Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 51, 2021 - Issue 1
493
Views
10
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

Recent synthetic methodologies for the tricyclic fused-quinoline derivatives

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 13-36 | Received 13 Jul 2020, Published online: 08 Sep 2020

References

  • Keri, R. S.; Patil, S. A. Quinoline: A Promising Antitubercular Target. Biomed. Pharmacother. 2014, 68, 1161–1175. DOI: 10.1016/j.biopha.2014.10.007.
  • Michael, J. P. Quinoline, Quinazoline and Acridone Alkaloids. Nat. Prod. Rep. 2008, 25, 166–187. DOI: 10.1039/B612168N.
  • Mphahlele, M. J.; Lesenyeho, L. G. Halogenated Quinolines as Substrates for the Palladium‐Catalyzed Cross‐Coupling Reactions to Afford Substituted Quinolines. J. Hetercyclic. Chem. 2013, 50, 1–16. DOI: 10.1002/jhet.932.
  • Richards, D. M.; Monk, J. P.; Price, A.; Benfield, P.; Todd, P. A.; Ward, A. Ciprofloxacin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 1988, 35, 373–447. DOI: 10.2165/00003495-198835040-00003.
  • Raynes, K.; Foley, M.; Tilley, L.; Deady, L. W. Novel Bisquinoline Antimalarials: Synthesis, Antimalarial Activity and Inhibition of Haem Polymerisation. Biochem. Pharmacol. 1996, 52, 551–559. DOI: 10.1016/0006-2952(96)00306-1.
  • Chibale, K.; Moss, J. R.; Blackie, M.; Schalkwyk, D. V.; Smith, P. J. New Amine and Urea Analogs of Ferrochloroquine: Synthesis, Antimalarial Activity in Vitro and Electrochemical Studies. Tetrahedron Lett. 2000, 41, 6231–6235. DOI: 10.1016/S0040-4039(00)01036-4.
  • Mahajan, A.; Yeh, S.; Nell, M.; Rensburg, C. E.; Chibale, K. Synthesis of New 7-Chloroquinolinyl Thioureas and Their Biological Investigation as Potential Antimalarial and Anticancer Agents. Bioorg. Med. Chem. Lett. 2007, 17, 5683–5685. DOI: 10.1016/j.bmcl.2007.07.049.
  • Madapa, S.; Tusi, Z.; Sridhar, D.; Kumar, A.; Siddiqi, M. I.; Srivastava, K.; Rizvi, A.; Tripathi, R.; Puri, S. K.; Keshava, G. S.; et al. Search for New Pharmacophores for Antimalarial Activity. Part I: Synthesis and Antimalarial Activity of New 2-Methyl-6-Ureido-4-Quinolinamides. Bioorg. Med. Chem. 2009, 17, 203–221. DOI: 10.1016/j.bmc.2008.11.021.
  • Chen, Y. L.; Zhao, Y. L.; Lu, C. M.; Tzeng, C. C.; Wang, J. P. Synthesis, Cytotoxicity, and anti-inflammatory evaluation of 2-(furan-2-yl)-4-(phenoxy)quinoline derivatives. Part 4. Bioorg. Med. Chem. 2006, 14, 4373–4378. DOI: 10.1016/j.bmc.2006.02.039.
  • Ma, X.; Zhou, W.; Brun, R. Synthesis, in Vitro Antitrypanosomal and Antibacterial Activity of Phenoxy, Phenylthio or Benzyloxy Substituted Quinolones. Bioorg. Med. Chem. Lett. 2009, 19, 986–989. DOI: 10.1016/j.bmcl.2008.11.078.
  • Gholap, A. R.; Toti, K. S.; Shirazi, F.; Kumari, R.; Bhat, M. K.; Deshpande, M. V.; Srinivasan, K. V. Synthesis and Evaluation of Antifungal Properties of a Series of the Novel 2-Amino-5-oxo-4-phenyl-5,6,7,8-tetrahydroquinoline-3-carbonitrile and its analogues. Bioorg. Med. Chem. 2007, 15, 6705–6715. DOI: 10.1016/j.bmc.2007.08.009.
  • Ghosh, J.; Swarup, V.; Saxena, A.; Das, S.; Hazra, A.; Paira, P.; Banerjee, S.; Mondal, N. B.; Basu, A. Therapeutic Effect of a Novel Anilidoquinoline Derivative, 2-(2-Methyl-Quinoline-4ylamino)-N-(2-Chlorophenyl)-Acetamide, in Japanese Encephalitis: Correlation with in Vitro Neuroprotection. Int. J. Antimicrob. Agents 2008, 32, 349–354. DOI: 10.1016/j.ijantimicag.2008.05.001.
  • Puskullu, M. O.; Tekiner, B.; Suzen, S. Recent Studies of Antioxidant Quinoline Derivatives. Mini Rev. Med. Chem. 2013, 13, 365–372. DOI: 10.2174/138955713804999793.
  • Fournet, A.; Barrios, A. A.; Munoz, V.; Hocquemiller, R.; Cavé, A.; Bruneton, J. 2-Substituted Quinoline Alkaloids as Potential Antileishmanial Drugs. Antimicrob. Agents Chemother. 1993, 37, 859–863. DOI: 10.1128/AAC.37.4.859.
  • Afzal, O.; Kumar, S.; Haider, M. R.; Ali, M. R.; Kumar, R.; Jaggi, M.; Bawa, S. A Review on Anticancer Potential of Bioactive Heterocycle Quinoline. Eur. J. Med. Chem. 2015, 97, 871–910. DOI: 10.1016/j.ejmech.2014.07.044.
  • Musiol, R. Quinoline-Based HIV Integrase Inhibitors. Curr. Pharm. Des. 2013, 19, 1835–1849. DOI: 10.2174/1381612811319100008.
  • Abadi, A. H.; Hegazy, G. H.; El-Zaher, A. A. Synthesis of Novel 4-Substituted-7-Trifluoromethylquinoline Derivatives with Nitric Oxide Releasing Properties and Their Evaluation as Analgesic and anti-Inflammatory Agents. Bioorg. Med. Chem. 2005, 13, 5759–5765. DOI: 10.1016/j.bmc.2005.05.053.
  • Rossiter, S.; Peron, J. M.; Whitfield, P. J.; Jones, K. Synthesis and Anthelmintic Properties of Arylquinolines with Activity against Drug-Resistant Nematodes. Bioorg. Med. Chem. Lett. 2005, 15, 4806–4808. DOI: 10.1016/j.bmcl.2005.07.044.
  • Bernotas, R. C.; Singhaus, R. R.; Kaufman, D. H.; Ullrich, J.; Fletcher, H.; III, Quinet, E.; Nambi, P.; Unwalla, R.; Wilhelmsson, A.; Nilsson, A. G.; et al. Biarylether Amide Quinolines as Liver X Receptor Agonists. Bioorg. Med. Chem. 2009, 17, 1663–1670. DOI: 10.1016/j.bmc.2008.12.048.
  • Edmont, D.; Rocher, R.; Plisson, C.; Chenault, J. Synthesis and Evaluation of Quinoline Carboxyguanidines as Antidiabetic Agents. Bioorg. Med. Chem. Lett. 2000, 10, 1831–1834. DOI: 10.1016/S0960-894X(00)00354-1.
  • Shiro, T.; Fukaya, T.; Tobe, M. The Chemistry and Biological Activity of Heterocycle-Fused Quinolinone Derivatives: A Review. Eur. J. Med. Chem. 2015, 97, 397–408. DOI: 10.1016/j.ejmech.2014.12.004.
  • Arlin, Z. A. A Special Role for Amsacrine in the Treatment of Acute Leukemia. Cancer Invest. 1989, 7, 607–609. DOI: 10.3109/07357908909017537.
  • Su, T. S.; Chou, T.; Kim, J. Y.; Huang, J.; Ciszewska, G.; Ren, W.; Otter, G.; Sirotnak, F.; Watanabe, K. 9-Substituted Acridine Derivatives with Long Half-Life and Potent Antitumor Activity: Synthesis and Structure-Activity Relationships. J. Med. Chem. 1995, 38, 3226–3235. DOI: 10.1021/jm00017a006.
  • Kaur, K.; Jain, M.; Reddy, R. P.; Jain, R. Quinolines and Structurally Related Heterocycles as Antimalarials. Eur. J. Med. Chem. 2010, 45, 3245–3264. DOI: 10.1016/j.ejmech.2010.04.011.
  • Miller, R. L.; Gerster, J. F.; Owens, M. L.; Slade, H. B.; Tomai, M. O. Review Article Imiquimod Applied Topically: A Novel Immune Response Modifier and New Class of Drug. Int. J. Immunopharmacol. 1999, 21, 1–14. DOI: 10.1016/S0192-0561(98)00068-X.
  • Yang, Z. D.; Zhang, D. B.; Ren, J.; Yang, M. J. Skimmianine, a Furoquinoline Alkaloid from Zanthoxylum Nitidum as a Potential Acetylcholinesterase Inhibitor. Med. Chem. Res. 2012, 21, 722–725. DOI: 10.1007/s00044-011-9581-9.
  • Jasinski, P.; Welsh, B.; Galvez, J.; Land, D.; Zwolak, P.; Ghandi, L.; Terai, K.; Dudek, A. Z. A Novel Quinoline, Mt477: Suppresses Cell Signalling through Ras Molecular Pathway, Inhibits Pkc Activity, and Demonstrates in Vivo Antitumor Activity against Human Carcinoma Cell Lines. Invest. New Drugs 2008, 26, 223–232. DOI: 10.1007/s10637-007-9096-x.
  • Chu, D. T. W.; Claiborne, A. K. Short Syntheses of 1,2,3,5‐Tetrahydro‐5-Oxopyrrolo‐[1,2‐A] Quinoline‐4‐Carboxylic Acid and 1,2,3,4‐Tetrahydro‐6H‐6‐Oxopyrido[1,2‐a] Quinoline‐5‐Carboxylic Acid Derivatives. J. Heterocycl. Chem. 1987, 24, 1537–1539. DOI: 10.1002/jhet.5570240608.
  • Ikuma, Y.; Hochigai, H.; Kimura, H.; Nunami, N.; Kobayashi, T.; Uchiyama, K.; Furuta, Y.; Sakai, M.; Horiguchi, M.; Masui, Y.; et al. Discovery of 3H-Imidazo[4,5-c]Quinolin-4(5H)-Ones as Potent and Selective Dipeptidyl Peptidase IV (DPP-4) Inhibitors. Bioorg. Med. Chem. 2012, 20, 5864–5883. DOI: 10.1016/j.bmc.2012.07.046.
  • Reddy, B. S.; Reddy, S. G.; Durgaprasad, M.; Bhadra, M. P.; Sridhar, B. Domino Prins/Pinacol Reaction for the Stereoselective Synthesis of Spiro[pyran-4,4'-quinoline]-2',3'-dione Derivatives. Org. Biomol. Chem. 2015, 13, 8729–8733. DOI: 10.1039/C5OB01077B.
  • Moon, H. R.; Kim, S. Y.; Lim, J. W.; Kim, J. N. An Expedient Synthesis of Pyrrolo [3,2,1-ij]Quinoline-1,2-Diones via Intramolecular Friedel-Crafts Cyclization Protocol. Bull. Korean Chem. Soc. 2015, 36, 2773–2776. DOI: 10.1002/bkcs.10539.
  • Rao, M. S.; Haritha, M.; Chandrasekhar, N.; Rao, M. V. B.; Pal, M. Ultrasound Mediated Synthesis of 6-Substituted 2,3-Dihydro-1H-Pyrrolo[3,2,1-ij]Quinoline Derivatives and Their Pharmacological Evaluation. Arab. J. Chem. 2019, 12, 2697–2703. DOI: 10.1016/j.arabjc.2015.05.013.
  • Huo, C.; Chen, F.; Quan, Z.; Dong, J.; Wang, Y. Cobalt-Catalyzed Aerobic Oxidative Povarov Reaction of Tertiary Anilines with Dihydrofuran for the Synthesis of Hexahydrofuroquinolines. Tetrahedron Lett. 2016, 57, 5127–5131. DOI: 10.1016/j.tetlet.2016.10.031.
  • Asthana, M.; Singh, J. B.; Singh, R. M. FeCl3⋅6H2O-Catalyzed Facile and Efficient Synthesis of Pyrano[4,3-b]Quinolines and Isochromenes. Tetrahedron Lett. 2016, 57, 615–618. DOI: 10.1016/j.tetlet.2015.12.102.
  • Biswas, A.; Karmakar, U.; Pal, A.; Samanta, R. Copper-Catalyzed Regioselective Cascade Alkylation and Cyclocondensation of Quinoline N-Oxides with Diazo Esters: Direct Access to Conjugated π-Systems. Chemistry 2016, 22, 13826–13830. DOI: 10.1002/chem.201602493.
  • Eghtedari, M.; Sarrafi, Y.; Nadri, H.; Mahdavi, M.; Moradi, A.; Moghadam, F. H.; Emami, S.; Firoozpour, L.; Asadipour, A.; Sabzevari, O.; Foroumadi, A. New Tacrine-Derived AChE/BuChE Inhibitors: Synthesis and Biological Evaluation of 5-Amino-2-phenyl-4H-pyrano[2,3-b]quinoline-3-carboxylates. Eur. J. Med. Chem. 2017, 128, 237–246. DOI: 10.1016/j.ejmech.2017.01.042.
  • Wang, B.; Li, Q.; Shi, W.; Chen, L.; Sun, J. Design, Synthesis, and Cytotoxic Evaluation of Novel Furo[2,3-b]quinoline derivatives. Chem. Biol. Drug Des. 2018, 91, 957–961. DOI: 10.1111/cbdd.13154.
  • Marjani, A. P.; Khalafy, J.; Farajollahi, A. Synthesis of Ethyl 2‐Amino‐4‐Benzoyl‐5‐Oxo‐5,6‐Dihydro‐4H‐Pyrano[3,2‐c]Quinoline‐3‐Carboxylates by a One‐Pot, Three‐Component Reaction in the Presence of TPAB. J. Heterocyclic Chem. 2019, 56, 268–274. DOI: 10.1002/jhet.3404.
  • Akula, M.; Yogeeswari, P.; Sriram, D.; Jha, M.; Bhattacharya, A. Synthesis and anti-Tubercular Activity of Fused Thieno-/Furo-Quinoline Compounds. RSC Adv. 2016, 6, 46073–46080. DOI: 10.1039/C6RA03187K.
  • Bogza, Y. P.; Rastrepin, A. A.; Nider, V. V.; Zheleznova, T. Y.; Stasyuk, A. J.; Kurowska, A.; Laba, K.; Ulyankin, E. B.; Domagala, W.; Fisyuk, A. S. Synthesis and Optical Properties of 2-Functionally Substituted 4,5-Dihydrothieno[3,2-c]Quinolines. Dyes Pigm. 2018, 159, 419–428. DOI: 10.1016/j.dyepig.2018.06.031.
  • Almansour, A. I.; Arumugam, N.; Kumar, R. S.; Menéndez, J. C.; Ghabbour, H. A.; Fun, H. K.; Kumar, R. R. Straightforward Synthesis of Pyrrolo[3,4-b]Quinolines through Intramolecular Povarov Reactions. Tetrahedron Lett. 2015, 56, 6900–6903. DOI: 10.1016/j.tetlet.2015.10.107.
  • Asthana, M.; Kumar, R.; Gupta, T.; Singh, R. M. Facile Synthesis of Functionalized 1H-Pyrrolo[2,3-b]Quinolines via Ugi Four-Component Reaction Followed by Cu-Catalyzed Aryl-Amide, C–N Bond Coupling. Tetrahedron Lett. 2015, 56, 907–912. DOI: 10.1016/j.tetlet.2014.12.140.
  • Prakash, K. S.; Nagarajan, R. Copper-Catalyzed Heteroannulation: A Simple Route to the Synthesis of Pyrrolo[2,3-b]Carbazole and Pyrrolo[2,3-b]Quinoline Derivatives. Tetrahedron Lett. 2015, 56, 69–72. DOI: 10.1016/j.tetlet.2014.10.070.
  • Yu, F. C.; Zhou, B.; Xu, H.; Li, Y. M.; Lin, J.; Yan, S. J.; Shen, Y. Three-Component Synthesis of Functionalized Pyrrolo[3,4-c]Quinolin-1-Ones by an Unusual Reductive Cascade Reaction. Tetrahedron Lett. 2015, 71, 1036–1044. DOI: 10.1016/j.tet.2014.12.100.
  • Patel, B.; Hilton, S. T. A Radical-Mediated Approach to the Total Synthesis of Fluorinated Marinoquinoline a and Related Tricyclic and Tetracyclic Congeners. Synlett 2014, 26, 79–83. DOI: 10.1055/s-0034-1378614.
  • Yamaoka, Y.; Yoshida, T.; Shinozaki, M.; Yamada, K.; Takasu, K. Development of a Brønsted Acid-Promoted Arene-ynamide Cyclization Toward the Total Syntheses of Marinoquinolines A and C and Aplidiopsamine A. J. Org. Chem. 2015, 80, 957–964. DOI: 10.1021/jo502467m.
  • Cai, J.; Li, F.; Deng, G. J.; Ji, X.; Huang, H. The Cyclopropylimine Rearrangement/Povarov Reaction Cascade for the Assembly of Pyrrolo[3,2-c]Quinoline Derivatives. Green Chem. 2016, 18, 3503–3506. DOI: 10.1039/C6GC00779A.
  • Yan, X.; Zhang, Z.; Zhang, G.; Ma, N.; Liu, Q.; Liu, T.; Shi, L. Copper (I)-Catalyzed Amidation and Successive Oxidation of Benzylic C(sp3)–H Bond: Synthesis of 1H-Pyrrolo[3,4-b]Quinoline-1,3(2H)-Diones. Tetrahedron 2016, 72, 4245–4251. DOI: 10.1016/j.tet.2016.05.059.
  • Zhao, H.; Xing, Y.; Lu, P.; Wang, Y. Synthesis of 2,3-Disubstituted Quinolines via Ketenimine or Carbodiimide Intermediates. Chemistry 2016, 22, 15144–15150. DOI: 10.1002/chem.201603074.
  • Bao, L.; Liu, J.; Xu, L.; Hu, Z.; Xu, X. Divergent Synthesis of Quinoline Derivatives via [5 + 1] Annulation of 2‐Isocyanochalcones with Nitroalkanes. Adv. Synth. Catal. 2018, 360, 1870–1875. 2018, DOI: 10.1002/adsc.201800152.
  • Men, Y.; Dong, J.; Wang, S.; Xu, X. Bicyclization of Azomethine Ylide: Access to Highly Functionalized 3H-Pyrrolo[2,3-c]quinolines. Org. Lett. 2017, 19, 6712–6715. DOI: 10.1021/acs.orglett.7b03434.
  • Dong, J.; Wang, X.; Shi, H.; Wang, L.; Hu, Z.; Li, Y.; Xu, X. Tandem Cyclization-Annulation of α‐Acidic Isocyanides with 2‐Methyleneaminochalcones: Synthesis of Pyrrolo[2, 3‐c]Quinoline Derivatives. Adv. Synth. Catal. 2019, 361, 863–867. DOI: 10.1002/adsc.201801103.
  • Choi, J. H.; Park, C. M. Three‐Component Synthesis of Quinolines Based on Radical Cascade Visible‐Light Photoredox Catalysis. Adv. Synth. Catal. 2018, 360, 3553–3562. DOI: 10.1002/adsc.201800734.
  • Wang, B. Q.; Zhang, C. H.; Tian, X. X.; Lin, J.; Yan, S. J. Cascade Reaction of Isatins with 1,1-Enediamines: Synthesis of Multisubstituted Quinoline-4-Carboxamides. Org. Lett. 2018, 20, 660–663. DOI: 10.1021/acs.orglett.7b03803.
  • Zou, F.; Pei, F.; Wang, L.; Ren, Z.; Cheng, X.; Sun, Y.; Wu, J.; He, P. Synthesis of 3H-Pyrrolo[2,3-c]Quinoline by Sequential I2-Promoted Cyclization/Staudinger/Aza-Wittig/Dehydroaromatization Reaction. Synlett 2019, 30, 717–720. DOI: 10.1055/s-0037-1610688.
  • Chen, L.; Huang, R.; Kong, L. B.; Lin, J.; Yan, S. J. Facile Route to the Synthesis of 1,3-Diazahetero-Cycle-Fused [1,2-a]Quinoline Derivatives via Cascade Reactions. ACS Omega. 2018, 3, 1126–1136. DOI: 10.1021/acsomega.7b01856.
  • Ramanathan, D.; Pitchumani, K. Copper(I)-Y Zeolite-Catalyzed Regio- and Stereoselective [2 + 2 + 2] Cyclotrimerization Cascade: An Atom- and Step-Economical Synthesis of Pyrimido[1,6-a]quinoline. J. Org. Chem. 2015, 80, 10299–10308. DOI: 10.1021/acs.joc.5b01896.
  • Soleimani‐Amiri, S.; Hossaini, Z.; Arabkhazaeli, M.; Karami, H.; Afshari Sharif Abad, S. Afshari Sharif Abad, S. Green Synthesis of Pyrimido‐Isoquinolines and Pyrimido‐Quinoline Using ZnO Nanorods as an Efficient Catalyst: Study of Antioxidant Activity. J. Chin. Chem. Soc. 2019, 66, 438–445. DOI: 10.1002/jccs.201800199.
  • Li, L.; Wang, H.; Yang, X.; Kong, L.; Wang, F.; Li, X. Rhodium-Catalyzed Oxidative Synthesis of Quinoline-Fused Sydnones via 2-fold C-H Bond Activation. J. Org. Chem. 2016, 81, 12038–12045. DOI: 10.1021/acs.joc.6b02356.
  • Schrader, T. O.; Kasem, M.; Sun, Q.; Wu, C.; Ren, A.; Semple, G. Complementary Asymmetric Routes to Fused Tricyclic (R)-2,3,4,4a,5,6-hexahydro-1H-pyrazino[1,2-a] Quinolines and (R)-1,2,3,4,5,5a,6,7-octahydro-[1,4]diazepino[1,2-a]quinolines. Tetrahedron Lett. 2016, 57, 4730–4733. DOI: 10.1016/j.tetlet.2016.09.025.
  • Alizadeh, A.; Moafi, L.; Ghanbaripour, R.; Abadi, M. H.; Zhu, Z.; Kubicki, M. A New Route for the Synthesis of 1,3,4-Trisubstituted Pyrazolo [4,3-c]Quinolines via a Multicomponent Reaction. Tetrahedron Lett. 2015, 71, 3495–3499. DOI: 10.1016/j.tet.2015.03.062.
  • Ladani, G. G.; Patel, M. P. Regioselective One-Pot Three-Component Synthesis of Quinoline Based 1,2,4-Triazolo[1,5-a]Quinoline Derivatives. RSC Adv. 2015, 5, 76943–76948. DOI: 10.1039/C5RA15560F.
  • Briguglio, I.; Loddo, R.; Laurini, E.; Fermeglia, M.; Piras, S.; Corona, P.; Giunchedi, P.; Gavini, E.; Sanna, G.; Giliberti, G.; et al. Synthesis, Cytotoxicity and Antiviral Evaluation of New Series of Imidazo[4,5-g]quinoline and pyrido[2,3-g]quinoxalinone Derivatives. Eur. J. Med. Chem. 2015, 105, 63–79. DOI: 10.1016/j.ejmech.2015.10.002.
  • Thigulla, Y.; Akula, M.; Trivedi, P.; Ghosh, B.; Jha, M.; Bhattacharya, A. Synthesis and Anti-cancer Activity of 1,4-Disubstituted Imidazo[4,5-c]quinolines. Org. Biomol. Chem. 2016, 14, 876–883. DOI: 10.1039/C5OB01650A.
  • Larson, P.; Kucaba, T. A.; Xiong, Z.; Olin, M.; Griffith, T. S.; Ferguson, D. M. Design and Synthesis of N1-Modified Imidazoquinoline Agonists for Selective Activation of Toll-like Receptors 7 and 8. ACS Med. Chem. Lett. 2017, 8, 1148–1152. DOI: 10.1021/acsmedchemlett.7b00256.
  • Guan, Z. R.; Liu, Z. M.; Ding, M. W. New Efficient Synthesis of 1H-Imidazo-[4,5-c] Quinolines by a Sequential Van Leusen/Staudinger/aza-Wittig/Carbodiimide-Mediated Cyclization. Tetrahedron 2018, 74, 7186–7192. DOI: 10.1016/j.tet.2018.10.052.
  • Rivilli, M. J. L.; Turina, A. V.; Bignante, E. A.; Molina, V. H.; Perillo, M. A.; Briñon, M. C.; Moyano, E. L. Synthesis and Pharmacological Evaluation of Pyrazolo[4,3-c]quinolinones as High Affinity GABAA-R Ligands and Potential Anxiolytics. Bioorg. Med. Chem. 2018, 26, 3967–3974. DOI: 10.1016/j.bmc.2018.06.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.