204-3211 | Received 20 Feb 2020, Published online: 30 Jul 2020

References

  • O’Kennedy, R.; Thomas, R. D. Coumarins: Biology, Applications and Mode of Action; John Wiley & Sons: Chichester, NY, 1997, 348, https://trove.nla.gov.au/version/17697069.
  • Murray, R. D. H.; Mendez, J.; Brown, S. A. The Natural Coumarins; John Wiley & Sons: Chichester, NY, 1982, 702.
  • Sethna, S. M.; Shah, N. M. The Chemistry of Coumarins. Chem. Rev. 1945, 36, 1–62. DOI: 10.1021/cr60113a001.
  • Pratap, R.; Ram, V. J. Natural and Synthetic Chromenes, Fused Chromenes, and Versatility of Dihydrobenzo[h]Chromenes in Organic Synthesis. Chem. Rev. 2014, 114, 10476–10526. DOI: 10.1002/ejoc.201901565.
  • Cao, D.; Liu, Z.; Verwilst, P.; Koo, S.; Jangjili, P.; Kim, J. S.; Lin, W. Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chem. Rev. 2019, 119, 10403–10519. DOI: 10.1021/acs.chemrev.9b00145.
  • Shao, A.; Kang, C. W.; Tang, C. H. A.; Cain, C. F.; Xu, Q.; Phoumyvong, C. M.; Valle, J. R. D.; Hu, C. C. A. Structural Tailoring of a Novel Fluorescent IRE-1 RNase Inhibitor to Precisely Control Its Activity. J. Med. Chem. 2019, 62, 5404–5413. DOI: 10.1021/acs.jmedchem.9b00269.
  • Zhang, W.; Lun, S.; Liu, L. L.; Xiao, S.; Duan, G.; Gunosewoyo, H.; Yang, F.; Tang, J.; Bishai, W. R.; Yu, L. F. Identification of Novel Coumestan Derivatives as Polyketide Synthase 13 Inhibitors against Mycobacterium Tuberculosis. Part II. J. Med. Chem. 2019, 62, 3575–3589. DOI: 10.1021/acs.jmedchem.9b00010.
  • Magarò, G.; Prati, F.; Garofalo, B.; Corso, G.; Furlotti, G.; Apicella, C.; Mangano, G.; D'Atanasio, N.; Robinson, D.; Di Giorgio, F. P.; Ombrato, R. Virtual Screening Approach and Investigation of Structure-Activity Relationships to Discover Novel Bacterial Topoisomerase Inhibitors Targeting Gram-Positive and Gram-Negative Pathogens. J. Med. Chem. 2019, 62, 7445–7472. DOI: 10.1021/acs.jmedchem.9b00394.
  • Zhang, L.; Xu, Z. Coumarin-Containing Hybrids and Their Anticancer Activities. Eur. J. Med. Chem. 2019, 181, 111587–111606. DOI: 10.1016/j.ejmech.2019.111587.
  • Tao, D.; Wang, Y.; Bao, X. Q.; Yang, B. B.; Gao, F.; Wang, L.; Zhang, D.; Li, L. Discovery of Coumarin Mannich Base Derivatives as Multifunctional Agents against Monoamine Oxidase B and Neuroinflammation for the Treatment of Parkinson's Disease. Eur. J. Med. Chem. 2019, 173, 203–212. DOI: 10.1016/j.ejmech.2019.04.016.
  • Singh, H.; Singh, J. V.; Bhagat, K.; Gulati, H. K.; Sanduja, M.; Kumar, N.; Kinarivala, N.; Sharma, S. Rational Approaches, Design Strategies, Structure Activity Relationship and Mechanistic Insights for Therapeutic Coumarin Hybrids. Bioorg. Med. Chem. 2019, 27, 3477–3510. DOI: 10.1016/j.bmc.2019.06.033.
  • Baek, S. C.; Kang, M. G.; Park, J. E.; Lee, J. P.; Lee, H.; Ryu, H. W.; Park, C. M.; Park, D.; Cho, M. L.; Oh, S. R.; Kim, H. Osthenol, a Prenylated Coumarin, as a Monoamine Oxidase a Inhibitor with High Selectivity. Bioorg. Med. Chem. Lett. 2019, 29, 839–843. DOI: 10.1016/j.bmcl.2019.01.016.
  • Berthelot, T.; Talbot, J. C.; Lain, G.; Deleris, G.; Latxague, L. Synthesis of N Epsilon-(7-Diethylaminocoumarin-3-Carboxyl)- and N-Epsilon-(7-Methoxycoumarin-3-Carboxyl)-L-Fmoc Lysine as Tools for Protease Cleavage Detection by Fluorescence. J. Pept. Sci. 2005, 11, 153–160. DOI: 10.1002/psc.608.
  • Lim, N. C.; Schuster, J. V.; Porto, M. C.; Tanudra, M. A.; Yao, L.; Freake, H. C.; Bruckner, C. Coumarin-Based Chemosensors for Zinc(II): Toward the Determination of the Design Algorithm for CHEF-Type and Ratiometric Probes. Inorg. Chem. 2005, 44, 2018–2030. DOI: 10.1021/ic048905r.
  • Lee, K. S.; Kim, H. J.; Kim, G. H.; Shin, I.; Hong, J. I. Fluorescent Chemodosimeter for Selective Detection of Cyanide in Water. Org. Lett. 2008, 10, 49–51. DOI: 10.1021/ol7025763.
  • Zhao, Y. R.; Zheng, Q.; Dakin, K.; Xu, K.; Martinez, M. L.; Li, W. H. New Caged Coumarin Fluorophores with Extraordinary Uncaging Cross Sections Suitable for Biological Imaging Applications. J. Am. Chem. Soc. 2004, 126, 4653–4663. DOI: 10.1021/ja036958m.
  • Obi, M.; Morino, S.; Ichimura, K. Factors Affecting Photoalignment of Liquid Crystals Induced by Polymethacrylates with Coumarin Side Chains. Chem. Mater. 1999, 11, 656–664. DOI: 10.1021/cm980533v.
  • Ren, X.; Kondakova, M. E.; Giesen, D. J.; Rajeswaran, M.; Madaras, M.; Lenhart, W. C. Coumarin-Based, Electron-Trapping Iridium Complexes as Highly Efficient and Stable Phosphorescent Emitters for Organic Light-Emitting Diodes. Inorg. Chem. 2010, 49, 1301–1303. DOI: 10.1021/ic9022097.
  • Serin, J. M.; Brousmiche, D. W.; Frechet, J. M. J. A FRET-Based Ultraviolet to Near-Infrared Frequency Converter. J. Am. Chem. Soc. 2002, 124, 11848–11849. DOI: 10.1021/ja027564i.
  • Kanvinde, M. N.; Kulkarni, S. A.; Paradkar, M. V. Synth. Commun. 1990, 21, 3259–3264. DOI: 10.1080/00397919008051556.
  • Kim, S.; Ko, H.; Son, S.; Shin, K. J.; Kim, D. J. Enantioselective Syntheses of (+)-Decursinol and (+)-Trans-Decursidinol. Tetrahedron Lett. 2001, 42, 7641–7643. DOI: 10.1016/S0040-4039(01)01652-5.
  • Nicolaou, K. C.; Pfefferkorn, N.; Cao, J. A.; Qiang, G. Selenium-Based Solid-Phase Synthesis of Benzopyrans I: Applications to Combinatorial Synthesis of Natural Products. Angew. Chem. Int. Ed. 2000, 39, 734–739. DOI: 10.1002/(SICI)1521-3773(20000218)39:4.
  • Lykakis, I. N.; Efe, C.; Gryparis, C.; Stratakis, M. Ph3PAuNTf2 as a Superior Catalyst for the Selective Synthesis of 2H-Chromenes: Application to the Concise Synthesis of Benzopyran Natural Products. Eur. J. Org. Chem. 2011, 2011, 2334–2338. DOI: 10.1002/ejoc.201001674.
  • Lee, J. H.; Bang, H. B.; Han, S. Y.; Jun, J. G. An Efficient Synthesis of (+)-Decursinol from Umbelliferone. Tetrahedron Lett. 2007, 48, 2889–2892. DOI: 10.1016/j.tetlet.2007.02.088.
  • Marumoto, S.; Miyazawa, M. Structure–Activity Relationships for Naturally Occurring Coumarins as β-Secretase Inhibitor. Bioorg. Med. Chem. 2012, 20, 784–788. DOI: 10.1016/j.bmc.2011.12.002.
  • Ando, T.; Nagumo, M.; Ninomiya, M.; Tanaka, K.; Linhardt, R. J.; Koketsu, M. Synthesis of Coumarin Derivatives and Their Cytoprotective Effects on t-BHP-Induced Oxidative Damage in HepG2 Cells. Bioorg. Med. Chem. Lett. 2018, 28, 2422–2425. DOI: 10.1016/j.bmcl.2018.06.018.
  • Murray, R. D. H.; Ballantyne, M. M.; Mathai, K. P. Claisen Rearrangements—III. Tetrahedron 1971, 27, 1247–1251. DOI: 10.1016/S0040-4020(01)90873-7.
  • Trumble, J. T.; Millar, J. G. Biological Activity of Marmesin and Demethylsuberosin against a Generalist Herbivore, Spodoptera exigua (Lepidoptera: Noctuidae). J. Agric. Food. Chem. 1996, 44, 2859–2864. DOI: 10.1021/jf960156b.
  • Suman, P.; Raju, B. C. Carbohydrate-Based First Stereoselective Total Synthesis of Bioactive Cytospolide P. Org. Biomol. Chem. 2014, 12, 3358–3361. DOI: 10.1039/C4OB00323C.
  • Saidachary, G.; Raju, B. C. Carbohydrate-Based Studies Toward the Synthesis of Hamigeromycin E: A Stereoselective Total Synthesis of an Isomer of Zeaenol. Helv. Chim. Acta. 2016, 99, 425–435. DOI: 10.1002/hlca.201500267.
  • Hariprasad, K. S.; Prasad, K. V.; Raju, B. C. La(OTf) 3 Catalyzed Reaction of Salicylaldehyde Phenylhydrazones with β-Ketoesters and Activated Alkynes: Facile Approach for the Preparation of Chromenopyrazolones. RSC Adv. 2016, 6, 108654–108661. DOI: 10.1039/C6RA21717F.
  • Hariprasad, K. S.; Anand, A.; Rathod, B. B.; Zehra, A.; Tiwari, A. K.; Prakasham, R. S.; Raju, B. C. Neoteric Synthesis and Biological Activities of Chromenopyrazolones, Tosylchromenopyrazolones, Benzoylcoumarins. ChemistrySelect. 2017, 2, 10628–10634. DOI: 10.1002/slct.201700587.
  • Kumar, J. A.; Saidachary, G.; Mallesham, G.; Sridhar, B.; Jain, N.; Kalivendi, S. V.; Rao, V. J.; Raju, B. C. Synthesis, Anticancer Activity and Photophysical Properties of Novel Substituted 2-Oxo-2H-Chromenylpyrazolecarboxylates. Eur. J. Med. Chem. 2013, 65, 389–402. DOI: 10.1016/j.ejmech.2013.03.042.
  • Raju, B. C.; Tiwari, A. K.; Kumar, J. A.; Ali, A. Z.; Agawane, S. B.; Saidachary, G.; Madhusudan, K. alpha-Glucosidase Inhibitory Antihyperglycemic Activity of Substituted Chromenone Derivatives. Bioorg. Med. Chem. 2010, 18, 358–365. DOI: 10.1016/j.bmc.2009.10.047.
  • Rao, J. M.; Raju, B. C.; Srinivas, P. V.; Babu, K. S.; Yadav, J.; S; Raghvan, K. V.; Singh, H. K.; Nath, C. Pharmaceutical Composition Useful as Acetylcholinesterase Inhibitors. U.S. Patent 8188143, B2, 2012.
  • Khupse, R. S.; Erhardt, P. W. Total Syntheses of Racemic, Natural (–) and Unnatural (+) Glyceollin I. Org. Lett. 2008, 10, 5007–5010. DOI: 10.1021/ol802112r.
  • Luniwal, A.; Khupse, R.; Reese, M.; Liu, J.; Dakdouki, M. E.; Malik, N.; Fang, L.; Erhardt, P. Multigram Synthesis of Glyceollin I. Org. Process Res. Dev. 2011, 15, 1149–1162. DOI: 10.1021/op200112g.
  • Huang, W. J.; Wang, Y. C.; Chao, S. W.; Yang, C. Y.; Chen, L. C.; Lin, M. H.; Hou, W. C.; Chen, M. Y.; Lee, T. L.; Yang, P.; Chang, C. I. Synthesis and Biological Evaluation of Ortho-Aryl N-Hydroxycinnamides as Potent Histone Deacetylase (HDAC) 8 Isoform-Selective Inhibitors. ChemMedChem. 2012, 7, 1815–1824. DOI: 10.1002/cmdc.201200300.
  • Mali, R. S.; Joshi, P. P.; Sandhu, P. K.; Manekar-Tilve, A. Efficient Syntheses of 6-Prenylcoumarins and Linear Pyranocoumarins: Total Synthesis of Suberosin, Toddaculin, O-Methylapigravin (O-Methylbrosiperin), O-Methylbalsamiferone, Dihydroxanthyletin, Xanthyletin and Luvangetin. J. Chem. Soc., Perkin Trans. 1 2002, 371–376. DOI: 10.1039/b109597h.
  • King, F. E.; Housley, J. R.; King, T. J. The Chemistry of Extractives from Hardwoods. Part XVI. Coumarin Constituents of Fagara macrophylla, Zanthoxylum flavum, and Chloroxylon swietenia. J. Chem. Soc. 1954, 1392–1395. DOI: 10.1039/jr9540001392.
  • Hussain, H.; Green, I. R.; Ahmed, I. Journey Describing Applications of Oxone in Synthetic Chemistry. Chem. Rev. 2013, 113, 3329–3371. DOI: 10.1021/cr3004373.
  • Travis, B. R.; Narayan, R. S.; Borhan, B. Osmium Tetroxide-Promoted Catalytic Oxidative Cleavage of Olefins: An Organometallic Ozonolysis. J. Am. Chem. Soc. 2002, 124, 3824–3825. DOI: 10.1021/ja017295g.
  • Yang, D.; Chen, F.; Dong, Z. M.; Zhang, D. W. Ruthenium-Catalyzed Oxidative Cleavage of Alkynes to Carboxylic Acids. J. Org. Chem. 2004, 69, 2221–2223. DOI: 10.1021/jo0357925.
  • Thottumkara, P. P.; Vinod, T. K. Oxidative Cleavage of Alkenes Using an in Situ Generated Iodonium Ion with Oxone as a Terminal Oxidant. Org. Lett. 2010, 12, 5640–5643. DOI: 10.1021/ol1023807.
  • Ashford, S. W.; Grega, K. C. Oxidative Cleavage of 1,3-Dicarbonyls to Carboxylic Acids with Oxone. J. Org. Chem. 2001, 66, 1523–1524. DOI: 10.1021/jo001579m.
  • Yan, J.; Travis, B. R.; Borhan, B. Direct Oxidative Cleavage of Alpha- and Beta-Dicarbonyls and Alpha-Hydroxyketones to Diesters with KHSO5. J. Org. Chem. 2004, 69, 9299–9302. DOI: 10.1021/jo048665x.
  • Yu, J.; Cui, J.; Zhang, C. A Simple and Effective Method for α-Hydroxylation of β-Dicarbonyl Compounds Using Oxone as an Oxidant without a Catalyst. Eur. J. Org. Chem. 2010, 2010, 7020–7026. DOI: 10.1002/ejoc.201000940.
  • Stergiou, A.; Bariotaki, A.; Kalaitzakis, D.; Smonou, I. Oxone-Mediated Oxidative Cleavage of β-Keto Esters and 1,3-Diketones to α-Keto Esters and 1,2-Diketones in Aqueous Medium. J. Org. Chem. 2013, 78, 7268–7273. DOI: 10.1021/jo4009047.
  • Lakshmireddy, V. M.; Veera, Y. N.; Reddy, T. J.; Rao, V. J.; Raju, B. C. A Green and Sustainable Approach for Selective Halogenation of Anilides, Benzanilides, Sulphonamides and Heterocycles. Asian J. Org. Chem. 2019, 8, 1380–1384. DOI: 10.1002/ajoc.201900296.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.