Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 24
470
Views
2
CrossRef citations to date
0
Altmetric
Articles

A practical synthesis of nucleoside 5′-diphosphates from nucleoside 5′-H-phosphonate monoesters

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3836-3844 | Received 25 Jun 2020, Published online: 03 Sep 2020

References

  • Yegutkin, G. G. Enzymes Involved in Metabolism of Extracellular Nucleotides and Nucleosides: Functional Implications and Measurement of Activities. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 473–497. DOI: 10.3109/10409238.2014.953627.
  • Tozaki-Saitoh, H.; Miyata, H.; Yamashita, T.; Matsushita, K.; Tsuda, M.; Inoue, K. P2Y12 Receptors in Primary Microglia Activate Nuclear Factor of Activated T-Cell Signaling to Induce C-C Chemokine 3 Expression. J. Neurochem. 2017, 141, 100–110. DOI: 10.1111/jnc.13968.
  • Woyda-Ploszczyca, A. M.; Jarmuszkiewicz, W. Different Effects of Guanine Nucleotides (GDP and GTP) on Protein-Mediated Mitochondrial Proton Leak. PLoS One. 2014, 9, e98969DOI: 10.1371/journal.pone.0098969.
  • Cramer, F.; Schaller, H.; Staab, H. A. Zur Chemie Der Energiereichen Phosphate. 11. Darstellung Von Imidazoliden Der Phosphorsaure. Chem. Ber. 1961, 94, 1612–1621. DOI: 10.1002/cber.19610940627.
  • Kore, A. R.; Parmar, G. Convenient Synthesis of Nucleoside-5′-Diphosphates from the Corresponding Ribonucleoside-5′-Phosphoroimidazole. Synth. Commun. 2006, 36, 3393–3399. DOI: 10.1080/00397910600941448.
  • Warnecke, S.; Meier, C. Synthesis of Nucleoside Di- and Triphosphates and Dinucleoside Polyphosphates with cycloSal-Nucleotides. J. Org. Chem. 2009, 74, 3024–3030. DOI: 10.1021/jo802348h.
  • Cremosnik, G. S.; Hofer, A.; Jessen, H. J. Iterative Synthesis of Nucleoside Oligophosphates with Phosphoramidites. Angew. Chem. Int. Ed. Engl. 2014, 53, 286–289. DOI: 10.1002/anie.201306265.
  • Hofer, A.; Cremosnik, G. S.; Muller, A. C.; Giambruno, R.; Trefzer, C.; Superti-Furga, G.; Bennett, K. L.; Jessen, H. J. A Modular Synthesis of Modified Phosphoanhydrides. Chemistry 2015, 21, 10116–10122. DOI: 10.1002/chem.201500838.
  • Xu, Z. A Review on the Chemical Synthesis of Pyrophosphate Bonds in Bioactive Nucleoside Diphosphate analogs. Bioorg. Med. Chem. Lett. 2015, 25, 3777–3783. DOI: 10.1016/j.bmcl.2015.06.094.
  • Wagner, G. K.; Pesnot, T.; Field, R. A. A Survey of Chemical Methods for Sugar-Nucleotide Synthesis. Nat. Prod. Rep. 2009, 26, 1172–1194. DOI: 10.1039/b909621n.
  • Roy, B.; Depaix, A.; Perigaud, C.; Peyrottes, S. Recent Trends in Nucleotide Synthesis. Chem. Rev. 2016, 116, 7854–7897. DOI: 10.1021/acs.chemrev.6b00174.
  • Depaix, A.; Peyrottes, S.; Roy, B. One-Pot Synthesis of Nucleotides and Conjugates in Aqueous Medium. Eur. J. Org. Chem. 2017, 2017, 241–245. DOI: 10.1002/ejoc.201601299.
  • Appy, L.; Depaix, A.; Bantreil, X.; Lamaty, F.; Peyrottes, S.; Roy, B. Straightforward Ball-Milling Access to Dinucleoside 5′,5′-Polyphosphates via Phosphorimidazolide Intermediates. Chemistry 2019, 25, 2477–2481. DOI: 10.1002/chem.201805924.
  • Romanowska, J.; Szymanska-Michalak, A.; Pietkiewicz, M.; Sobkowski, M.; Boryski, J.; Stawinski, J.; Kraszewski, A. A New, Efficient Entry to Non-Lipophilic H-Phosphonate Monoesters – Preparation of anti-HIV Nucleotide Analogues. Loc. 2009, 6, 496–499. DOI: 10.2174/157017809789124821.
  • Bollmark, M.; Stawiński, J. A Facile Access to Nucleoside Phosphorofluoridate, Nucleoside Phosphorofluoridothioate, and Nucleoside Phosphorofluoridodithioate Monoesters. Tetrahedron Lett. 1996, 37, 5739–5742. DOI: 10.1016/0040-4039(96)01171-9.
  • Sun, Q.; Edathil, J. P.; Wu, R.; Smidansky, E. D.; Cameron, C. E.; Peterson, B. R. One-Pot Synthesis of Nucleoside 5′-Triphosphates from Nucleoside 5′-H-Phosphonates. Org. Lett. 2008, 10, 1703–1706. DOI: 10.1021/ol8003029.
  • Sun, Q.; Liu, S.; Sun, J.; Gong, S.; Xiao, Q.; Shen, L. One-Pot Synthesis of Symmetrical P1,P2-Dinucleoside-5’-Diphosphates from Nucleoside-5′-H-Phosphonates: mechanistic Insights into Reaction Path. Tetrahedron Lett. 2013, 54, 3842–3845. DOI: 10.1016/j.tetlet.2013.05.040.
  • Kolodziej, K.; Romanowska, J.; Stawinski, J.; Kraszewski, A.; Sobkowski, M. The Case of Triethylammonium Cation Loss during Purification of Certain Nucleotide Analogues: A Cautionary Note. Anal. Bioanal. Chem. 2015, 407, 1775–1780. DOI: 10.1007/s00216-014-8397-0.
  • Jankowska, J.; Sobkowska, A.; Cieślak, J.; Sobkowski, M.; Kraszewski, A.; Stawiński, J.; Shugar, D. Nucleoside H-Phosphonates. 18. Synthesis of Unprotected Nucleoside 5′-H-Phosphonates and Nucleoside 5′-H-Phosphonothioates and Their Conversion into the 5′-Phosphorothioate and 5′-Phosphorodithioate Monoesters. J. Org. Chem. 1998, 63, 8150–8156. DOI: 10.1021/jo980491u.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.