Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 51, 2021 - Issue 2
378
Views
4
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

A green perspective: Synthesis of 2-chloro-3-formylquinolines and its derivatives

, &
Pages 163-190 | Received 21 Jul 2020, Published online: 25 Sep 2020

References

  • Dömling, A. Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry†. Chem. Rev. 2006, 106, 17–89. DOI: 10.1021/cr0505728.
  • Ghanei, S.; Lari, J.; Eshghi, H.; Saadatmandzadeh, M. Synthesis and Docking Analysis of New Heterocyclic System N1, N4-Bis (2-Chloroquinolin-3-yl) Methylene) Benzene-1, 4-Diamine as Potential Human AKT1 Inhibitor. Iran. J. Pharm. Res. 2016, 15, 321–327.
  • Rajakumar, P.; Raja, R.; Selvam, S.; Rengasamy, R.; Nagaraj, S. Synthesis and Antibacterial Activity of Some Novel Imidazole-Based Dicationic Quinolinophanes. Bioorg. Med. Chem. Lett. 2009, 19, 3466–3470. DOI: 10.1016/j.bmcl.2009.05.019.
  • Rajakumar, P.; Raja, R. Synthesis and Photophysical Properties of Chiral Dendrimers with Quinoline Surface Group via Click Chemistry. Tetrahedron Lett. 2010, 51, 4365–4370. DOI: 10.1016/j.tetlet.2010.06.059.
  • Radini, I.; Elsheikh, T.; El-Telbani, E.; Khidre, R. New Potential Antimalarial Agents: Design, Synthesis and Biological Evaluation of Some Novel Quinoline Derivatives as Antimalarial Agents. Molecules. 2016, 21, 909. DOI: 10.3390/molecules21070909.
  • Fernández-Galleguillos, C.; Saavedra, L. A.; Gutierrez, M. Synthesis of New 3-(2-Chloroquinolin-3-yl)-5-Phenylisoxazole Derivatives via Click-Chemistry Approach. J. Braz. Chem. Soc. 2014, 25, 365–371.  DOI: 10.5935/0103-5053.20140002.
  • Jin, S.-E.; Jin, H.-E.; Hong, S.-S. Targeted Delivery System of Nanobiomaterials in Anticancer Therapy: From Cells to Clinics. BioMed Res. Int. 2014, 2014, 1–23. DOI: 10.1155/2014/814208.
  • Musiol, R.; Jampilek, J.; Buchta, V.; Silva, L.; Niedbala, H.; Podeszwa, B.; Palka, A.; Majerz-Maniecka, K.; Oleksyn, B.; Polanski, J.; et al. Antifungal Properties of New Series of Quinoline Derivatives. Bioorg. Med. Chem. 2006, 14, 3592–3598. DOI: 10.1016/j.bmc.2006.01.016.
  • Rossiter, S.; Péron, J.-M.; Whitfield, P. J.; Jones, K. Synthesis and Anthelmintic Properties of Arylquinolines with Activity against Drug-Resistant Nematodes. Bioorg. Med. Chem. Lett. 2005, 15, 4806–4808. DOI: 10.1016/j.bmcl.2005.07.044.
  • Busch, F. W.; Tillmann, A.; Becker, E. W.; Owsianowski, M.; Berg, P. A. The Inhibitory Effects of a Positive Inotropic Quinolinone Derivative, 3,4-Dihydro-6-[4-(3,4-Dimethoxybenzoyl)-1-Piperazinyl]-2(1H)-Quinolinone (OPC-8212), on Bone-Marrow Progenitor Cells and Peripheral Lymphocytes. Eur. J. Clin. Pharmacol. 1992, 42, 629–633. DOI: 10.1007/BF00265927.
  • Muruganantham, N.; Sivakumar, R.; Anbalagan, N.; Gunasekaran, V.; Leonard, J. T. Synthesis, Anticonvulsant and Antihypertensive Activities of 8-Substituted Quinoline Derivatives. Biol. Pharm. Bull. 2004, 27, 1683–1687. DOI: 10.1248/bpb.27.1683.
  • Marella, A.; Tanwar, O. P.; Saha, R.; Ali, M. R.; Srivastava, S.; Akhter, M.; Shaquiquzzaman, M.; Alam, M. M. Quinoline: A Versatile Heterocyclic. Saudi Pharm. J. 2013, 21, 1–12. DOI: 10.1016/j.jsps.2012.03.002.
  • Solomon, V. R.; Lee, H. Quinoline as a Privileged Scaffold in Cancer Drug Discovery. Curr. Med. Chem. 2011, 18, 1488–1508. DOI: 10.2174/092986711795328382.
  • Abdel-Wahab, B. F.; Khidre, R. E. 2-Chloroquinoline-3-Carbaldehyde II: Synthesis, Reactions, and Applications. J. Chem. 2013, 2013, 1–13. DOI: 10.1155/2013/851297.
  • Bhovi, V. K.; Bodke, Y. D.; Biradar, S.; Swamy, B. E. K.; Umesh, S. A Facile Synthesis of Bromo-Substituted Benzofuran Containing Thiazolidinone Nucleus Bridged with Quinoline Derivatives: Potent Analgesic and Antimicrobial Agents. Phosp. Sulfur Silicon Related Elem. 2009, 185, 110–116. DOI: 10.1080/10426500902717317.
  • Bhojya Naik, H. S.; Ramesha, M. S.; Swetha, B. V.; Roopa, T. R. A Facile Synthesis of Novel 9-Methyl[1,2,3]Selenadiazoles[4,5-b] Quinoline and 9-Methyl[1,2,3]Thiadiazole[4,5-b] Quinoline as a New Class of Antimicrobial Agents. Phosp. Sulfur Silicon Related Elem. 2006, 181, 533–541. DOI: 10.1080/10426500500267590.
  • Kategaonkar, A. H.; Sonar, S. S.; Sapkal, S. B.; Gawali, V. U.; Shingate, B. B.; Shingare, M. S. Synthesis and in Vitro Antimicrobial Activity of New α-Aminophosphonates via Tetrazolo [1,5-a] Quinoline Derivatives. Phosp. Sulfur Silicon Related Elem. 2010, 185, 2113–2121. DOI: 10.1080/10426500903530867.
  • Keshk, E. M.; El-Desoky, S. I.; Hammouda, M. A. A.; Abdel-Rahman, A. H.; Hegazi, A. G. Synthesis and Reactions of Some New Quinoline Thiosemicarbazide Derivatives of Potential Biological Activity. Phosp. Sulfur Silicon Related Elem. 2008, 183, 1323–1343. DOI: 10.1080/10426500701641304.
  • Loupy, A.; Varma, R. S. Microwave Effects in Organic Synthesis: Mechanistic and Reaction Medium Considerations. ChemInform. 2007, 38, 20. DOI: 10.1002/chin.200720275.
  • Kingston, H. M.; Haswell, S. J., Eds. Microwave-Enhanced Chemistry: Fundamentals, Sample Preparation, and Applications; American Chemical Society: Washington, DC, 1997.
  • Kappe, C. O.; Stadler, A.; Dallinger, D. Microwaves in Organic and Medicinal Chemistry; Wiley-VCH-Verl: Weinheim, Germany, 2012.
  • Vilsmeier, A.; Haack, A. Über Die Einwirkung Von Halogenphosphor Auf Alkyl-Formanilide. Eine Neue Methode Zur Darstellung Sekundärer Und Tertiärer p-Alkylamino-Benzaldehyde. Ber. dtsch. Chem. Ges. A/B. 1927, 60, 119–122. DOI: 10.1002/cber.19270600118.
  • Paul, S.; Gupta, M.; Gupta, R. Vilsmeier Reagent for Formylation in Solvent-Free Conditions Using Microwaves. Synlett 2000, 1115–1118. DOI: 10.1055/s-2000-6747.
  • Shiri, M.; Heravi, M. M.; Faghihi, Z.; Zadsirjan, V.; Mohammadnejad, M.; Ranjbar, M. Tandem and Transition Metal-Free Synthesis of Novel Benzoimidazo-Quinazoline as Highly Selective Hg2+ Sensors. Res. Chem. Intermed. 2018, 44, 2439–2449. DOI: 10.1007/s11164-017-3239-2.
  • Suneel Kumar, Y.; Nawaz Khan, F. TiO2 Nanoparticles Catalyzed Chemoselective Synthesis of 2-Chloroquinolinyl-4-Quinolinones and Their Intramolecular Cyclization through Palladium Catalyzed Sonogashira Coupling Reaction. Catal. Lett. 2017, 147, 919–925. DOI: 10.1007/s10562-017-1992-x.
  • Subhedar, D. D.; Shaikh, M. H.; Nawale, L.; Sarkar, D.; Khedkar, V. M.; Shingate, B. B. Quinolidene Based Monocarbonyl Curcumin Analogues as Promising Antimycobacterial Agents: Synthesis and Molecular Docking Study. Bioorg. Med. Chem. Lett. 2017, 27, 922–928. DOI: 10.1016/j.bmcl.2017.01.004.
  • Murugesan, A.; Gengan, R. M.; Krishnan, A. Sulfonic Acid Functionalized Boron Nitride Nano Materials as a Microwave-Assisted Efficient and Highly Biologically Active One-Pot Synthesis of Piperazinyl-Quinolinyl Fused Benzo[c]Acridine Derivatives. Mater. Chem. Phys. 2017, 188, 154–167. DOI: 10.1016/j.matchemphys.2016.12.039.
  • Gohil, J. D.; Patel, H. B.; Patel, M. P. Comparative Study on the Use of Conventional, Microwave and Ultrasound-Irradiation for the Synthesis of Pyrano [3,2-c] Chromene and Benzopyrano [4,3-b] Chromene Derivatives in Water. Heterocycl. Lett. 2016, 6, 123–132.
  • Unnamatla, M. V. B.; Islas-Jácome, A.; Quezada-Soto, A.; Ramírez-López, S. C.; Flores-Álamo, M.; Gámez-Montaño, R. Multicomponent One-Pot Synthesis of 3-Tetrazolyl and 3-Imidazo[1,2-a]pyridin Tetrazolo[1,5-a]quinolines. J. Org. Chem. 2016, 81, 10576–10583. DOI: 10.1021/acs.joc.6b01576.
  • Subhashini, N. J. P.; Amanaganti, J.; Boddu, L.; Acharya Nagarjuna, P. Microwave Assisted Synthesis and Antibacterial Studies of (E)-3-(2-Morpholinoquinolin-3-yl)-1-Aryl Prop-2-en-1-Ones. J. Chem. Pharmaceut. Res. 2013, 5, 140–147.
  • Raza, H. M.; Rizvi, N.-E.-A.; Siddiqui, H. L.; Javaid, A.; Iqbal, M. Synthesis and Biological Evaluation of New [1,3,4]Thiadiazepino[7,6-b]Quinolin-2-Amines as Potent anti-Microbial Agents. Med. Chem. Res. 2013, 22, 4001–4015. DOI: 10.1007/s00044-012-0389-z.
  • Desai, N. C.; Dodiya, A. M. Conventional and Microwave Techniques for the Synthesis and Antimicrobial Studies of Novel 1-[2-(2-Chloro-6-Methyl(3-Quinolyl))-5-(4-Nitrophenyl)-(1,3,4-Oxadiazolin-3-yl)]-3-(Aryl)Prop-2-en-1-Ones. Arabian J. Chem. 2016, 9, S379–S387. DOI: 10.1016/j.arabjc.2011.05.004.
  • Desai, N. C.; Dodiya, A. M. Conventional and Microwave Techniques for Synthesis and Antimicrobial Studies of Novel 1-[2-(2-Chloro(3-Quinolyl))-5-(4-Nitrophenyl)-(1,3,4-Oxadiazolin-3-yl)]-3-(Aryl)Prop-2-en-1-Ones. Med. Chem. Res. 2012, 21, 1480–1490. DOI: 10.1007/s00044-011-9670-9.
  • Desai, N. C.; Maheta, A. S.; Rajpara, K. M.; Joshi, V. V.; Vaghani, H. V.; Satodiya, H. M. Green Synthesis of Novel Quinoline Based Imidazole Derivatives and Evaluation of Their Antimicrobial Activity. J. Saudi Chem. Soc. 2014, 18, 963–971. DOI: 10.1016/j.jscs.2011.11.021.
  • Adhikari, A.; Kalluraya, B.; Sujith, K. V.; Gouthamchandra ; Mahmood, R. Synthesis, Characterization and Biological Evaluation of Dihydropyrimidine Derivatives. Saudi Pharmaceut. J. 2012, 20, 75–79. DOI: 10.1016/j.jsps.2011.04.002.
  • Nadaraj, V.; Selvi, S. T. The Effective Reaction of 2-Chloro-3-Formylquinoline and Acetic Acid/Sodium Acetate under Microwave Irradiation. Int. J. Eng. Sci. Tech. 2011, 3, 297–302. DOI: 10.4314/ijest.v3i4.68561.
  • Gupta, M. Efficient Synthesis of Antifungal Active 9-Substituted-3-Aryl-5H,13aH-Quinolino[3,2-f][1,2,4]Triazolo[4,3-b][1,2,4]Triazepines in Ionic Liquids. Bioorg. Med. Chem. Lett. 2011, 21, 4919–4923. DOI: 10.1016/j.bmcl.2011.06.007.
  • Nadaraj, V.; Selvi, S. T. An Improved Synthesis of 2-Amino-3-Formylquinoline Derivatives under Phase Transfer Condition. Org. Chem.: Indian J. 2010, 6, 86-102.
  • Nadaraj, V.; Selvi, S. T. Synthesis and Characterization of Condensed Pyrazole Derivative. Der. Pharma. Chem. 2010, 2, 315–321.
  • Joshi, R. S.; Mandhane, P. G.; Chate, A. V.; Khan, W.; Gill, C. H. One Pot Synthesis of Substituted [1,2,4]-Triazolo [1’,2’:1,2]Pyrimido [6,5-b]-Quinoline and Its Antibacterial Activity. Bull. Korean Chem. Soc. 2010, 31, 2341–2344. DOI: 10.5012/bkcs.2010.31.8.2341.
  • Mali, J. R.; Pratap, U. R.; Jawale, D. V.; Mane, R. A. Water-Mediated One-Pot Synthetic Route for Pyrazolo[3,4-b]Quinolines. Tetrahedron Lett. 2010, 51, 3980–3982. DOI: 10.1016/j.tetlet.2010.05.117.
  • Ladani, N. K.; Patel, M. P.; Patel, R. G. A Convenient One-Pot Synthesis of Some New 3-(2-Phenyl-6-(2-Thienyl)-4-Pyridyl)Hydroquinolin-2-Ones under Microwave Irradiation and Their Antimicrobial Activities. Phosp. Sulfur Silicon Related Elem. 2010, 185, 658–662. DOI: 10.1080/10426500902915507.
  • Tiwari, V.; Ali, P.; Meshram, J. Microwave Assisted Synthesis of 3-(2-Chloroguiolin-3-yl)-1-Substituted Phenyl Prop-2-en-1-Ones Using K2CO3 as a Mild, Cheap and Inexpensive Catalyst. Int. J. Chem. Tech. Res. 2010, 2, 1031.
  • Gupta, M.; Paul, S.; Gupta, R. One-Pot Synthesis of Antifungal Active 9-Substituted-3-Aryl-5H, 13aH-Quinolino [3,2-f][1,2,4] Triazolo [4,3-b][1,2,4] Triazepines. Indian J. Chem. 2010, 41, 481. DOI: 10.1002/chin.201037166.
  • Kidwai, M.; Saxena, S. Convenient Preparation of Pyrano Benzopyranes in Aqueous Media. Synth. Commun. 2006, 36, 2737–2742. DOI: 10.1080/00397910600764774.
  • Naik, H. P.; Naik, H. B.; Aravinda, T. Nano-Titanium Dioxide (TiO2) Mediated Simple and Efficient Modification to Biginelli Reaction. African J. Pure Appl. Chem. 2009, 3, 202–207.
  • Nirmal, J. P.; Patel, M. P.; Patel, R. G. Microwave-Assisted Synthesis of Some New Biquinoline Compounds Catalyzed by DMAP and Their Biological Activities. Indian J. Chem. 2009, 48B, 712–717.
  • Nirmal, J. P.; Patel, M. P.; Patel, R. G. Microwave-Assisted Reaction: One Pot Synthesis of Various Quinolyl-Quinoline-4-One Derivatives. J. Environm. Res. Dev. 2009, 3, 851–858.
  • Rana, P. B.; Mistry, B. D.; Desai, K. R. Green Chemistry: Conventional and Microwave Induced Synthesis of Various Thiazolidinone Derivatives from 3-{[(1E)-(2’-Chloro-7’-Methoxyquinoline-3’-yl) Methylene] Amino}-4-(Substitutedphenyldiazenyl) Phenol and Their Antimicrobial Screening. Arkivoc. 2008, 15, 262–279.
  • Prakash Naik, H. R.; Bhojya Naik, H. S.; Ravikumar Naik, T. R.; Naik, H. R.; Lamani, D. S.; Aravinda, T. Pyrimido[4,5-b]Quinoline-2-Thiol/ol: Microwave-Induced One-Pot Synthesis, DNA Binding and Cleavage Studies. J. Sulfur Chem. 2008, 29, 583–592. DOI: 10.1080/17415990802382890.
  • Dubey, P. K.; Naidu, A.; Kumar, K. S. Preparation of 3-Chloro-2-((2-Chloroquinolin-3-yl) Methylene) Hydrazon)-1, 2-Dihydroquinoalin. Org. Chem.: Indian J. 2008, 4, 475–478.
  • Kidwai, M.; Singhal, K.; Kukreja, S. One-Pot Green Synthesis for Pyrimido[4,5-d]Pyrimidine Derivatives. Z. Nat. B 2007, 62, 732–736. DOI: 10.1515/znb-2007-0518.
  • Raghavendra, M.; Bhojya Naik, H. S.; Ravikumar Naik, T. R.; Sherigara, B. S. A Facile One Pot Synthesis of Some New 2-Phenyl-2H-[1,3]Thiazino[6,5-b] Quinolines under Microwave Irradiation in Solvent Free Conditions. J. Sulfur Chem. 2007, 28, 165–169. DOI: 10.1080/17415990601155075.
  • Kidwai, M.; Singhal, K. Aqua-Mediated One-Pot Synthesis and Aromatization of Pyrimido-Fused 1,4-Dihydropyridine Derivatives Using Ammonium Salts. Can. J. Chem. 2007, 85, 400–405. May DOI: 10.1139/v07-041.
  • Raghavendra, M.; Bhojya Naik, H. S.; Sherigara, B. S. “One Pot Synthesis of Some New 2-Hydrazino-[1,3,4] Thiadiazepino [7,6-b] Quinolines under Microwave Irradiation Conditions. Arkivoc. 2006, 15, 153–159.
  • Raghavendra, M.; Bhojya Naik, H. S.; Sherigara, B. S. Microwave Induced Synthesis of Thieno[2,3-b] Quinoline-2-Carboxylic Acids and Alkyl Esters and Their Antibacterial Activity. J. Sulfur Chem. 2006, 27, 347–351. DOI: 10.1080/17415990600825611.
  • Selvi, S. T.; Nadaraj, V.; Mohan, S.; Sasi, R.; Hema, M. Solvent Free Microwave Synthesis and Evaluation of Antimicrobial Activity of Pyrimido[4,5-b]- and Pyrazolo[3,4-b]Quinolines. Bioorg. Med. Chem. 2006, 14, 3896–3903. DOI: 10.1016/j.bmc.2006.01.048.
  • Kidwai, M.; Saxena, S.; Rahman Khan, M. K.; Thukral, S. S. Aqua Mediated Synthesis of Substituted 2-Amino-4H-Chromenes and In Vitro Study as Antibacterial Agents. Bioorg. Med. Chem. Lett. 2005, 15, 4295–4298. DOI: 10.1016/j.bmcl.2005.06.041.
  • Kidwai, M.; Saxena, S.; Mohan, R. Microwave Induced New Route to Acridine and Quinazoline Derivatives Using TLC Plates. J. Heterocycl. Chem. 2005, 42, 703–705. DOI: 10.1002/jhet.5570420435.
  • Kidwai, M.; Singhal, K.; Thakur, R. A Facile Synthesis for Novel Pyrimido[1,3,4]Triazepine. Lett. Org. Chem. 2005, 2, 419–423. DOI: 10.2174/1570178054405922.
  • Kidwai, M.; Saxena, S.; Rastogi, S. An Efficient Synthesis of 2,4,5-Trisubstituted and 1,2,4,5-Tetrasubstituted-1H-Imidazoles. Bull. Korean Chem. Soc. 2005, 26, 2051–2053. DOI: 10.5012/BKCS.2005.26.12.2051.
  • Mogilaiah, K.; Sudhakar, G. R.; Reddy, N. V. Microwave Assisted Synthesis of Pyrazolo [3, 4-b] Quinolines Containing 1, 8-Naphthyridine Moiety. Indian J. Chem. 2003, 42B, 1753.
  • Paul, S.; Gupta, M.; Gupta, R.; Loupy, A. Microwave Assisted Solvent-Free Synthesis of Pyrazolo[3,4-b]Quinolines and Pyrazolo[3,4-c]Pyrazoles Using p-TsOH. Tetrahedron Lett. 2001, 42, 3827–3829. DOI: 10.1016/S0040-4039(01)00505-6.
  • Tagliapietra, S.; Calcio Gaudino, E.; Cravotto, G. The Use of Power Ultrasound for Organic Synthesis in Green Chemistry. In Power Ultrasonics: Applications of High-Intensity Ultrasound; Gallego-Juárez, J. A., Graff, K. F., Eds.; Elsevier: New York, NY, 2015; pp 997–1022.
  • Kidwai, M.; Bhushan, K. R.; Sapra, P.; Saxena, R. K.; Gupta, R. Alumina-Supported Synthesis of Antibacterial Quinolines Using Microwaves. Bioorg. Med. Chem. 2000, 8, 69–72. DOI: 10.1016/S0968-0896(99)00256-4.
  • Venkanna, P.; Rajanna, K. C.; Satish Kumar, M.; Bismillah Ansari, M.; Ali, M. M. 2,4,6-Trichloro-1,3,5-Triazine and N,N′-Dimethylformamide as an Effective Vilsmeier–Haack Reagent for the Synthesis of 2-Chloro-3-Formyl Quinolines from Acetanilides. Tetrahedron Lett. 2015, 56, 5164–5167. DOI: 10.1016/j.tetlet.2015.07.056.
  • Ali, M. M.; Sana, S.; Tasneem ; Rajanna, K. C.; Saiprakash, P. K. Ultrasonically Accelerated Vilsmeier Haack Cyclisation and Formylation Reactions. Synth. Commun. 2002, 32, 1351–1356. DOI: 10.1081/SCC-120003631.
  • Claudio-Catalán, M. Á.; Pharande, S. G.; Quezada-Soto, A.; Kishore, K. G.; Rentería-Gómez, A.; Padilla-Vaca, F.; Gámez-Montaño, R. Solvent- and Catalyst-Free One-Pot Green Bound-Type Fused Bis-Heterocycles Synthesis via Groebke-Blackburn-Bienaymé Reaction/SNAr/Ring-Chain Azido-Tautomerization Strategy. ACS Omega. 2018, 3, 5177–5186. DOI: 10.1021/acsomega.8b00170.
  • Hussain, S.; Jadhav, S.; Rai, M.; Farooqui, M. One-Pot Neda Catalyzed Knovenagel Condensation under Ultrasonic Irradiation in Solvent-Free Medium. Int. J. Pharmaceut. Chem. Biol. Sci. 2014, 4, 126–128.
  • Gohil, J. D.; Patel, H. B.; Patel, M. P. Ultrasound Assisted Synthesis of Triazole/Tetrazole Hybrids Based New Biquinoline Derivatives as a New Class of Antimicrobial and Antitubercular Agents. Indian J. Adv. Chem. Sci. 2016, 4, 102–113.
  • Thangaraj, M.; Gengan, R. M. Ultrasonicated Synthesis of Novel Quinoline-Lipoyl Peptides through Ugi-Four Component Condensation by Using Ca/BN Catalyst. Synth. Commun. 2017, 47. (Just accepted) DOI: 10.1080/00397911.2017.1381742.
  • Alizadeh, A.; Roosta, A. Synthesis of a New Series of Aryl(Thieno[2,3-b]Quinolin-2-yl)Methanone and 2-(2-Aroyl-2,3-Dihydrothieno[2,3-b]Quinolin-3-yl)-1-Arylethanone Derivatives via Sequential Multi-Component Reaction. Chem. Pap. 2018, 72, 2467–2478. DOI: 10.1007/s11696-018-0497-4.
  • Shelke, K. F.; Khadse, R. E. Ionic Liquid is an Efficient Catalyst for Knoevenagel Condensation under Grinding Method. Der. Pharma. Chem. 2015, 7, 191–196.
  • Chandrika, N. Solvent-Free Solid Phase Syntheses of 2-Chloroquinoline-3-Carbaldehyde Phenyl Hydrazones and Their DNA Cleavage Studies. J. Appl. Chem. 2013, 2, 1535–1542.
  • Kantevari, S.; Vuppalapati, S. V. N.; Bantu, R.; Nagarapu, L. An Efficient One-Pot Three Component Synthesis of 1,2-Dihydro-1-Arylnaphtho[1,2-e][1,3]Oxazine-3-Ones Using Montmorillonite k10 under Solvent Free Conditions. J. Heterocycl. Chem. 2010, 47, 313–317. DOI: 10.1002/jhet.312.
  • Rodrigues, M. T.; Gomes, J. C.; Smith, J.; Coelho, F. Simple and Highly Diastereoselective Access to 3,4-Substituted Tetrahydro-1,8-Naphthyridines from Morita–Baylis–Hillman Adducts. Tetrahedron Lett. 2010, 51, 4988–4990. DOI: 10.1016/j.tetlet.2010.07.069.
  • Subhedar, D. D.; Shaikh, M. H.; Shingate, B. B.; Nawale, L.; Sarkar, D.; Khedkar, V. M.; Kalam Khan, F. A.; Sangshetti, J. N. Quinolidene-Rhodanine Conjugates: Facile Synthesis and Biological Evaluation. Eur. J. Med. Chem. 2017, 125, 385–399. DOI: 10.1016/j.ejmech.2016.09.059.
  • Baruah, B.; Bhuyan, P. J. Synthesis of Some Complex Pyrano[2,3-b]- and Pyrido[2,3-b]Quinolines from Simple Acetanilides via Intramolecular Domino Hetero Diels–Alder Reactions of 1-Oxa-1,3-Butadienes in Aqueous Medium. Tetrahedron. 2009, 65, 7099–7104. DOI: 10.1016/j.tet.2009.06.036.
  • Syed, S. V.; Mopuri, D.; Madhulatha, A. Docking, Synthesis and Biological Evaluation of Novel Quinoline Containing Schiff Bases for Anti-Inflammatory and Anti-Oxidant Activities. IJPSR. 2019, 11, 721–731.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.