Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 21
223
Views
1
CrossRef citations to date
0
Altmetric
Articles

An alternate and efficient method for preparation of 2,6-diacetamido-4-formylpyridine for formation of porphyrin appended with hydrogen bonding motifs

, , , , &
Pages 3256-3263 | Received 03 May 2020, Published online: 28 Jul 2020

Refrences

  • Drain, C. M. Self-Organization of Self-Assembled Photonic Materials into Functional Devices: Photo-Switched Conductors. Proc. Natl. Acad. Sci. USA. 2002, 99, 5178–5182. DOI: 10.1073/pnas.062635099.
  • Drain, C. M.; Batteas, J. D.; Flynn, G. W.; Milic, T.; Chi, N.; Yablon, D. G.; Sommers, H. Designing Supramolecular Porphyrin Arrays That Self-Organize into Nanoscale Optical and Magnetic Materials. Proc. Natl. Acad. Sci. USA. 2002, 99, 6498–6502. DOI: 10.1073/pnas.012521899.
  • Drain, C. M.; Varotto, A.; Radivojevic, I. Self-Organized Porphyrinic Materials. Chem. Rev. 2009, 109, 1630–1658. DOI: 10.1021/cr8002483.
  • Drain, C. M.; Chen, X. In Encyclopedia of Nanoscience and Nanotechnology H.S. Nalwa (Ed.); American Scientific Publishers, 2004; Vol. 9, pp. 593–616.
  • Radivojevic, I.; Varotto, A.; Farley, C.; Drain, C. M. Commercially Viable Porphyrinoid Dyes for Solar Cells. Energy Environ. Sci. 2010, 3, 1897–1909. DOI: 10.1039/c0ee00009d.
  • Balaban, T. S.; Berova, N.; Drain, C. M.; Hauschild, R.; Huang, X.; Kalt, H.; Lebedkin, S.; Lehn, J.-M.; Nifaitis, F.; Pescitelli, G.; et al. Syntheses and Energy Transfer in Multiporphyrinic Arrays Self-Assembled with Hydrogen-Bonding Recognition Groups and Comparison with Covalent Steroidal Models. Chemistry 2007, 13, 8411–8427. DOI: 10.1002/chem.200601691.
  • Shi, X.; Barkigia, K. M.; Fajer, J.; Drain, C. M. Design and Synthesis of Porphyrins Bearing Rigid Hydrogen Bonding Motifs: Highly Versatile Building Blocks for Self-Assembly of Polymers and Discrete Arrays. J. Org. Chem. 2001, 66, 6513–6522. DOI: 10.1021/jo010108c.
  • D'Souza, F.; Ito, O. Photoinduced Electron Transfer in Supramolecular Systems of Fullerenes Functionalized with Ligands Capable of Binding to Zinc Porphyrins and Zinc Phthalocyanines. Coord. Chem. Rev. 2005, 249, 1410–1422. DOI: 10.1016/j.ccr.2005.01.002.
  • Radivojevic, I.; Likhtina, I.; Shi, X.; Singh, S.; Drain, C. M. Self-Organized Nanofibers and Nanorods of Porphyrins Bearing Hydrogen Bonding Motifs. Chem. Commun. 2010, 46, 1643–1645. DOI: 10.1039/b919468a.
  • Feng, D.-J.; Wang, G.-T.; Wu, J.; Wang, R.-X.; Li, Z.-T. Hydrogen Bonding-Driven Elastic Bis(Zinc)Porphyrin Receptors for Neutral and Cationic Electron-Deficient Guests with a Sandwich-Styled Complexing Pattern. Tetrahedron Lett. 2007, 48, 6181–6185. DOI: 10.1016/j.tetlet.2007.06.161.
  • Studener, F.; Müller, K.; Marets, N.; Bulach, V.; Hosseini, M. W.; Stöhr, M. From Hydrogen Bonding to Metal Coordination and Back: Porphyrin-Based Networks on Ag(111). J. Chem. Phys. 2015, 142, 101926. DOI: 10.1063/1.4908535.
  • Drain, C. M.; Bazzan, G.; Milic, T.; Vinodu, M.; Goeltz, J. C. Formation and Applications of Stable 10 nm to 500 nm Supramolecular Porphyrinic Materials. Isr. J. Chem. 2005, 45, 255–269. DOI: 10.1560/9QTD-B1GJ-K8J7-7YJR.
  • Doan, S. C.; Shanmugham, S.; Aston, D. E.; McHale, J. L. Counterion Dependent Dye Aggregates: Nanorods and Nanorings of tetra(p-carboxyphenyl)porphyrin. J. Am. Chem. Soc. 2005, 127, 5885–5892. DOI: 10.1021/ja0430651.
  • Satake, A.; Kobuke, Y. Dynamic Supramolecular Porphyrin Systems. Tetrahedron 2005, 61, 13–41. DOI: 10.1016/j.tet.2004.10.073.
  • Camara-Campos, A.; Hunter, C. A.; Tomas, S. Cooperativity in the Self-Assembly of Porphyrin Ladders. Proc. Natl. Acad. Sci. USA. 2006, 103, 3034–3038. DOI: 10.1073/pnas.0508071103.
  • Adamczyk, M.; Akireddy, S. R.; Reddy, R. E. An Efficient Enantioselective Synthesis of (S)-(–)-Acromelobic Acid. Org. Lett. 2000, 2, 3421–3423. DOI: 10.1021/ol006363l.
  • Henegar, K. E.; Ashford, S. W.; Baughman, T. A.; Sih, J. C.; Gu, R.-L. Practical Asymmetric Synthesis of (S)-4-Ethyl-7,8-Dihydro-4-Hydroxy-1 H -Pyrano[3,4-f]Indolizine- 3,6,10(4 H )-Trione, a Key Intermediate for the Synthesis of Irinotecan and Other Camptothecin Analogs. J. Org. Chem. 1997, 62, 6588–6597. DOI: 10.1021/jo970173f.
  • Brodbeck, B.; Püllmann, B.; Schmitt, S.; Nettekoven, M. Parallel Iterative Solution-Phase Synthesis of 5-Amino-1-Aryl-[1,2,4]Triazolo[1,5-a]Pyridine-7-Carboxylic Acid Amide Derivatives. Tetrahedron Lett. 2003, 44, 1675–1678. DOI: 10.1016/S0040-4039(03)00062-5.
  • Han, K.-J.; Kim, M. Direct Synthesis of Weinreb Amides from Carboxylic Acids Using Triphosgene. Lett. Org. Chem. 2007, 4, 20–22. DOI: 10.2174/157017807780037441.
  • Tunoori, A. R.; White, J. M.; Georg, G. I. A One-Flask Synthesis of Weinreb Amides from Chiral and Achiral Carboxylic Acids Using the Deoxo-Fluor Fluorinating Reagent. Org. Lett. 2000, 2, 4091–4093. DOI: 10.1021/ol000318w.
  • De Luca, L.; Giacomelli, G.; Taddei, M. An Easy and Convenient Synthesis of Weinreb Amides and Hydroxamates. J. Org. Chem. 2001, 66, 2534–2537. DOI: 10.1021/jo015524b.
  • Labeeuw, O.; Phansavath, P.; Genêt, J.-P. Synthesis of Modified Weinreb Amides: N-Tert-butoxy-N-Methylamides as Effective Acylating Agents. Tetrahedron Lett. 2004, 45, 7107–7110. DOI: 10.1016/j.tetlet.2004.07.106.
  • Dickson, H. D.; Smith, S. C.; Hinkle, K. W. A Convenient Scalable One-Pot Conversion of Esters and Weinreb Amides to Terminal Alkynes. Tetrahedron Lett. 2004, 45, 5597–5599. DOI: 10.1016/j.tetlet.2004.05.139.
  • Lindsey, J. S.; Wagner, R. W. Investigation of the Synthesis of Ortho-Substituted Tetraphenylporphyrins. J. Org. Chem. 1989, 54, 828–836. DOI: 10.1021/jo00265a021.
  • Lindsey, J. S.; Schreiman, I. C.; Hsu, H. C.; Kearney, P. C.; Marguerettaz, A. M. Rothemund and Adler-Longo Reactions Revisited: Synthesis of Tetraphenylporphyrins under Equilibrium Conditions. J. Org. Chem. 1987, 52, 827–836. DOI: 10.1021/jo00381a022.
  • Betoni Momo, P.; Pavani, C.; Baptista, M. S.; Brocksom, T. J.; Thiago de Oliveira, K. Chemical Transformations and Photophysical Properties of meso -Tetrathienyl-Substituted Porphyrin Derivatives. Eur. J. Org. Chem. 2014, 2014, 4536–4547. DOI: 10.1002/ejoc.201402227.
  • Adler, A. D.; Longo, F. R.; Finarelli, J. D.; Goldmacher, J.; Assour, J.; Korsakoff, L. A Simplified Synthesis for Meso-Tetraphenylporphine. J. Org. Chem. 1967, 32, 476–476. DOI: 10.1021/jo01288a053.
  • Osuka, A.; Yoneshima, R.; Shiratori, H.; Osuka, A.; Okada, T.; Taniguchi, S.; Mataga, N. Electron Transfer in a Hydrogen-Bonded Assembly Consisting of Porphyrin–Diimide. Chem. Commun. 1998, 1567–1568. DOI: 10.1039/a803541e.
  • Fallon, G. D.; Lee, M. A. P.; Langford, S. J.; Nichols, P. J. Unusual Solid-State Behavior in a Neutral [2]Catenane Bearing a Hydrolyzable Component. Org. Lett. 2004, 6, 655–658. DOI: 10.1021/ol036116s.
  • Hansen, J. G.; Feeder, N.; Hamilton, D. G.; Gunter, M. J.; Becher, J.; Sanders, J. K. M. Macrocyclization and Molecular Interlocking via Mitsunobu Alkylation: Highlighting the Role of C-H.O Interactions in Templating. Org. Lett. 2000, 2, 449–452. DOI: 10.1021/ol991289w.
  • Bhosale, S.; Sisson, A. L.; Sakai, N.; Matile, S. Synthetic Functional pi-Stack Architecture in Lipid Bilayers. Org. Biomol. Chem. 2006, 4, 3031–3039. DOI: 10.1039/b606487f.
  • Bhosale, S. V.; Jani, C. H.; Langford, S. J. Chemistry of Naphthalene Diimides. Chem. Soc. Rev. 2008, 37, 331–342. DOI: 10.1039/b615857a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.