Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 24
433
Views
18
CrossRef citations to date
0
Altmetric
Articles

L-Proline based ionic liquid: A highly efficient and homogenous catalyst for synthesis of 5-benzylidene-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione and pyrano[2,3-d] pyrimidine diones under ultrasonic irradiation

, &
Pages 3804-3819 | Received 29 May 2020, Published online: 27 Aug 2020

References

  • (a) Poliakoff, M.; Fitzpatrick, J. M.; Farren, T. R.; Anastas, P. T. Green Chemistry: Science and Politics of Change. Science 2002, 297, 807–810. DOI: 10.1126/science.297.5582.807. (b) Kirchner, B.; Clare, B. Ionic Liquids. Springer Science & Business Media: Berlin, Germany, 2009. (c) Santra, S.; Majee, A.; Hajra, A. Task-Specific Ionic Liquid-Catalyzed Efficient Couplings of Indoles with 1,3-Dicarbonyl Compounds: An Efficient Synthesis of 3-Alkenylated Indoles. Tetrahedron Lett. 2011, 52, 3825–3827. DOI: 10.1016/j.tetlet.2011.05.069.
  • (a) Handy, S. T. Greener Solvents: Room Temperature Ionic Liquids from Biorenewable Sources. Chem. Eur. J. 2003, 9, 2938–2944. DOI: 10.1002/chem.200304799. (b) List, B. Asymmetric Aminocatalysis. Synlett 2001, 2001, 1675–1686. DOI: 10.1055/s-2001-18074.
  • (a) Shirini, F.; Langarudi, M. S. N.; Daneshvar, N.; Jamasbi, N.; Irankhah-Khanghah, M. M. Preparation and Characterization of [H2-DABCO][ClO4]2 as a New Member of DABCO-Based Ionic Liquids for the Synthesis of Pyrimido[4,5-b]-Quinoline and Pyrimido[4,5-d]Pyrimidine Derivatives. J. Mol. Struct. 2018, 1161, 366–382. DOI: 10.1016/j.molstruc.2018.02.069. (b) Nabinia, N.; Shirini, F.; Tajik, H.; Mashhadinezhad, M.; Langarudi, M. S. N. An Affordable DABCO-Based Ionic Liquid Efficiency in the Synthesis of 3-Amino-1-Aryl-1H-Benzo[f] Chromene-2-Carbonitrile, 1-(Benzothiazolylamino)Phenylmethyl-2-Naphthol, and 1-(Benzoimidazolylamino) Phenylmethyl-2-Naphthol Derivatives. J. Iran. Chem. Soc. 2018, 15, 2147–2157. DOI: 10.1007/s13738-018-1408-x. (c) Shirini, F.; Langarudi, M. S. N.; Goli-Jolodar, O. Synthesis of 2H-Indazolo[2,1-b]Phthalazine-1,6,11(13H)-Triones Using 1,4-Disulfo-1,4-Diazabicyclo[2.2.2]Octane-1,4-Diium Dihydrogen Sulfate {DABCO(HSO3)2(HSO4)2} as a New Ionic Liquid Catalyst. Dye. Pigment 2015, 123, 186–195. DOI: 10.1016/j.dyepig.2015.07.036. (d) Das, S.; Santra, S.; Mondal, P.; Majee, A.; Hajra, A. Zwitterionic Imidazolium Salt: Recent Advances in Organocatalysis. Synthesis 2016, 48, 1269–1285. DOI: 10.1055/s-0035-1561336.
  • (a) Bahekar, S. P.; Sarode, P. B.; Wadekar, M. P.; Chandak, H. S. Simple and Efficient Synthesis of 3,4-Dihydropyrimidin-2(1H)-Thiones Utilizing L-Proline Nitrate as a Proficient, Recyclable and Eco-Friendly Catalyst. J. Saudi Chem. Soc. 2017, 21, 415–419. DOI: 10.1016/j.jscs.2015.09.004. (b) Bahekar, S. P.; Agrawal, N. R.; Sarode, P. B.; Agrawal, A. R.; Chandak, H. S. L-Proline Nitrate: An Amino Acid Ionic Liquid for Green and Efficient Conjugate Addition of Thiols to Sulfonamide Chalcones. Chem. Select 2017, 2, 9326–9329. DOI: 10.1002/slct.201701891.
  • Levina, R. Y.; Velichko, F. K. Advances in the Chemistry of Barbituric Acid. Russ. Chem. Rev. 1960, 29, 437–459. DOI: 10.1070/RC1960v029n08ABEH001245.
  • Singh, P.; Paul, K. A Simple Synthesis of 5-Spirobarbituric Acids and Transformations of Spirocyclopropanobarbiturates to 5-Substituted Barbiturates. Indian J. Chem. Sect. B Org. Med. Chem. 2006, 45, 247–251. DOI: 10.1002/chin.200618154.
  • Morgan, L. R.; Jursic, B. S.; Hooper, C. L.; Neumann, D. M.; Thangaraj, K.; LeBlanc, B. Anticancer Activity for 4,4′-Dihydroxybenzophenone-2,4-Dinitrophenylhydrazone (A-007) Analogues and Their Abilities to Interact with Lymphoendothelial Cell Surface Markers. Bioorganic Med. Chem. Lett. 2002, 12, 3407–3411. DOI: 10.1016/S0960-894X(02)00725-4.
  • Bojarski, J. T.; Mokrosz, J. L.; Bartoń, H. J.; Paluchowska, M. H. Recent Progress in Barbituric Acid Chemistry. Adv. Heterocycl. Chem. 1985, 38, 229–297. DOI: 10.1016/S0065-2725(08)60921-6.
  • Figueroa-Villar, J. D.; Cruz, E. R.; Lucia dos Santos, N. Synthesis of Oxadeazaflavines from Barbituric Acid and Aromatic Aldehydes. Synth. Commun. 1992, 22, 1159–1164. DOI: 10.1080/00397919208021101.
  • Frangin, Y.; Guimbal, C.; Wissocq, F.; Zamarlink, H. Symthesis of Substituted Barbituric Acids via Organozinc Reagents. Synthesis 1986, 12, 1046–1050.
  • Tanaka, K.; Chen, X.; Yoneda, F. Oxidation of Thiol with 5-Arylidene-1,3-Dimethylbarbituric Acid: Application to Synthesis of Unsymmetrical Disulfide1. Tetrahedron 1988, 44, 3241–3249. DOI: 10.1016/S0040-4020(01)85957-3.
  • Khurana, J. M.; Vij, K. Nickel Nanoparticles Catalyzed Knoevenagel Condensation of Aromatic Aldehydes with Barbituric Acids and 2-Thiobarbituric Acids. Catal. Lett. 2010, 138, 104–110. DOI: 10.1007/s10562-010-0376-2.
  • Fattahi, M.; Davoodnia, A.; Pordel, M. Efficient One-Pot Synthesis of Some New Pyrimido[5′,4′:5,6]Pyrido[2,3-d]Pyrimidines Catalyzed by Magnetically Recyclable Fe3O4 Nanoparticles. Russ. J. Gen. Chem. 2017, 87, 863–867. DOI: 10.1134/S1070363217040326.
  • Ziyaei Halimehjani, A.; Barati, V.; Karimi, M. Synthesis of a Novel Tetracationic Acidic Organic Salt Based on DABCO and Its Applications as Catalyst in the Knoevenagel Condensation Reactions in Water. Synth. Commun. 2019, 49, 724–734. DOI: 10.1080/00397911.2019.1570268.
  • Pałasz, A. Three-Component One-Pot Synthesis of Fused Uracils - Pyrano[2,3-d]- Pyrimidine-2,4-Diones. Monatsh. Chem. 2008, 139, 1397–1404. DOI: 10.1007/s00706-008-0935-z.
  • Dieskau, A. P.; Holzwarth, M. S.; Plietker, B. Fe-Catalyzed Allylic C–C-Bond Activation: Vinylcyclopropanes as Versatile A1,A3,D5-Synthons in Traceless Allylic Substitutions and [3 + 2]-Cycloadditions. J. Am. Chem. Soc. 2012, 134, 5048–5051. DOI: 10.1021/ja300294a.
  • Tietze, L. F.; Kettschau, G. Hetero Diels-Alder Reactions in Organic Chemistry. In Stereoselective Heterocyclic Synthesis, Peter Metz, Ed.; Springer: Berlin, Heidelberg, Germany, 1997; Vol. 189, pp 1–120.
  • (a) Aly, H. M.; Kamal, M. M. Efficient One-Pot Preparation of Novel Fused Chromeno[2,3-d]Pyrimidine and Pyrano[2,3-d]Pyrimidine Derivatives. Eur. J. Med. Chem. 2012, 47, 18–23. DOI: 10.1016/j.ejmech.2011.09.040.. . (b) Paliwal, P. K.; Jetti, S. R.; Jain, S. Green Approach towards the Facile Synthesis of Dihydropyrano(c)Chromene and Pyrano[2,3-d]Pyrimidine Derivatives and Their Biological Evaluation. Med. Chem. Res. 2013, 22, 2984–2990. DOI: 10.1007/s00044-012-0288-3. (c) Bedair, A. H.; Emam, H. A.; El-Hady, N. A.; Ahmed, K. A. R.; El-Agrody, A. M. Synthesis and Antimicrobial Activities of Novel Naphtho[2,1-b]Pyran, Pyrano[2,3-d]Pyrimidine and Pyrano[3,2-e][1,2,4]Triazolo[2,3-c]-Pyrimidine Derivatives. Farmaco 2001, 56, 965–973. DOI: 10.1016/S0014-827X(01)01168-5. (d) Daneshvar, N.; Nasiri, M.; Shirzad, M.; Safarpoor Nikoo Langarudi, M.; Shirini, F.; Tajik, H. The Introduction of Two New Imidazole-Based Bis-Dicationic Brönsted Acidic Ionic Liquids and Comparison of Their Catalytic Activity in the Synthesis of Barbituric Acid Derivatives. New J. Chem. 2018, 42, 9744–9756. DOI: 10.1039/C8NJ01179F.
  • Balalaie, S.; Abdolmohammadi, S.; Bijanzadeh, H. R.; Amani, A. M. Diammonium Hydrogen Phosphate as a Versatile and Efficient Catalyst for the One-Pot Synthesis of Pyrano[2,3-d]Pyrimidinone Derivatives in Aqueous Media. Mol. Divers. 2008, 12, 85–91. DOI: 10.1007/s11030-008-9079-7.
  • Ziarani, G. M.; Faramarzi, S.; Asadi, S.; Badiei, A.; Bazl, R.; Amanlou, M. Three-Component Synthesis of Pyrano[2,3-d]-Pyrimidine Dione Derivatives Facilitated by Sulfonic Acid Nanoporous Silica (SBA-Pr-SO3H) and Their Docking and Urease Inhibitory Activity. Daru 2013, 21, 3–13. DOI: 10.1186/2008-2231-21-3.. .
  • Beheshti, S.; Safarifard, V.; Morsali, A. Isoreticular Interpenetrated Pillared-Layer Microporous Metal-Organic Framework as a Highly Effective Catalyst for Three-Component Synthesis of Pyrano[2,3-d]. Pyrimidines. Inorg. Chem. Commun. 2018, 94, 80–84. DOI: 10.1016/j.inoche.2018.06.002.
  • Elinson, M. N.; Ryzhkov, F. V.; Merkulova, V. M.; Ilovaisky, A. I.; Nikishin, G. I. Solvent-Free Multicomponent Assembling of Aldehydes, N,N′-Dialkyl Barbiturates and Malononitrile: Fast and Efficient Approach to Pyrano[2,3-d]Pyrimidines. Heterocycl. Commun. 2014, 20, 281–284. DOI: 10.1515/hc-2014-0114.
  • Khazaei, A.; Ranjbaran, A.; Abbasi, F.; Khazaei, M.; Moosavi-Zare, A. R. Synthesis, Characterization and Application of ZnFe2O4 Nanoparticles as a Heterogeneous Ditopic Catalyst for the Synthesis of Pyrano[2,3-d] Pyrimidines. RSC Adv. 2015, 5, 13643–13647. DOI: 10.1039/C4RA16664G.
  • Zolfigol, M. A.; Ayazi-Nasrabadi, R.; Baghery, S. The First Urea-Based Ionic Liquid-Stabilized Magnetic Nanoparticles: An Efficient Catalyst for the Synthesis of Bis(Indolyl)Methanes and Pyrano[2,3-d]Pyrimidinone Derivatives. Appl. Organometal. Chem. 2016, 30, 273–281. DOI: 10.1002/aoc.3428.
  • Azarifar, D.; Nejat-Yami, R.; Sameri, F.; Akrami, Z. Ultrasonic-Promoted One-Pot Synthesis of 4 H -Chromenes, Pyrano [2, 3- d] Pyrimidines, and 4 H -Pyrano [2, 3-c]. Lett. Organic Chem. 2012, 9, 435–439. DOI: 10.2174/157017812801322435.
  • Maleki, N.; Shakarami, Z.; Jamshidian, S.; Nazari, M. Clean Synthesis of Pyrano[2,3-D]Pyrimidines Using ZnO Nano-Powders. Acta Chem. Iasi. 2016, 24, 20–28. DOI: 10.1515/achi-2016-0002.
  • Patil, P. G.; Sehlangia, S.; More, D. H. Biodegradable Polymeric Catalyst for the Synthesis Amidoalkyl- β -Naphthol’s. Synth. Commun. 2020, 50, 1696–1711. DOI: 10.1080/00397911.2020.1753078.
  • Gholipour, S.; Davoodnia, A.; Moghaddam, M. N. 12-Tungstophosphoric Acid (H3PW12O40): an Efficient and Reusable Catalyst for One-Pot Synthesis of Pyrano[2,3-d]Pyrimidines. Der Pharm. Chem. 2015, 7, 368–372.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.