Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 21
244
Views
2
CrossRef citations to date
0
Altmetric
Articles

Efficient synthetic method of β-fluorocinnamate by arylboronic acids and ethyl 3,3,3-trifluoropropionate under palladium-catalyzed conditions

, , &
Pages 3212-3220 | Received 23 Feb 2020, Published online: 30 Jul 2020

References

  • Marciniak, B.; Walkowiak-Kulikowska, J.; Koroniak, H. On the Halofluorination Reactions of Olefins as Selective, and an Efficient Methodology for the Introduction of Fluorine into Organic Molecules. J. Fluorine. Chem. 2017, 203, 47–61. DOI: 10.1016/j.jfluchem.2017.09.001.
  • Jiang, L. F.; Ren, B. T.; Li, B.; Zhang, G. Y.; Peng, Y.; Guan, Z. Y.; Deng, Q. H. Nucleophilic Substitution of gem-Difluoroalkenes with TMSNu Promoted by Catalytic Amounts of Cs2CO3. J. Org. Chem. 2019, 84, 6557–6564. DOI: 10.1021/acs.joc.9b00999.
  • Mandal, D.; Gupta, R.; Young, R. D. Selective Monodefluorination and Wittig Functionalization of Gem-Difluoromethyl Groups to Generate Monofluoroalkenes. J. Am. Chem. Soc. 2018, 140, 10682–10686. DOI: 10.1021/jacs.8b06770.
  • Shi, H.; Dai, W.; Wang, B.; Cao, S. Copper- and Nickel-Catalyzed Cross-Coupling Reaction of Monofluoroalkenes with Tertiary, Secondary, and Primary Alkyl and Aryl Grignard Reagents. Organometallics 2018, 37, 459–463. DOI: 10.1021/acs.organomet.7b00859.
  • Wu, N. Y.; Xu, X. H.; Qing, F. L. Copper-Catalyzed Regioselective Borylfluoromethylation of Alkenes. ACS Catal. 2019, 9, 5726–5731. DOI: 10.1021/acscatal.9b01530.
  • Butcher, T. W.; Hartwig, J. F. Enantioselective Synthesis of Tertiary Allylic Fluorides by Iridium-Catalyzed Allylic Fluoroalkylation. Angew. Chem. Int. Ed. Engl. 2018, 57, 13125–13129. DOI: 10.1002/anie.201807474.
  • Li, N.; Chang, J.; Kong, L.; Li, X. Ruthenium(ii)-Catalyzed α-Fluoroalkenylation of Arenes via C–H Bond Activation and C–F Bond Cleavage. Org. Chem. Front. 2018, 5, 1978–1982. DOI: 10.1039/C8QO00297E.
  • Tian, H.; Xia, Q.; Wang, Q.; Dong, J.; Liu, Y.; Wang, Q. Direct α-Monofluoroalkenylation of Heteroatomic Alkanes via a Combination of Photoredox Catalysis and Hydrogen-Atom-Transfer Catalysis. Org. Lett. 2019, 21, 4585–4589. DOI: 10.1021/acs.orglett.9b01491.
  • Charpentier, J.; Emter, R.; Koch, H.; Lelièvre, D.; Pannecoucke, X.; Couve-Bonnaire, S.; Natsch, A.; Bombrun, A. Couve-Bonnaire. Chem. Biodiversity 2018, 15, e1800013. DOI: 10.1002/cbdv.201800013.
  • Gerberick, G. F.; Ryan, C. A.; Kern, P. S.; Schlatter, H.; Dearman, R. J.; Kimber, I.; Patlewicz, G. Y.; Basketter, D. A. Compilation of Historical Local Lymph Node Data for Evaluation of Skin Sensitization Alternative Methods. Dermatitis 2005, 16, 157–202. DOI: 10.2310/6620.2005.05040.
  • Prakash, G. K. S.; Chacko, S.; Vaghoo, H.; Shao, N.; Gurung, L.; Mathew, T.; Olah, G. Efficient Nucleophilic Fluoromethylation and Subsequent Transformation of Alkyl and Benzyl Halides Using Fluorobis(Phenylsulfonyl)Methane. Org. Lett. 2009, 11, 1127–1130. DOI: 10.1021/ol8029627.
  • Konno, T.; Ikemoto, A.; Ishihara, T. A New Entry to the Construction of a Quaternary Carbon Center Having a Fluorine atom-S(N)2' Reaction of γ-Fluoroallylic Alcohol Derivatives with Various Cyanocuprates. Org. Biomol. Chem. 2012, 10, 8154–8163. DOI: 10.1039/c2ob25718a.
  • Friedman, M.; Kozukue, N.; Harden, L. A. Cinnamaldehyde Content in Foods Determined by Gas Chromatography-Mass Spectrometry. J. Agric. Food Chem. 2000, 48, 5702–5709. DOI: 10.1021/jf000585g.
  • Molines, H.; Wakselman, C. Synthese de L’acide β Fluoroacrylique (Fluoro-3 Propenoique). J. Fluorine. Chem. 1984, 25, 447–451. DOI: 10.1016/S0022-1139(00)81476-1.
  • Nguyen, T.; Leroy, J.; Wakselman, C. An Expeditious Synthesis of 3-Fluoroacrylic Acid. J. Org. Chem. 1993, 58, 3772–3774. DOI: 10.1021/jo00066a035.
  • Patrick, T. B.; Gorrell, K.; Rogers, J. Microwave Assisted Diels-Alder Cycloaddition of 2-Fluoro-3-Methoxy-1,3-Butadiene. J. Fluorine Chem. 2007, 128, 710–713. DOI: 10.1016/j.jfluchem.2007.03.010.
  • Patrick, T. B.; Neumann, J.; Tatro, A. Cycloaddition Reactions of Ethyl (E)- and (Z)-3-Fluoropropenoate. J. Fluorine Chem. 2011, 132, 779–782. DOI: 10.1016/j.jfluchem.2011.02.013.
  • Peng, S.; Qing, F.-L.; Li, Y.-Q.; Hu, C.-M. Palladium(0)/Copper(I)-Cocatalyzed Cross-Coupling of the Zinc Reagent of Ethyl 3-Bromo-3,3-Difluoropropionate with Aryl (Alkenyl) Halides: An Efficient Stereoselective Synthesis of β-Fluoro-α,β-Unsaturated Esters. J. Org. Chem. 2000, 65, 694–700. DOI: 10.1021/jo991276w.
  • Liang, Y.; Zhang, Y. P.; Yu, W. The Reaction of Substituted Ethyl α-Bromocinnamates with Tetrabutyl Ammonium Fluoride. Chinese. Chem. Lett. 2012, 23, 777–780. DOI: 10.1016/j.cclet.2012.05.015.
  • Li, B.; Liu, X.; Ma, D.; Liu, B.; Jiang, H. Silver-Assisted Difunctionalization of Terminal Alkynes: Highly Regio- and Stereoselective Synthesis of Bromofluoroalkenes. Adv. Synth. Catal. 2012, 354, 2683–2688. DOI: 10.1002/adsc.201200250.
  • Patrick, T. B.; Blay, A. A. Heck Reaction with Ethyl (E)- and (Z)-3-Fluoropropenoate. J. Fluorine. Chem. 2016, 189, 68–69. DOI: 10.1016/j.jfluchem.2016.07.009.
  • Inoue, M.; Shiosaki, M.; Muramaru, H. Synthesis of Ethyl 3,3,3-Trifluoropropionate from 2-Bromo-3,3,3-Trifluoropropene. J. Fluorine. Chem. 2014, 167, 135–138. DOI: 10.1016/j.jfluchem.2014.07.009.
  • Romero, F. A.; Vodonick, S. M.; Criscione, K. R.; McLeish, M. J.; Grunewald, G. L.; Grunewald, G. L. Inhibitors of Phenylethanolamine N-Methyltransferase That Are Predicted to Penetrate the Blood-Brain Barrier: Design, Synthesis, and Evaluation of 3-Fluoromethyl-7-(N-Substituted Aminosulfonyl)-1,2,3,4-Tetrahydroisoquinolines That Possess Low Affinity toward the alpha2-Adrenoceptor. J. Med. Chem. 2004, 47, 4483–4493. DOI: 10.1021/jm0400653.
  • Feng, D. M.; Wai, J. M.; Kuduk, S. D.; Ng, C.; Murphy, K. L.; Ransom, R. W.; Reiss, D.; Chang, R. S.; Harrell, C. M.; MacNeil, T.; et al. 2,3-Diaminopyridine as a Platform for Designing Structurally Unique Nonpeptide Bradykinin B1 Receptor Antagonists. Bioorg. Med. Chem. Lett. 2005, 15, 2385–2388. DOI: 10.1016/j.bmcl.2005.02.077.
  • Henne, A. L.; Fox, C. J. Ionization Constants of Fluorinated Acids. J. Am. Chem. Soc. 1951, 73, 2323–2325. DOI: 10.1021/ja01149a122.
  • Numata, Y.; Ashraful, I.; Shirai, Y.; Han, L. Preparation of Donor-Acceptor Type Organic Dyes Bearing Various Electron-Withdrawing Groups for Dye-Sensitized Solar Cell Application. Chem. Commun. 2011, 47, 6159–6161. DOI: 10.1039/c1cc11130b.
  • Hong, J.; Lai, H.; Liu, Y.; Yuan, C.; Li, Y.; Liu, P.; Fang, Q. New Organic Dyes Containing E- or Z-Trifluoromethyl Acrylic Acid as the Electron Acceptors for Dye-Sensitized Solar Cell Applications: An Investigation of the Effect of Molecular Configuration on the Power Conversion Efficiency of the Cells. RSC. Adv. 2013, 3, 1069–1072. DOI: 10.1039/C2RA22195K.
  • Xu, L.; Zhang, Q.; Xie, Q.; Huang, B.; Dai, J. J.; Xu, J.; Xu, H. J. Pd-Catalyzed Defluorination/Arylation of α-Trifluoromethyl Ketones via Consecutive β-F Elimination and C-F Bond Activation. Chem. Commun. 2018, 54, 4406–4409. DOI: 10.1039/c8cc01568f.
  • Tang, W.-K.; Feng, Y.-S.; Xu, Z.-W.; Cheng, Z.-F.; Xu, J.; Dai, J.-J.; Xu, H.-J. Visible-Light-Enabled Decarboxylative Mono- and Difluoromethylation of Cinnamic Acids under Metal-Free Conditions. Org. Lett. 2017, 19, 5501–5504. DOI: 10.1021/acs.orglett.7b02129.
  • Fuchibe, K.; Hatta, H.; Oh, K.; Oki, R.; Ichikawa, J. Lewis Acid Promoted Single C-F Bond Activation of the CF3 Group: SN 1’-Type 3,3-Difluoroallylation of Arenes with 2-Trifluoromethyl-1-Alkenes. Angew. Chem. Int. Ed. Engl. 2017, 56, 5890–5893. DOI: 10.1002/anie.201701985.
  • Thornbury, R. T.; Toste, F. D. Palladium-Catalyzed Defluorinative Coupling of 1-Aryl-2,2-Difluoroalkenes and Boronic Acids: Stereoselective Synthesis of Monofluorostilbenes. Angew. Chem. Int. Ed. Engl. 2016, 55, 11629–11632. DOI: 10.1002/anie.201605651.
  • Miyaura, N. J. Cross-Coupling Reaction of Organoboron Compounds via Base-Assisted Transmetalation to Palladium(II) Complexes. Organomet. Chem. 2002, 653, 54–57. DOI: 10.1016/S0022-328X(02)01264-0.
  • Amatore, C.; Jutand, A.; Duc, G. L. Kinetic Data for the Transmetalation/Reductive Elimination in Palladium-Catalyzed Suzuki-Miyaura Reactions: Unexpected Triple Role of Hydroxide Ions Used as Base. Chemistry 2011, 17, 2492–2503. DOI: 10.1002/chem.201001911.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.