Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 51, 2021 - Issue 3
209
Views
9
CrossRef citations to date
0
Altmetric
Articles

Green synthesis of novel bis(hexahydro-1H-xanthene-1,8(2H)-diones) employing p-toluenesulfonic acid (p-TSA) as a solid acid catalyst

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 471-484 | Received 31 Aug 2020, Published online: 22 Oct 2020

References

  • Chibale, K.; Visser, M.; Van Schalkwyk, D.; Smith, P. J.; Saravanamuthu, A.; Fairlamb, A. H. Exploring the Potential of Xanthene Derivatives as Trypanothione Reductase Inhibitors and Chloroquine Potentiating Agents. Tetrahedron. 2003, 59, 2289–2296. DOI: 10.1016/S0040-4020(03)00240-0.
  • Shirini, F.; Khaligh, N. G. Succinimide-N-Sulfonic Acid: An Efficient Catalyst for the Synthesis of Xanthene Derivatives under Solvent-Free Conditions. Dye. Pigment. 2012, 95, 789–794. DOI: 10.1016/j.dyepig.2012.06.022.
  • Wang, H.; Lu, L.; Zhu, S.; Li, Y.; Cai, W. The Phototoxicity of Xanthene Derivatives against Escherichia Coli, Staphylococcus Aureus, and Saccharomyces Cerevisiae. Curr. Microbiol. 2006, 52, 1–5. DOI: 10.1007/s00284-005-0040-z.
  • Giri, R.; Goodell, J. R.; Xing, C.; Benoit, A.; Kaur, H.; Hiasa, H.; Ferguson, D. M. Synthesis and Cancer Cell Cytotoxicity of Substituted Xanthenes. Bioorg. Med. Chem. 2010, 18, 1456–1463. DOI: 10.1016/j.bmc.2010.01.018.
  • Omolo, J. J.; Johnson, M. M.; Van Vuuren, S. F.; De Koning, C. B. The Synthesis of Xanthones, Xanthenediones, and Spirobenzofurans: Their Antibacterial and Antifungal Activity. Bioorg. Med. Chem. Lett. 2011, 21, 7085–7088. DOI: 10.1016/j.bmcl.2011.09.088.
  • Mulakayala, N.; Murthy, P. V. N. S.; Rambabu, D.; Aeluri, M.; Adepu, R.; Krishna, G. R.; Reddy, C. M.; Prasad, K. R. S.; Chaitanya, M.; Kumar, C. S.; et al. Catalysis by Molecular Iodine: A Rapid Synthesis of 1,8-dioxo-octahydroxanthenes and their Evaluation as Potential Anticancer Agents. Bioorg. Med. Chem. Lett. 2012, 22, 2186–2191. DOI: 10.1016/j.bmcl.2012.01.126.
  • Kumar, A.; Sharma, S.; Maurya, R. A.; Sarkar, J. Diversity Oriented Synthesis of Benzoxanthene and Benzochromene Libraries via One-Pot, Three-Component Reactions and Their anti-Proliferative Activity. J. Comb. Chem. 2010, 12, 20–24. DOI: 10.1021/cc900143h.
  • Shaheen, F.; Ahmad, M.; Khan, S. N.; Hussain, S. S.; Anjum, S.; Tashkhodjaev, B.; Turgunov, K.; Sultankhodzhaev, M. N.; Choudhary, M. I. Atta-ur-Rahman. New α-Glucosidase Inhibitors and Antibacterial Compounds from Myrtus Communis L. European J. Org. Chem 2006, 2006, 2371–2377. DOI: 10.1002/ejoc.200500936.
  • Nisar, M.; Ali, I.; Raza Shah, M.; Badshah, A.; Qayum, M.; Khan, H.; Khan, I.; Ali, S. Amberlite IR-120H as a Recyclable Catalyst for the Synthesis of 1,8-Dioxo-Octahydroxanthene Analogs and Their Evaluation as Potential Leishmanicidal Agents. RSC Adv. 2013, 3, 21753–21758. DOI: 10.1039/c3ra43506g.
  • Ion, R. M.; Planner, A.; Wiktorowicz, K.; Frackowiak, D. The Incorporation of Various Porphyrins into Blood Cells Measured via Flow Cytometry, Absorption and Emission Spectroscopy. Acta Biochim. Pol. 1998, 45, 833–845. DOI: 10.18388/abp.1998_4279.
  • Hilderbrand, S. A.; Weissleder, R. One-Pot Synthesis of New Symmetric and Asymmetric Xanthene Dyes. Tetrahedron Lett. 2007, 48, 4383–4385. DOI: 10.1016/j.tetlet.2007.04.088.
  • Zheng, H.; Zhan, X. Q.; Bian, Q. N.; Zhang, X. J. Advances in Modifying Fluorescein and Rhodamine Fluorophores as Fluorescent Chemosensors. Chem. Commun. 2013, 49, 429–447. DOI: 10.1039/c2cc35997a.
  • Harichandran, G.; Amalraj, S. D.; Shanmugam, P. Synthesis and Characterization of Phosphate Anchored MnO2 Catalyzed Solvent Free Synthesis of Xanthene Laser Dyes. J. Mol. Catal. A. Chem. 2014, 392, 31–38. DOI: 10.1016/j.molcata.2014.04.035.
  • da Silva, M.; Forezi, L.; Marra, R. K. F.; de Carvalho da Silva, F.; Ferreira, V. F. Synthetic Strategies for Obtaining Xanthenes. Curr. Org. Synth. 2017, 14, 929–951. DOI: 10.2174/1570179414666170825100808.
  • Marcos, A. P. M.; Cunico, W.; Siqueira, G. M.; Leidens, V. L.; Nilo Z; Bonacorsoa, H. G.; Flores, A. F. C. Regiospecific Synthesis of 1,2-Bis(Azolyl)Ethanes. J. Braz. Chem. Soc. 2005, 16, 275–279.
  • Padmavathi, V.; Reddy, B. J. M.; Subbaiah, D. R. C. V. Bischalcones – Synthons for a New Class of Bis(Heterocycles). New J. Chem. 2004, 28, 1479–1483. DOI: 10.1039/B409968K.
  • Padmavathi, V.; Jagan Mohan Reddy, B.; Chandra Obula Reddy, B.; Padmaja, A. Synthesis of a New Class of Keto-Linked Bis Heterocycles. Tetrahedron. 2005, 61, 2407–2411. DOI: 10.1016/j.tet.2005.01.018.
  • Salama, S. K.; Mohamed, M. F.; Darweesh, A. F.; Elwahy, A. H. M.; Abdelhamid, I. A. Molecular Docking Simulation and Anticancer Assessment on Human Breast Carcinoma Cell Line Using Novel Bis(1,4-Dihydropyrano[2,3-c]Pyrazole-5-Carbonitrile) and bis(1,4-dihydropyrazolo[4′,3′:5,6]pyrano[2,3-b]pyridine-6-carbonitrile) derivatives. Bioorg. Chem. 2017, 71, 19–29. DOI: 10.1016/j.bioorg.2017.01.009.
  • Mohamed, M. F.; Abdelmoniem, A. M.; Elwahy, A. H. M.; Abdelhamid, I. A. Abdelhamid, I. A. DNA Fragmentation, Cell Cycle Arrest, and Docking Study of Novel Bis Spiro-Cyclic 2-Oxindole of Pyrimido[4,5-b]Quinoline-4,6-Dione Derivatives against Breast Carcinoma. Curr. Cancer Drug. Targets. 2018, 18, 372–381. DOI: 10.2174/1568009617666170630143311.
  • Antonini, I.; Polucci, P.; Magnano, A.; Sparapani, S.; Martelli, S. Rational Design, Synthesis, and Biological Evaluation of Bis(Pyrimido[5,6,1-de]Acridines) and bis(pyrazolo[3,4,5-kl]acridine-5-carboxamides) as new anticancer agents. J. Med. Chem. 2004, 47, 5244–5250. DOI: 10.1021/jm049706k.
  • Jain, M.; Sakhuja, R.; Khanna, P.; Bhagat, S.; Jain, S. C. A Facile Synthesis of Novel Unsymmetrical Bis-Spiro[Indolepyrazolinyl- Thiazolidine]-2,4′-Diones. Arkivoc. 2008, 2008, 54–64. DOI: 10.3998/ark.5550190.0009.f07.
  • Di Giacomo, B.; Bedini, A.; Spadoni, G.; Tarzia, G.; Fraschini, F.; Pannacci, M.; Lucini, V. Synthesis and Biological Activity of New Melatonin Dimeric Derivatives. Bioorg. Med. Chem. 2007, 15, 4643–4650. DOI: 10.1016/j.bmc.2007.03.080.
  • Wang, C.; Jung, G. Y.; Batsanov, A. S.; Bryce, M. R.; Petty, M. C. New Electron-Transporting Materials for Light Emitting Diodes: 1,3,4-Oxadiazole-Pyridine and 1,3,4-Oxadiazole-Pyrimidine Hybrids. J. Mater. Chem. 2002, 12, 173–180. DOI: 10.1039/b106907c.
  • Mohamed, G. G.; Zayed, E. M.; Hindy, A. M. M. Coordination Behavior of New Bis Schiff Base Ligand Derived from 2-Furan Carboxaldehyde and Propane-1,3-Diamine. Spectroscopic, Thermal, Anticancer and Antibacterial Activity Studies. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2015, 145, 76–84. DOI: 10.1016/j.saa.2015.01.129.
  • Wang, C.; Jung, G.-Y.; Hua, Y.; Pearson, C.; Bryce, M. R.; Petty, M. C.; Batsanov, A. S.; Goeta, A. E.; Howard, J. A. K. An Efficient Pyridine- and Oxadiazole-Containing Hole-Blocking Material for Organic Light-Emitting Diodes: Synthesis, Crystal Structure, and Device Performance. Chem. Mater. 2001, 13, 1167–1173. DOI: 10.1021/cm0010250.
  • Maleki, A.; Aghaei, M.; Ghamari, N. Facile Synthesis of Tetrahydrobenzoxanthenones via a One-Pot Three-Component Reaction Using an Eco-Friendly and Magnetized Biopolymer Chitosan-Based Heterogeneous Nanocatalyst. Appl. Organometal. Chem. 2016, 30, 939–942. DOI: 10.1002/aoc.3524.
  • Maleki, A. One-Pot Three-Component Synthesis of Pyrido[2′,1′:2,3]Imidazo[4,5-c]Isoquinolines Using Fe3O4@SiO2-OSO3H as an Efficient Heterogeneous Nanocatalyst. RSC Adv. 2014, 4, 64169–64173. DOI: 10.1039/C4RA10856F.
  • Maleki, A. One-Pot Multicomponent Synthesis of Diazepine Derivatives Using Terminal Alkynes in the Presence of Silica-Supported Superparamagnetic Iron Oxide Nanoparticles. Tetrahedron. Lett. 2013, 54, 2055–2059. DOI: 10.1016/j.tetlet.2013.01.123.
  • Maleki, A. Fe 3O 4/SiO 2 Nanoparticles: An Efficient and Magnetically Recoverable Nanocatalyst for the One-Pot Multicomponent Synthesis of Diazepines. Tetrahedron. 2012, 68, 7827–7833. DOI: 10.1016/j.tet.2012.07.034.
  • Elwahy, A. H. M.; Shaaban, M. R. Synthesis of Heterocycles Catalyzed by Iron Oxide Nanoparticles. Heterocycles. 2017, 94, 595–655. DOI: 10.3987/REV-16-854.
  • Elwahy, A. H. M.; Shaaban, M. R. Synthesis of Heterocycles and Fused Heterocycles Catalyzed by Nanomaterials. RSC Adv. 2015, 5, 75659–75710. DOI: 10.1039/C5RA11421G.
  • El-Fatah, N. A. A.; Darweesh, A. F.; Mohamed, A. A.; Abdelhamid, I. A.; Elwahy, A. H. M. Regioselective Synthesis and Theoretical Studies of Novel Bis(Tetrahydro[1,2,4]Triazolo[5,1-b]. Monatsh. Chem. 2017, 148, 2107–2122. DOI: 10.1007/s00706-017-2040-7.
  • Abdella, A. M.; Moatasim, Y.; Ali, M. A.; Elwahy, A. H. M.; Abdelhamid, I. A. Synthesis and anti-Influenza Virus Activity of Novel Bis(4H-Chromene-3-Carbonitrile) Derivatives. J. Heterocyclic. Chem. 2017, 54, 1854–1862. DOI: 10.1002/jhet.2776.
  • Salem, M. E.; Darweesh, A. F.; Mekky, A. E. M.; Ahmad, M.; Farag, A.; Elwahy, A. H. M. 2-Bromo-1-(1H-Pyrazol-4-Yl)Ethanone: Versatile Precursor for Novel Mono- and Bis[Pyrazolylthiazoles. J. Heterocyclic. Chem. 2017, 54, 226–234. https://doi.org/10.1002/jhet. DOI: 10.1002/jhet.2571.
  • Elwahy, A. H. M.; Shaaban, M. R. Synthesis of Furo-, Pyrrolo-, and Thieno-Fused Heterocycles by Multi-Component Reactions (Part 1). Curr. Org. Synth. 2015, 10, 425–466. DOI: 10.2174/1570179411310030007.
  • Shaaban, M. R.; Elwahy, A. H. M. Synthesis of Oxazolo-, Thiazolo-, Pyrazolo-, and Imidazo-Fused Heterocycles by Multi-Component Reactions (Part 2). Curr. Org. Synth. 2014, 11, 471–525. DOI: 10.2174/15701794113106660076.
  • Abdelmoniem, A. M.; Ghozlan, S. A. S.; Abdelmoniem, D. M.; Elwahy, A. H. M.; Abdelhamid, I. A. Facile One-Pot, Three-Component Synthesis of Novel Bis-Heterocycles Incorporating 5H-Chromeno[2,3-b]Pyridine-3-Carbonitrile Derivatives. J. Heterocyclic. Chem. 2017, 54, 2844–2849. DOI: 10.1002/jhet.2890.
  • Abd El-Fatah, N. A.; Darweesh, A. F.; Mohamed, A. A.; Abdelhamid, I. A.; Elwahy, A. H. M. Experimental and Theoretical Study on the Regioselective Bis- and Polyalkylation of 2-Mercaptonicotinonitrile and 2-Mercaptopyrimidine-5-Carbonitrile Derivatives. Tetrahedron. 2017, 73, 1436–1450. DOI: 10.1016/j.tet.2017.01.047.
  • Darweesh, A. F.; Abd El-Fatah, N. A.; Abdelhamid, I. A.; Elwahy, A. H. M.; Salem, M. E. Investigation of the Reactivity of (1 H-Benzo [d] Imidazol-2-Yl)Acetonitrile and (Benzo [d] Thiazol-2-Yl)Acetonitrile as Precursors for Novel Bis(Benzo[4,5]Imidazo[1,2-a] Pyridines) and Bis(Benzo[4,5]Thiazolo[3,2- a]. Pyridines. Synth. Commun. 2020, 50, 2531–2544. DOI: 10.1080/00397911.2020.1784436.
  • Eid, E. M.; Hassaneen, H. M. E.; Abdelhamid, I. A.; Elwahy, A. H. M. Facile One‐Pot, Three‐Component Synthesis of Novel Bis(Heterocycles) Incorporating Thieno[2,3‐ b] Thiophenes via Michael Addition Reaction. J. Heterocyclic. Chem. 2020, 57, 2243–2255. DOI: 10.1002/jhet.3945.
  • Eid, E. M.; Hassaneen, H. M. E.; Elwahy, A. H. M.; Abdelhamid, I. A. Hantzsch-like Synthesis of Novel Bis(Hexahydroacridine-1,8-Diones), Bis(Tetrahydrodipyrazolo[3,4- B:4′,3′- e] Pyridines), and Bis(Pyrimido[4,5- b] Quinolines) Incorporating Thieno[2,3- b] Thiophenes. J. Chem. Res. 2020, 57, 2243–2255. DOI: 10.1177/1747519820917886.
  • Sroor, F. M.; Aboelenin, M. M.; Mahrous, K. F.; Mahmoud, K.; Elwahy, A. H. M.; Abdelhamid, I. A. Novel 2‐Cyanoacrylamido‐4,5,6,7‐Tetrahydrobenzo [b] Thiophene Derivatives as Potent Anticancer Agents. Arch. Pharm. 2020, 353, 2000069. DOI: 10.1002/ardp.202000069.
  • Abdella, A. M.; Mohamed, M. F.; Mohamed, A. F.; Elwahy, A. H. M.; Abdelhamid, I. A. Novel Bis(Dihydropyrano[3,2-c]Chromenes): Synthesis, Antiproliferative Effect and Molecular Docking Simulation. J. Heterocyclic. Chem. 2018, 55, 498–507. DOI: 10.1002/jhet.3072.
  • Abdelmoniem, A. M.; Salaheldin, T. A.; Abdelhamid, I. A.; Elwahy, A. H. M. New Bis(Dihydropyridine-3,5-Dicarbonitrile) Derivatives: Green Synthesis and Cytotoxic Activity Evaluation. J. Heterocyclic. Chem. 2017, 54, 2670–2677. DOI: 10.1002/jhet.2867.
  • Abdelhamid, I. A.; Darweesh, A. F.; Elwahy, A. H. M. Synthesis and Characterization of Poly(2,6-Dimethyl-4-Phenyl-1,4-Dihydropyridinyl)Arenes as Novel Multi-Armed Molecules. Tetrahedron. Lett. 2015, 56, 7085–7088. DOI: 10.1016/j.tetlet.2015.11.015.
  • Kassab, R. M.; Elwahy, A. H. M.; Abdelhamid, I. A. Abdelhamid, I. A. 1,ω-Bis(Formylphenoxy)Alkane: Versatile Precursors for Novel Bis-Dihydropyridine Derivatives. Monatsh. Chem. 2016, 147, 1227–1232. DOI: 10.1007/s00706-015-1644-z.
  • Abdelmoniem, A. M.; Elwahy, A. H. M.; Abdelhamid, I. A. Bis (Indoline-2, 3-Diones): Versatile Precursors for Novel Bis (2′, 6′- Dicarbonitrile) Derivatives. Arkivoc. 2016, 2016, 304–312. DOI: 10.3998/ark.5550190.0017.324.
  • Salama, S. K.; Darweesh, A. F.; Abdelhamid, I. A.; Elwahy, A. H. M. Microwave Assisted Green Multicomponent Synthesis of Novel Bis(2-Amino-Tetrahydro-4H-Chromene-3-Carbonitrile) Derivatives Using Chitosan as Eco-Friendly Basic Catalyst. J. Heterocyclic. Chem. 2017, 54, 305–312. DOI: 10.1002/jhet.2584.
  • Sanad, S. M. H.; Kassab, R. M.; Abdelhamid, I. A.; Elwahy, A. H. M. Microwave Assisted Multi-Component Synthesis of Novel Bis(1,4-Dihydropyridines) Based Arenes or Heteroarenes. Heterocycles. 2016, 92, 910–924. DOI: 10.3987/COM-16-13441.
  • Abdella, A. M.; Elwahy, A. H. M.; Abdelhamid, I. A. Multicomponent Synthesis of Novel Bis(2-Amino-Tetrahydro-4H-Chromene-3- Carbonitrile) Derivatives Linked to Arene or Heteroarene Cores. Curr. Org. Synth. 2016, 13, 601–610. DOI: 10.2174/1570179413999151211115100.
  • Tabatabaeian, K.; Khorshidi, A.; Mamaghani, M.; Dadashi, A.; Jalali, M. K. One-Pot Synthesis of Tetrahydrobenzo[a]Xanthen-11-One Derivatives Catalyzed by Ruthenium Chloride Hydrate as a Homogeneous Catalyst. Can. J. Chem. 2011, 89, 623–627. DOI: 10.1139/v11-042.
  • Pasha, M. A.; Jayashankara, V. P. Molecular Iodine Catalyzed Synthesis of Aryl-14H-Dibenzo[a, j]Xanthenes under Solvent-Free Condition. Bioorg. Med. Chem. Lett. 2007, 17, 621–623. DOI: 10.1016/j.bmcl.2006.11.009.
  • Rahmatpour, A. An Efficient, High Yielding, and Eco-Friendly Method for the Synthesis of 14-Aryl- or 14-Alkyl-14H-Dibenzo[a, j]Xanthenes Using Polyvinylsulfonic Acid as a Recyclable Brønsted Acid Catalyst. Monatsh. Chem. 2011, 142, 1259–1263. DOI: 10.1007/s00706-011-0537-z.
  • Khazaei, A.; Reza Moosavi-Zare, A.; Mohammadi, Z.; Zare, A.; Khakyzadeh, V.; Darvishi, G. Efficient Preparation of 9-Aryl-1,8-Dioxo-Octahydroxanthenes Catalyzed by Nano-TiO2 with High Recyclability. RSC Adv. 2013, 3, 1323–1326. DOI: 10.1039/C2RA22595F.
  • Javid, A.; Heravi, M. M.; Bamoharram, F. F. One-Pot Synthesis of 1,8-Dioxo-Octahydroxanthenes Utilizing Silica-Supported Preyssler Nano Particles as Novel and Efficient Reusable Heterogeneous Acidic Catalyst. E-Journal Chem. 2011, 8, 910–916. DOI: 10.1155/2011/980242.
  • Khazaei, A.; Zolfigol, M. A.; Moosavi-Zare, A. R.; Zare, A.; Khojasteh, M.; Asgari, Z.; Khakyzadeh, V.; Khalafi-Nezhad, A. Organocatalyst Trityl Chloride Efficiently Promoted the Solvent-Free Synthesis of 12-Aryl-8,9,10,12-Tetrahydrobenzo[a]-Xanthen-11-Ones by In Situ Formation of Carbocationic System in Neutral Media. Catal. Commun. 2012, 20, 54–57. DOI: 10.1016/j.catcom.2012.01.001.
  • Mane, P.; Shinde, B.; Mundada, P.; Gawade, V.; Karale, B.; Burungale, A. Sodium Acetate/MWI: A Green Protocol for the Synthesis of Tetrahydrobenzo[α]Xanthen-11-Ones with Biological Screening. Res. Chem. Intermed. 2020, 46, 231–241. DOI: 10.1007/s11164-019-03945-7.
  • Zarei, A.; Hajipour, A. R.; Khazdooz, L. The One-Pot Synthesis of 14-Aryl or Alkyl-14H-Dibenzo[a,j]Xanthenes Catalyzed by P2O5/Al2O3 under Microwave Irradiation. Dye. Pigment. 2010, 85, 133–138. DOI: 10.1016/j.dyepig.2009.10.015.
  • Rostamizadeh, S.; Amani, A. M.; Mahdavinia, G. H.; Amiri, G.; Sepehrian, H. Ultrasound Promoted Rapid and Green Synthesis of 1,8-Dioxo-Octahydroxanthenes Derivatives Using Nanosized MCM-41-SO(3)H as a nanoreactor, nanocatalyst in aqueous media. Ultrason. Sonochem. 2010, 17, 306–309. DOI: 10.1016/j.ultsonch.2009.10.004.
  • Patil, M. S.; Palav, A. V.; Khatri, C. K.; Chaturbhuj, G. U. Rapid, Efficient and Solvent-Free Synthesis of (Un)Symmetrical Xanthenes Catalyzed by Recyclable Sulfated Polyborate. Tetrahedron. Lett. 2017, 58, 2859–2864. DOI: 10.1016/j.tetlet.2017.06.027.
  • Khandelwal, S.; Rajawat, A.; Tailor, Y.; Kumar, M. Diversity Oriented P-TSA Catalyzed Efficient and Environmentally Benign Synthetic Protocol for the Synthesis of Structurally Diverse Heteroannulated Benzothiazolopyrimidines. Curr. Organocatalysis. 2015, 2, 37–43. DOI: 10.2174/2213337201666140923211914.
  • Keshari, A. K.; Singh, A. K.; Raj, V.; Rai, A.; Trivedi, P.; Ghosh, B.; Kumar, U.; Rawat, A.; Kumar, D.; Saha, S. P. TSA-Promoted Syntheses of 5H-Benzo[h]Thiazolo[2,3-b]Quinazoline and Indeno[1,2-d]Thiazolo[3,2-a]Pyrimidine Analogs: Molecular Modeling and In Vitro Antitumor Activity against Hepatocellular Carcinoma. Drug Des. Devel. Ther. 2017, 11, 1623–1642. DOI: 10.2147/DDDT.S136692.
  • Ibrahim, Y. A.; Elwahy, A. H. M.; Elkareish, G. M. M. Synthesis of New Tetrabenzo Nitrogen-Oxygen Macrocycles Containing Two Amide Groups. J. Chem. Res. 1994, 11, 414–415.
  • Elwahy, A. H. M. Difunctional Heterocycles: A Convenient Synthesis of Bis(4,5-Dihydropyrazolyl) Ethers from Their Precursor Bis(Chalcones). J. Chem. Res. 1999, (S) 602–603, (M) 2582–2596. DOI: 10.1039/a904716f.
  • Muathen, H. A.; Aloweiny, N. A. M.; Elwahy, A. H. M. Synthesis of Novel Amide-Crownophanes and Schiff Base-Crownophanes Based on p-Phenylene, 2,6-Naphthalene, and 9,10-Anthracene. J. Heterocyclic Chem. 2009, 46, 656–663. DOI: 10.1002/jhet.129.
  • Mohamed, M. F.; Ibrahim, N. S.; Elwahy, A. H. M.; Abdelhamid, I. A. Molecular Studies on Novel Antitumor Bis 1,4-Dihydropyridine Derivatives against Lung Carcinoma and Their Limited Side Effects on Normal Melanocytes. Anticancer. Agents Med. Chem. 2018, 18, 2156–2168. DOI: 10.2174/1871520618666181019095007.
  • Ibrahim, N. S.; Mohamed, M. F.; Elwahy, A. H. M.; Abdelhamid, I. A. Biological Activities and Docking Studies on Novel Bis 1,4-DHPS Linked to Arene Core via Ether or Ester Linkage. Lett. Drug Des. Discov. 2018, 15, 1036–1045. DOI: 10.2174/1570180815666180105162323.
  • Josephrajan, T.; Ramakrishnan, V. T. Thermal and Microwave Assisted Synthesis of N-Aroylamino Acridinediones. Can. J. Chem. 2007, 85, 572–575. DOI: 10.1139/v07-075.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.