Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 51, 2021 - Issue 10
664
Views
1
CrossRef citations to date
0
Altmetric
Articles

Synthesis of tertiary phosphine oxides by alkaline hydrolysis of quaternary phosphonium zwitterions using excess t-BuOK and stoichiometric water

&
Pages 1537-1546 | Received 01 Jun 2020, Published online: 04 Jan 2021

References

  • Blakemore, P. R. 1.15 Olefination of Carbonyl Compounds by Main-Group Element Mediators. In Comprehensive Organic Synthesis II, 2nd ed.; Knochel, P., Ed. Elsevier: Amsterdam, 2014; pp 516–608.
  • Manabe, S.; Wong, C. M.; Sevov, C. S. Direct and Scalable Electroreduction of Triphenylphosphine Oxide to Triphenylphosphine. J. Am. Chem. Soc. 2020, 142, 3024–3031. DOI: 10.1021/jacs.9b12112.
  • Sowa, S.; Stankevic, M.; Flis, A.; Pietrusiewicz, K. M. Reduction of Tertiary Phosphine Oxides by BH3 Assisted by Neighboring Activating Groups. Synthesis 2018, 50, 2106–2118. DOI: 10.1055/s-0036-1591546.
  • Schirmer, M.-L.; Jopp, S.; Holz, J.; Spannenberg, A.; Werner, T. Organocatalyzed Reduction of Tertiary Phosphine Oxides. Adv. Synth. Catal. 2016, 358, 26–29. DOI: 10.1002/adsc.201500762.
  • Keglevich, G.; Kovacs, T.; Csatlos, F. The Deoxygenation of Phosphine Oxides under Green Chemical Conditions. Heteroatom Chem. 2015, 26, 199–205. DOI: 10.1002/hc.21249.
  • Li, Y.; Lu, L.-Q.; Das, S.; Pisiewicz, S.; Junge, K.; Beller, M. Highly Chemoselective Metal-Free Reduction of Phosphine Oxides to Phosphines. J. Am. Chem. Soc. 2012, 134, 18325–18329. DOI: 10.1021/ja3069165.
  • Dutartre, M.; Bayardon, J.; Juge, S. Applications and Stereoselective Syntheses of P-Chirogenic Phosphorus Compounds. Chem. Soc. Rev. 2016, 45, 5771–5794. DOI: 10.1039/c6cs00031b.
  • Wujkowska, Z.; Zawisza, A.; Leśniak, S.; Rachwalski, M. Phosphinoyl-Aziridines as a New Class of Chiral Catalysts for Enantioselective Michael Addition. Tetrahedron. 2019, 75, 230–235. DOI: 10.1016/j.tet.2018.11.052.
  • Carroll, T. G.; Hunt, C.; Garwick, R.; Wu, G.; Dobrovetsky, R.; Ménard, G. An Untethered C3v-Symmetric Triarylphosphine Oxide Locked by Intermolecular Hydrogen Bonding. Chem. Commun. (Camb) 2019, 55, 3761–3764. DOI: 10.1039/c9cc01128e.
  • Renard, N.; Brenner, E.; Matt, D.; Gourlaouen, C. Adaptive Behavior of a Ditopic Phosphine Ligand. Eur. J. Inorg. Chem. 2019, 2019, 2996–3004. DOI: 10.1002/ejic.201900571.
  • Smith, J. N.; Hook, J. M.; Lucas, N. T. Superphenylphosphines: Nanographene-Based Ligands That Control Coordination Geometry and Drive Supramolecular Assembly. J. Am. Chem. Soc. 2018, 140, 1131–1141. DOI: 10.1021/jacs.7b12251.
  • Zhang, S.-W.; Lu, L.-P.; Long, Y.-Y.; Li, Y.-S. Ethylene Polymerization and Ethylene/Hexene Copolymerization by Vanadium(III) Complexes Bearing Bidentate Phenoxy-Phosphine Oxide Ligands. J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 5298–5306. DOI: 10.1002/pola.26963.
  • Duffy, M. P.; Bouit, P.-A.; Hissler, M. In Applications of Phosphorus-Based Materials in Optoelectronics; Hoboken, NJ: John Wiley & Sons, Inc. 2018; pp 295–327.
  • Jablonkai, E.; Keglevich, G. Advances and New Variations of the Hirao Reaction. Org. Prep. Proced. Int. 2014, 46, 281–316. DOI: 10.1080/00304948.2014.922376.
  • Jablonkai, E.; Keglevich, G. P-C Bond Formation by Coupling Reactions Utilizing > P(O)H Species as the Reagents. COS. 2014, 11, 429–453. DOI: 10.2174/15701794113109990066.
  • Zakirova, G. G.; Mladentsev, D. Y.; Borisova, N. E. Palladium-Catalyzed C-P Cross-Coupling between (Het)Aryl Halides and Secondary Phosphine Oxides. Synthesis 2019, 51, 2379–2386. DOI: 10.1055/s-0037-1610698.
  • Henyecz, R.; Mucsi, Z.; Keglevich, G. Palladium-Catalyzed Microwave-Assisted Hirao Reaction Utilizing the Excess of the Diarylphosphine Oxide Reagent as the P-Ligand; a Study on the Activity and Formation of the PdP2. Catalyst. Pure Appl. Chem. 2019, 91, 121–134. DOI: 10.1515/pac-2018-1004.
  • Zeng, H.; Dou, Q.; Li, C.-J. Photoinduced Transition-Metal-Free Cross-Coupling of Aryl Halides with H-Phosphonates. Org. Lett. 2019, 21, 1301–1305. DOI: 10.1021/acs.orglett.8b04081.
  • Zhang, J.-S.; Zhang, J.-Q.; Chen, T.; Han, L.-B. t-BuOK-Mediated Reductive Addition of P(O)-H Compounds to Terminal Alkynes Forming β-Arylphosphine Oxides. Org. Biomol. Chem. 2017, 15, 5462–5467. DOI: 10.1039/c7ob01104k.
  • Bu, M-j.; Lu, G-p.; Cai, C. Metal-Free Oxidative Phosphinylation of Aryl Alkynes to β-Ketophosphine Oxides via Visible-Light Photoredox Catalysis. Catal. Sci. Technol. 2016, 6, 413–416. DOI: 10.1039/C5CY01541C.
  • Asamdi, M.; Chikhalia, K. H. Aryne Insertion into σ Bonds. Asian J. Org. Chem. 2017, 6, 1331–1348. DOI: 10.1002/ajoc.201700284.
  • Kaczmarczyk, S.; Kwiatkowska, M.; Madalińska, L.; Barbachowska, A.; Rachwalski, M.; Błaszczyk, J.; Sieroń, L.; Kiełbasiński, P. Enzymatic Synthesis of Enantiopure Precursors of Chiral Bidentate and Tridentate Phosphorus Catalysts. Adv. Synth. Catal. 2011, 353, 2446–2454. DOI: 10.1002/adsc.201100280.
  • Adams, H.; Collins, R. C.; Jones, S.; Warner, C. J. A. Enantioselective Preparation of P-Chiral Phosphine Oxides. Org. Lett. 2011, 13, 6576–6579. DOI: 10.1021/ol202916j.
  • Zhang, Y.; Ye, C.; Li, S.; Ding, A.; Gu, G.; Guo, H. Eosin Y-Catalyzed Photooxidation of Triarylphosphines under Visible Light Irradiation and Aerobic Conditions. RSC. Adv. 2017, 7, 13240–13243. DOI: 10.1039/C6RA25469A.
  • Shioji, K.; Oyama, Y.; Okuma, K.; Nakagawa, H. Synthesis and Properties of Fluorescence Probe for Detection of Peroxides in Mitochondria. Bioorg. Med. Chem. Lett. 2010, 20, 3911–3915. DOI: 10.1016/j.bmcl.2010.05.017.
  • Bergin, E.; O'Connor, C. T.; Robinson, S. B.; McGarrigle, E. M.; O'Mahony, C. P.; Gilheany, D. G. Synthesis of P-Stereogenic Phosphorus Compounds. Asymmetric Oxidation of Phosphines under Appel Conditions. J. Am. Chem. Soc. 2007, 129, 9566–9567. DOI: 10.1021/ja072925l.
  • Pietrusiewicz, M. K.; Koprowski, M.; Drzazga, Z.; Parcheta, R.; Łastawiecka, E.; Demchuk, M. O.; Justyniak, I. Efficient Oxidative Resolution of 1-Phenylphosphol-2-Ene and Diels–Alder Synthesis of Enantiopure Bicyclic and Tricyclic P-Stereogenic C-P Heterocycles. Symmetry 2020, 12, 346–372. DOI: 10.3390/sym12030346.
  • Allen, D. W.; Mifflin, J. P.; Skabara, P. J. Synthesis and Solvatochromism of Some Dipolar Aryl-Phosphonium and -Phosphine Oxide Systems. J. Organomet. Chem. 2000, 601, 293–298. DOI: 10.1016/S0022-328X(00)00085-1.
  • Valentine, D.; Jr.; Blount, J. F.; Toth, K. Synthesis of Phosphines Having Chiral Organic Groups Ligated to Chiral Phosphorus. J. Org. Chem. 1980, 45, 3691–3698. DOI: 10.1021/jo01306a030.
  • Horner, L.; Hoffmann, H.; Wippel, H. G.; Hassel, G. Phosphorus Organic Compounds. X. The Course of the Cleavage of Mixed Substituted Tetraarylphosphonium Hydroxides. Chem. Ber. 1958, 91, 52–57. DOI: 10.1002/cber.19580910111.
  • Dawber, J. G.; Skerratt, R. G.; Tebby, J. C.; Waite, A. A. C. Kinetics of Alkaline Hydrolysis of Quaternary Phosphonium Salts. The Influence of Protic and Aprotic Solvents on the Hydrolysis of Alkyl Phenylphosphonium Salts. Phosphorus, Sulfur Silicon Relat. Elem. 2012, 187, 1261–1268. DOI: 10.1080/10426507.2012.681409.
  • McEwen, W. E.; Axelrad, G.; Zanger, M.; VanderWerf, C. A. Mechanisms of Substitution Reactions at Phosphorus. XII. A Kinetic Study of the Decomposition of Quaternary Phosphonium Hydroxides. J. Am. Chem. Soc. 1965, 87, 3948–3952. DOI: 10.1021/ja01095a028.
  • Huang, W.; Zhong, C.-H. Metal-Free Synthesis of Aryltriphenylphosphonium Bromides by the Reaction of Triphenylphosphine with Aryl Bromides in Refluxing Phenol. ACS Omega. 2019, 4, 6690–6696. DOI: 10.1021/acsomega.9b00568.
  • Allen, D. W.; Benke, P. Ligand Coupling and Neighbouring-Group Effects in the Alkaline Hydrolysis of Arylphosphonium Salts: New Stable Tetraarylphosphonium Benzimidazolate Betaines. J. Chem. Soc, Perkin Trans. 1995, 2789–2794. DOI: 10.1039/p19950002789.
  • Romano, C.; Fiorito, D.; Mazet, C. Remote Functionalization of α,β-Unsaturated Carbonyls by Multimetallic Sequential Catalysis. J. Am. Chem. Soc. 2019, 141, 16983–16990. DOI: 10.1021/jacs.9b09373.
  • Byrne, P. A.; Gilheany, D. G. The Mechanism of Phosphonium Ylide Alcoholysis and Hydrolysis: Concerted Addition of the O–H Bond across the P=C Bond. Chemistry 2016, 22, 9140–9154. DOI: 10.1002/chem.201600530.
  • Edmonds, M.; Abell, A. The Wittig Reaction. In Modern Carbonyl Olefination. Wiley-VCH Verlag GmbH & Co. KGaA, 2004; pp 1–17.
  • Zhang, X.; Liu, H.; Hu, X.; Tang, G.; Zhu, J.; Zhao, Y. Ni(II)/Zn Catalyzed Reductive Coupling of Aryl Halides with Diphenylphosphine Oxide in Water. Org. Lett. 2011, 13, 3478–3481. DOI: 10.1021/ol201141m.
  • Rummelt, S. M.; Ranocchiari, M.; van Bokhoven, J. A. Synthesis of Water-Soluble Phosphine Oxides by Pd/C-Catalyzed P-C Coupling in Water. Org. Lett. 2012, 14, 2188–2190. DOI: 10.1021/ol300582y.
  • Saito, H.; Matsumoto, Y.; Hashimoto, Y.; Fujii, S. Phosphine Boranes as Less Hydrophobic Building Blocks than Alkanes and Silanes: Structure-Property Relationship and Estrogen-Receptor-Modulating Potency of 4-Phosphinophenol Derivatives. Bioorg. Med. Chem. 2020, 28, 115310–115316. DOI: 10.1016/j.bmc.2020.115310.
  • Dorok, S.; Rothe, C.; Fadhel, O.; Cardinali, F. Organic electronic device. EP2786434B1, 2015.
  • Schroll, P.; König, B. Photocatalytic α-Oxyamination of Stable Enolates, Silyl Enol Ethers, and 2-Oxoalkane Phosphonic Esters. Eur. J. Org. Chem. 2015, 2015, 309–313. DOI: 10.1002/ejoc.201403433.
  • Maass, J. S.; Wilharm, R. K.; Luck, R. L.; Zeller, M. Photoluminescent Properties of Three Lanthanide Compounds of Formulae LnCl3(Diphenyl((5-Phenyl-1H-Pyrazol-3-yl)Methyl)Phosphine Oxide)2, Ln=Sm, Eu and Tb: X-Ray Structural, Emission and Vibrational Spectroscopies, DFT and Thermogravimetric Studies. Inorg. Chim. Acta. 2018, 471, 481–492. DOI: 10.1016/j.ica.2017.11.049.
  • Fischer, M.; Schaper, R.; Jaugstetter, M.; Schmidtmann, M.; Beckhaus, R. Electrophilic d0 Cations of Group 4 Metals (M = Ti, Zr, Hf) Derived from Monopentafulvene Complexes: Direct Formation of Tridentate Cp,O,P-Ligands. Organometallics 2018, 37, 1192–1205. DOI: 10.1021/acs.organomet.8b00088.
  • Puls, F.; Knölker, H.-J. Conversion of Olefins into Ketones by an Iron-Catalyzed Wacker-Type Oxidation Using Oxygen as the Sole Oxidant. Angew. Chem. Int. Ed. Engl. 2018, 57, 1222–1226. DOI: 10.1002/anie.201710370.
  • Wang, H.; Wang, B.; Li, B. Synthesis of 3-Arylbenzofuran-2-ylphosphines via Rhodium-Catalyzed Redox-Neutral C-H Activation and Their Applications in Palladium-Catalyzed Cross-Coupling of Aryl Chlorides. J. Org. Chem. 2017, 82, 9560–9569. DOI: 10.1021/acs.joc.7b01566.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.