Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 21
283
Views
20
CrossRef citations to date
0
Altmetric
Articles

Synthesis of some new functionalized pyrano[2,3-c]pyrazoles and pyrazolo[4′,3′:5,6] pyrano[2,3-d]pyrimidines bearing a chromone ring as antioxidant agents

, &
Pages 3314-3325 | Received 28 Jun 2020, Published online: 04 Aug 2020

References

  • Liao, L.-M.; Sun, Y.-Q.; Li, J.; Kong, W.-S.; Liu, X.; Xu, Y.; Huang, H.-T.; Zeng, W.-L.; Mi, Q.-L.; Yang, G.-Y.; et al. Two New Chromone Derivatives from Cassia Nomame and Their Anti-Tobacco Mosaic Virus Activity. Chem. Nat. Compd. 2020, 56, 58–61. DOI: 10.1007/s10600-020-02943-1.
  • Keri, R. S.; Budagumpi, S.; Pai, R. K.; Balakrishna, R. G. Chromones as a Privileged Scaffold in Drug Discovery: A Review. Eur. J. Med. Chem. 2014, 78, 340–374. DOI: 10.1016/j.ejmech.2014.03.047.
  • Duan, Y. D.; Jiang, Y. Y.; Guo, F. X.; Chen, L. X.; Xu, L. L.; Zhang, W.; Liu, B. The Antitumor Activity of Naturally Occurring Chromones: A Review. Fitoterapia 2019, 135, 114–129. DOI: 10.1016/j.fitote.2019.04.012.
  • Opretzka, L. C. F.; Espírito-Santo, R. F.; Nascimento, O. A.; Abreu, L. S.; Alves, I. M.; Döring, E.; Soares, M. B. P.; Velozo, E. S.; Laufer, S. A.; Villarreal, C. F. Natural Chromones as Potential anti-Inflammatory Agents: Pharmacological Properties and Related Mechanisms. Inter. Immunopharm. 2019, 72, 31–39. DOI: 10.1016/j.intimp.2019.03.044.
  • Liu, S.; Zhu, T.; Qiu, Y.; Qi, W.; Wu, H.; Cai, B.; Lin, J. Chromones and Tannins from the Fruit of Euscaphis japonica var. wupingensis. BioResources 2019, 14, 5355–5364.
  • Zhou, T.; Shi, Q.; Lee, K. H. Anti-AIDS Agents 83. Efficient Microwave-Assisted One-Pot Preparation of Angular 2,2-Dimethyl-2H-Chromone Containing Compounds. Tetrahedron Lett. 2010, 51, 4382–4386. DOI: 10.1016/j.tetlet.2010.06.058.
  • Kanchithalaivan, S.; Sivakumar, S.; Kumar, R. R.; Elumalai, P.; Ahmed, Q. N.; Padala, A. K. Four-Component Domino Strategy for the Combinatorial Synthesis of Novel 1,4-Dihydropyrano[2,3-c]Pyrazol-6-Amines. ACS Comb. Sci. 2013, 15, 631–638. DOI: 10.1021/co4000997.
  • Mandha, S. R.; Siliveri, S.; Alla, M.; Bommena, V. R.; Bommineni, M. R.; Balasubramanian, S. Eco-Friendly Synthesis and Biological Evaluation of Substituted Pyrano[2,3-c]Pyrazoles. Bioorg. Med. Chem. Lett. 2012, 22, 5272–5278. DOI: 10.1002/chin.201250140.
  • Abeed, A. A. O.; Jaleel, G. A. A.; Youssef, M. S. K. Novel Heterocyclic Hybrids Based on 2-Pyrazoline: Synthesis and Assessment of Anti-Inflammatory and Analgesic Activities. Curr. Org. Synth. 2019, 16, 921–930. DOI: 10.2174/1570179416666190703115133.
  • Chavan, H. V.; Bhale, P. S.; Dongare, S. B.; Mule, Y. B.; Kolekar, N. D.; Bandgar, B. P. Synthesis and Pharmacological Evaluation of Pyrazoline and Pyrimidine Analogs of Combretastatin-A4 as Anticancer, Anti-Inflammatory and Antioxidant Agents. Croat. Chem. Acta 2018, 91, 1–10. DOI: 10.5562/cca3393.
  • Muramulla, S.; Zhao, C. G. A New Catalytic Mode of the Modularly Designed Organocatalysts (MDOs): Enantioselective Synthesis of Dihydropyrano[2,3-c]Pyrazoles. Tetrahedron Lett. 2011, 52, 3905–3908. DOI: 10.1016/j.tetlet.2011.05.092.
  • Prasanna, P.; Perumal, S.; Menendez, J. C. Chemodivergent, Multicomponent Domino Reactions in Aqueous Media: L-Proline-Catalyzed Assembly of Densely Functionalized 4H-Pyrano[2,3-c]Pyrazoles and Bispyrazolyl Propanoates from Simple, Acyclic Starting Materials. Green Chem. 2013, 15, 1292–1299. DOI: 10.1039/c3gc37128j.
  • Paul, S.; Pradhan, K.; Ghosh, S.; De, S. K.; Das, A. R. Uncapped SnO2 Quantum Dot Catalyzed Cascade Assembling of Four Components: A Rapid and Green Approach to the Pyrano[2,3-c]Pyrazole and Spiro-2-Oxindole Derivatives. Tetrahedron 2014, 70, 6088–6099. DOI: 10.1016/j.tet.2014.02.077.
  • Salem, M. A. I.; Marzouk, M. I.; Salem, M. S.; Alshibani, G. A. One‐Pot Synthesis of 1,2,3,4‐Tetrahydropyrimidin‐2(1H)‐Thione Derivatives and Their Biological Activity. J. Heterocyclic Chem. 2016, 53, 545–557. DOI: 10.1002/jhet.2358.
  • Yates, M. K.; Chatterjee, P.; Flint, M.; Arefeayne, Y.; Makuc, D.; Plavec, J.; Spiropoulou, C. F.; Seley-Radtke, K. L. Probing the Effects of Pyrimidine Functional Group Switches on Acyclic Fleximer Analogues for Antiviral Activity. Molecules 2019, 24, 3184–3201. DOI: 10.3390/molecules24173184.
  • Zhang, N.; Ayral-Kaloustian, S.; Nguyen, T.; Afragola, J.; Hernandez, R.; Lucas, J.; Gibbons, J.; Beyer, C. Synthesis and SAR of [1,2,4]Triazolo[1,5-a]Pyrimidines, a Class of Anticancer Agents with a Unique Mechanism of Tubulin Inhibition. J. Med. Chem. 2007, 50, 319–327. DOI: 10.1021/jm060717i.
  • Prakash, O.; Kumar, R.; Kumar, R.; Tyagi, P.; Kuhad, R. C. Organoiodine(III) Mediated Synthesis of 3,9-Diaryl- and 3,9-Difuryl-Bis-1,2,4-Triazolo[4,3-a][4,3-c] Pyrimidines as Antibacterial Agents. Eur. J. Med. Chem. 2007, 42, 868–872. DOI: 10.1016/j.ejmech.2006.11.019.
  • Rao, R. N.; Balamurali, M. M.; Maiti, B.; Thakuria, R.; Chanda, K. Efficient Access to Imidazo[1,2-a]Pyridines/Pyrazines/Pyrimidines via Catalyst-Free Annulation Reaction under Microwave Irradiation in Green Solvent. ACS Comb. Sci. 2018, 20, 164–171. DOI: 10.1021/acscombsci.7b00173.
  • Bruno, O.; Brullo, C.; Schenone, S.; Ranise, A.; Bondavalli, F.; Barocelli, E.; Tognolini, M.; Magnanini, F.; Ballabeni, V. Progress in 5H[1]Benzopyrano[4,3-d]Pyrimidin-5-Amine Series: 2-Methoxy Derivatives Effective as Antiplatelet Agents with Analgesic Activity. Il Farmaco 2002, 57, 753–758. DOI: 10.1016/S0014-827X(02)01269-7.
  • Lanier, M. C.; Feher, M.; Ashweek, N. J.; Loweth, C. J.; Rueter, J. K.; Slee, D. H.; Williams, J. P.; Zhu, Y. F.; Sullivan, S. K.; Brown, M. S. Selection, Synthesis, and Structure–Activity Relationship of Tetrahydropyrido[4,3-d]Pyrimidine-2,4-Diones as Human GnRH Receptor Antagonists. Bioorg. Med. Chem. 2007, 15, 5590–5603. DOI: 10.1016/j.bmc.2007.05.029.
  • Abdelgawad, M. A.; Bakr, R. B.; Ahmad, W.; Al-Sanea, M. M.; Elshemy, H. A. H. New Pyrimidine-Benzoxazole/Benzimidazole Hybrids: Synthesis, Antioxidant, Cytotoxic Activity, In Vitro Cyclooxygenase and Phospholipase A2-V Inhibition. Bioorg. Chem. 2019, 92, 103218. DOI: 10.1016/j.bioorg.2019.103218.
  • Ali, T. E.; Assiri, M. A.; El-Shaaer, H. M.; Hassan, M. M.; Fouda, A. M.; Hassanin, N. M. Reaction of 2-Imino-2H-Chromene-3-Carboxamide with Some Phosphorus Esters: Synthesis of Some Novel Chromenes Containing Phosphorus Heterocycles and Phosphonate Groups and Their Antioxidant and Cytotoxicity Properties. Synth. Commun. 2019, 49, 2983–2994.
  • Ali, T. E.; Assiri, M. A.; El-Shaaer, H. M.; Hassan, M. M.; Fouda, A. M.; Hassanin, N. M. Reaction of 2-Imino-2H-Chromene-3-Carboxamide with Phosphorus Halides: synthesis of Some Novel Chromeno 2,3-d][1,3,2]Diazaphosphinines and Chromeno[4,3-c] [1,2]Azaphosphole and Their Antioxidant and Cytotoxicity Properties. Heterocycles 2019, 98, 681–692. DOI: 10.3987/COM-19-14062.
  • Fouda, A. M.; Assiri, M. A.; Mora, A.; Ali, T. E.; Afifi, T. H.; El-Agrody, A. M. Microwave Synthesis of Novel Halogenated β-Enaminonitriles Linked 9-Bromo-1H-Benzo[f]Chromene Moieties: Induces Cell Cycle Arrest and Apoptosis in Human Cancer Cells via Dual Inhibition of Topoisomerase I and II. Bioorg. Chem. 2019, 93, 103289. DOI: 10.1016/j.bioorg.2019.103289.
  • Kiyani, H.; Samimi, H. A.; Ghorbani, F.; Esmaieli, S. One-Pot, Four-Component Synthesis of Pyrano[2,3-c]Pyrazoles Catalyzed by Sodium Benzoate in Aqueous Medium. Curr. Chem. Lett. 2013, 2, 197–206.
  • Elziaty, A. K.; Mostafa, O. E. A.; El-Bordany, E. A.; Nabil, M.; Madkour, H. M. F. Access to New Pyranopyrazoles and Related Heterocycles. Int. J. Sci. Eng. Res. 2014, 5, 727–735.
  • Ismail, M. M. F.; Khalifa, N. M.; Fahmy, H. H.; Nossier, E. S.; Abdulla, M. M. Design, Docking, and Synthesis of Some New Pyrazoline and Pyranopyrazole Derivatives as anti-Inflammatory Agents. J. Heterocyclic Chem. 2014, 51, 450–458. DOI: 10.1002/jhet.1757.
  • Younes, M. I.; Atta, A. H.; Metwally, S. A. M. Reactions of 6-Amino·5-Cyano-3-Methyl·1,4-Diphenyl-1H,4H-Pyrano[2,3-c]Pyrazole and Its Methanimidate. J. Chinese Chemical Soc. 1990, 37, 617–623. DOI: 10.1002/jccs.199000085.
  • Ogretir, C.; Yaman, M. AM1, PM3 and MNDO Study of the Tautomeric Equilibria of 2-, 4- or 5-Hydroxypyrimidin Derivatives and Their Azo- and Thio-Analogs. J. Mol. Struct. 1999, 458, 217–226. DOI: 10.1016/S0166-1280(98)00070-0.
  • Bedair, A. H.; Emam, H. A.; El-Hady, N. A.; Ahmed, K. A. R.; El-Agrody, A. M. Synthesis and Antimicrobial Activities of Novel Naphtho[2,1-b]Pyran, Pyrano[2,3-d] Pyrimidine and Pyrano[3,2-e][1,2,4]Triazolo[2,3-c]Pyrimidine Derivatives. Il Farmaco 2001, 56, 965–973. DOI: 10.1016/S0014-827X(01)01168-5.
  • Jain, R. K.; Kashaw, V. Design, Synthesis and Anticonvulsant Activity of Some New Bioactive 1-(4-Substitutedphenyl-3-(4-Oxo-2-Methyl/Phenyl-4H-Quinazolin-3-yl)-Urea. Asian J. Pharm. Pharmacol. 2018, 4, 706–714. DOI: 10.31024/ajpp.2018.4.5.25.
  • Wang, Z. X.; Chen, L. Z.; Wang, F. M.; Li, B.; Han, G. F. Synthesis of Novel 2‐Aryloxy‐3‐(4‐Chlorophenyl)‐8‐Substituted‐5‐Aryl‐8,9‐Dihydro‐3h‐Chromeno[2,3‐d]Pyrimidine-4,6(5H,7H)‐Dione Derivatives. J. Heterocyclic Chem. 2015, 52, 744–750. DOI: 10.1002/jhet.2183.
  • Kato, K.; Terao, S.; Shimamoto, N.; Hirata, M. Studies on Scavengers of Active Oxygen Species. 1. Synthesis and Biological Activity of 2-O-Alkylascorbic Acids. J. Med. Chem. 1988, 31, 793–798. DOI: 10.1021/jm00399a019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.