Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 21
146
Views
10
CrossRef citations to date
0
Altmetric
Articles

Greener and facile synthesis of 4,4′-(arylmethylene)bis(3-methyl-1-phenyl-1H-pyrazol-5-ol)s through a conventional heating procedure

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3276-3286 | Received 24 May 2020, Published online: 28 Jul 2020

References

  • Koppula, P. K.; Purohit, N. Bis-(1H-2-Benzopyran-1-One) Derivatives: Synthesis and Antimicrobial Evaluation. J. Chem. Sci. 2013, 125, 1535–1542. DOI: 10.1007/s12039-013-0529-0.
  • El-Sayed, M. A.; Abdel-Aziz, N. I.; Abdel-Aziz, A. A.; El-Azab, A. S.; Tahir, K. E. E. Synthesis, Biological Evaluation and Molecular Modeling Study of Pyrazole and Pyrazoline Derivatives as Selective COX-2 Inhibitors and anti-Inflammatory Agents Part 2. Bioorg. Med. Chem. 2012, 20, 3306–3316. DOI: 10.1016/j.bmc.2012.03.044.
  • Sujatha, K.; Shanthi, G.; Selvam, N. P.; Manoharan, S.; Perumal, P. T.; Rajendran, M. Synthesis and Antiviral Activity of 4,4′-(Arylmethylene)Bis(1H-Pyrazol-5-Ols) against Peste Des Petits Ruminant Virus (PPRV). Bioorg. Med. Chem. Lett 2009, 19, 4501–4503. DOI: 10.1016/j.bmcl.2009.02.113.
  • Diana, P.; Carbone, A.; Barraja, P.; Martorana, A.; Gia, O.; DallaVia, L. Cirrincione, 3,5-Bis(3’-indolyl)pyrazoles, Analogues of Marine Alkaloid Nortopsentin: Synthesis and Antitumor Properties. Bioorg. Med. Chem. Lett. 2007, 17, 6134–6137. DOI: 10.1016/j.bmcl.2007.09.042.
  • Gouda, M. A.; Al‐Balawi, M. M. M.; Abu‐Hashem, A. A. One‐Pot Pseudo Five‐Component Synthesis and Antioxidant Evaluation of 4,4'‐(Aryl‐Methylene)Bis(3‐Methyl‐1‐Phenyl‐1H‐Pyrazol‐5‐ol). Eur. J. Chem. 2016, 7, 363–367. DOI: 10.5155/eurjchem.7.3.363-367.1474.
  • Venkat Ragavan, R.; Vijayakumar, V.; Suchetha, K. N. Synthesis of Some Novel Bioactive 4-Oxy/Thio Substituted-1H-Pyrazol-5(4H)-Ones via Efficient cross-Claisen Condensation. Eur. J. Med. Chem. 2009, 44, 3852–3857. DOI: 10.1016/j.ejmech.2009.04.010.
  • Fahim, A. M.; Yakout, E. S. M.; Nawwar, G. A. E. Facile Synthesis of In-Vivo Insecticidal and Antimicrobial Evaluation of Bis Heterocyclic Moiety from Pet Waste. Online J. Bio. Sci 2014, 14, 196–208. DOI: 10.3844/ojbsci.2014.196.208.
  • Moegling, J.; Benischke, A. D.; Hammann, J. M.; Vepřek, N. A.; Zoller, F.; Rendenbach, B.; Hoffmann, A.; Sievers, H.; Schuster, M.; Knochel, P.; Herres‐Pawlis, S. Bis(Pyrazolyl)Methane Copper Complexes as Robust and Efficient Catalysts for Sonogashira Couplings. Eur. J. Org. Chem. 2015, 2015, 7475–7483. DOI: 10.1002/ejoc.201501117.
  • Pettinari, C.; Marchetti, F.; Pettinari, R.; Drozdov, A.; Troyanov, S.; Voloshin, A. I.; Shavaleev, N. M. Synthesis, Structure and Luminescence Properties of New Rare Earth Metal Complexes with 1-Phenyl-3-Methyl-4-Acylpyrazol-5-Ones. J. Chem. Soc, Dalton Trans. 2002, 1409–1415. DOI: 10.1039/b108058j.
  • Takeishi, H.; Kitatsuji, Y.; Kimura, T.; Meguro, Y.; Yoshida, Z.; Kihara, S. Solvent Extraction of Uranium, Neptunium, Plutonium, Amencmm, Cunum and Califomium Ions by Bis(1-Phenyl-3-Methyl-4-Acylpyrazol-5-One) Derivatives. Anal. Chim. Acta 2001, 431, 69–80. DOI: 10.1016/S0003-2670(00)01324-6.
  • Gupta, A. D.; Pal, R.; Mallik, A. K. Two Efficient and Green Methods for Synthesis of 4,4′-(Arylmethylene)Bis(1H-Pyrazol-5-Ols) Without Use of Any Catalyst or Solvent. Green Chem. Lett. Rev. 2014, 7, 404–411. DOI: 10.1080/17518253.2014.970236.
  • Elinson, M. N.; Sokolova, O. O.; Nasybullin, R. F. Catalyst-Free Tandem Knoevenagel–Michael Reaction of Aldehydes and Pyrazolin-5-One: Fast and Convenient Approach to Medicinally Relevant 4,4′-(Arylmethylene)Bis(1H-Pyrazol-5-ol)s. Heterocycl. Commun. 2015, 21, 97–101.
  • Kauthale, S. S.; Tekale, S. U.; Jadhav, K. M.; Pawar, R. P. Ethylene Glycol Promoted Catalyst-Free Pseudo Three-Component Green Synthesis of Bis(Coumarin)s and Bis(3-Methyl-1-Phenyl-1H-Pyrazol-5-ol)s. Mol. Divers. 2016, 20, 763–770. DOI: 10.1007/s11030-016-9673-z.
  • Filian, H.; Kohzadian, A.; Mohammadi, M.; Ghorbani-Choghamarani, A.; Karami, A. Pd(0)-Guanidine@MCM-41: A Very Effective Catalyst for Rapid Production of Bis(Pyrazolyl)Methanes. Appl. Organometal. Chem. 2020, 34, e5579. DOI: 10.1002/aoc.5579.
  • Zhou, Z.; Zhang, Y. An Efficient and Green One-Pot Three-Component Synthesis of 4,4′-(Arylmethylene)Bis(1H-Pyrazol-5-ol)s Catalyzed by 2-Hydroxy Ethylammonium Propionate. Green Chem. Lett. Rev. 2014, 7, 18–23. DOI: 10.1080/17518253.2014.894142.
  • Khazaei, A.; Abbasi, F.; Moosavi-Zare, A. R. Tandem cyclocondensation-Knoevenagel–Michael Reaction of Phenyl Hydrazine, Acetoacetate Derivatives and Arylaldehydes. New J. Chem. 2014, 38, 5287–5292. DOI: 10.1039/C4NJ01079E.
  • Zhou, Z.; Zhang, Y. An Eco-Friendly One-Pot Synthesis of 4,4′-(Arylmethylene)Bis(1H-Pyrazol-5-Ols) Using [Et3NH][HSO4] as a Recyclable Catalyst. J. Chil. Chem. Soc. 2015, 60, 2992–2996. DOI: 10.4067/S0717-97072015000300003.
  • Banerjee, D.; Karmakar, R.; Kayal, U.; Maiti, G. One-Pot Efficient Pseudo-Five-Components Synthesis of 4,4′-(Arylmethylene)Bis(3-Methyl-1-Phenyl-1H-Pyrazol-5-Ols) at Room Temperature Assisted by K2CO3. Synth. Commun. 2017, 47, 1006–1012. DOI: 10.1080/00397911.2017.1298134.
  • Khaligh, N. G.; Abd Hamid, S. B.; Titinchi, S. J. J. N-Methylimidazolium Perchlorate as a New Ionic Liquid for the Synthesis of Bis(Pyrazol-5-ol)s under Solvent-Free Conditions. Chin. Chem. Lett. 2016, 27, 104–108. DOI: 10.1016/j.cclet.2015.07.027.
  • Verma, C.; Ebenso, E.; Quraishi, M. Recent Advancements in Synthesis and Applications of Amino Acid Ionic Liquids (AAILs): A Mini Review. Clin. Med. Biochem. 2018, 4, 144.
  • Heravi, M. M.; Ghods, A.; Bakhtiari, K.; Derikvand, F. Zn [(L)Proline]2: An Efficient Catalyst for the Synthesis of Biologically Active Pyrano[2,3-d] Pyrimidine Derivatives. Synth. Commun. 2010, 40, 1927–1931. DOI: 10.1002/chin.201051163.
  • Bararjanian, M.; Balalaie, S.; Movassag, B.; Amani, A. M. One-Pot Synthesis of Pyrano[2,3-d]Pyrimidinone Derivatives Catalyzed by L-Proline in Aqueous Media. JICS 2009, 6, 436–442. DOI: 10.1007/BF03245854.
  • Hayashi, Y.; Umekubo, N.; Hirama, T. Prolinate Salts as Catalysts for α-Aminoxylation of Aldehyde and Associated Mechanistic Insights. Org. Lett. 2017, 19, 4155–4158. DOI: 10.1021/acs.orglett.7b01433.
  • Blackmond, D. G.; Moran, A.; Hughes, M.; Armstrong, A. Unusual Reversal of Enantioselectivity in the Proline-Mediated α-Amination of Aldehydes Induced by Tertiary Amine Additives. J. Am. Chem. Soc. 2010, 132, 7598–7599. DOI: 10.1021/ja102718x.
  • Itagaki, N.; Kimura, M.; Sugahara, T.; Iwabuchi, Y. Organocatalytic Entry to Chiral Bicyclo[3.n.1]Alkanones via Direct Asymmetric Intramolecular Aldolization. Org. Lett. 2005, 7, 4185–4188. DOI: 10.1021/ol051569d.
  • Xu, K.; Zhang, S.; Hu, Y.; Zha, Z.; Wang, Z. Asymmetric Michael Reaction Catalyzed by Proline Lithium Salt: Efficient Synthesis of l-Proline and Isoindoloisoquinolinone Derivatives. Chem. Eur. J. 2013, 19, 3573–3578. DOI: 10.1002/chem.201202409.
  • Keshavarz, M.; Vafaei-Nezhad, M. Design and Characterization of L-Prolinate-Amberlite as a Novel Heterogeneous Organocatalyst and Its Catalytic Application in the Synthesis of Pyrazol-Derivates. Catal. Lett. 2016, 146, 353–363. DOI: 10.1007/s10562-015-1668-3.
  • Khaligh, N. G.; Abbo, H. S.; Titinchi, S. J. J. Synthesis of N-Methyl Imines in the Presence of Poly(N-Vinylpyridine) as a Reusable Solid Base Catalyst by a Mechanochemical Process. Res. Chem. Intermed. 2017, 43, 901–910. DOI: 10.1007/s11164-016-2672-y.
  • Khaligh, N. G.; Ling, O. C.; Mihankhah, T.; Johan, M. R.; Ching, J. J. Mechanosynthesis of N-Methyl Imines Using Recyclable Imidazole-Based Acid-Scavenger: In Situ Formed Ionic Liquid as Catalyst and Dehydrating Agent. Aust. J. Chem. 2019, 72, 194–199. DOI: 10.1071/CH18408.
  • Zaharani, L.; Khaligh, N. G.; Mihankhah, T.; Johan, M. R. Application of Nitrogen-Rich Porous Organic Polymer for the Solid-Phase Synthesis of 2-Amino-4H-Benzo[b]Pyran Scaffolds Using Ball Milling Process. Mol. Divers 10.1007/s11030-020-10092-4.
  • Khaligh, N. G.; Mihankhah, T.; Johan, M. R. 4,4′-Trimethylenedipiperidine (TMDP): an Efficient Organocatalyst for the Mechanosynthesis of Pyrano[4,3-b]Pyrans under Solid-State Conditions. Polycycl. Arom. Comp. 2019, 1–10. DOI: 10.1080/10406638.2018.1564679.
  • Khaligh, N. G.; Mihankhah, T.; Johan, M. R. An Alternative, Practical, and Ecological Protocol for Synthesis of Arylidene Analogues of Meldrum’s Acid as Useful Intermediates. Res. Chem. Intermed. 2019, 45, 3291–3300. DOI: 10.1007/s11164-019-03796-2.
  • Ferlin, N.; Courty, M.; Van Nhien, A. N.; Gatard, S.; Pour, M.; Quilty, B.; Ghavre, M.; Haiß, A.; Kummerer, K.; Gathergood, N.; Bouquillon, S. Tetrabutylammonium Prolinate-Based Ionic Liquids: A Combined Asymmetric Catalysis, Antimicrobial Toxicity and Biodegradation Assessment. RSC Adv. 2013, 3, 26241–26251. DOI: 10.1039/c3ra43785j.
  • Rezaei, F.; Amrollahi, M. A.; Khalifeh, R. Brønsted Acidic Dicationic Ionic Liquid Immobilized on Fe3O4@SiO2 Nanoparticles as an Efficient and Magnetically Separable Catalyst for the Synthesis of Bispyrazoles. ChemistrySelect 2020, 5, 1760–1766. DOI: 10.1002/slct.201904831.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.