Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 51, 2021 - Issue 11
449
Views
8
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

Recent developments in the fabrication of magnetic nanoparticles for the synthesis of trisubstituted pyridines and imidazoles: A green approach

Pages 1669-1699 | Received 25 Jan 2021, Published online: 22 Mar 2021

References

  • Kaushik, M.; Moores, A. New Trends in Sustainable Nanocatalysis: Emerging Use of Earth Abundant Metals. Curr. Opin. Green Sustain. Chem. 2017, 7, 39–45. DOI: 10.1016/j.cogsc.2017.07.002.
  • Gawande, M. B.; Branco, P. S.; Varma, R. S. Nano-Magnetite (Fe3O4) as a Support for Recyclable Catalysts in the Development of Sustainable Methodologies. Chem. Soc. Rev. 2013, 42, 3371–3393. DOI: 10.1039/c3cs35480f.
  • Mohammadi, O.; Golestanzadeh, M.; Abdouss, M. Recent Advances in Organic Reactions Catalyzed by Graphene Oxide and Sulfonated Graphene as Heterogeneous Nanocatalysts: A Review. New J. Chem. 2017, 41, 11471–11497. DOI: 10.1039/C7NJ02515G.
  • Hossaini, Z.; Noushin, A.; Valipour, P.; Ghazvini, M.; Rostam, M. H. Reusable Fe3O4/ZnO/MWCNTs Magnetic Nanocomposites Promoted Synthesis of New Naphthyridines. Polycycl. Aromat. Compd. 2020, 40, 1–20. DOI: 10.1080/10406638.2020.1852285.
  • Maleki, A.; Ghamari, N.; Kamalzare, M. Chitosan-Supported Fe3O4 Nanoparticles: a Magnetically Recyclable Heterogeneous Nanocatalyst for the Syntheses of Multifunctional Benzimidazoles and Benzodiazepines. RSC Adv. 2014, 4, 9416–9423. DOI: 10.1039/c3ra47366j.
  • Zarnegar, Z.; Safar, J. Fe3O4@Chitosan Nanoparticles: A Valuable Heterogeneous Nanocatalyst for the Synthesis of 2,4,5-Trisubstituted Imidazoles. RSC Adv. 2014, 4, 20932–20939. DOI: 10.1039/C4RA03176H.
  • Suo, H.; Xu, L.; Xue, Y.; Qiu, X.; Huang, H.; Hu, Y. Ionic Liquids-Modified Cellulose Coated Magnetic Nanoparticles for Enzyme Immobilization: Improvement of Catalytic Performance. Carbohydr. Polym. 2020, 234, 115914. DOI: 10.1016/j.carbpol.2020.115914.
  • Wu, L.; Mendoza-Garcia, A.; Li, Q.; Sun, S. Organic Phase Syntheses of Magnetic Nanoparticles and Their Applications. Chem. Rev. 2016, 116, 10473–10512. DOI: 10.1021/acs.chemrev.5b00687.
  • Biehl, P.; Lühe, M. V. D.; Dutz, S.; Schacher, F. H. Synthesis, Characterization, and Applications of Magnetic Nanoparticles Featuring Polyzwitterionic Coatings. Polymers. 2018, 10, 91. DOI: 10.3390/polym10010091.
  • Yew, Y. P.; Shameli, K.; Miyake, M.; Khairudin, N. B. B. A.; Mohamad, S. E. B.; Naiki, T.; Lee, K. X. Green Biosynthesis of Superparamagnetic Magnetite Fe3O4 Nanoparticles and Biomedical Applications in Targeted Anticancer Drug Delivery System: A Review. Arab. J. Chem. 2020, 13, 2287–2308. DOI: 10.1016/j.arabjc.2018.04.013.
  • Hudson, R.; Feng, Y.; Varma, R. S.; Moores, A. Bare Magnetic Nanoparticles: Sustainable Synthesis and Applications in Catalytic Organic Transformations. Green Chem. 2014, 16, 4493–4606. DOI: 10.1039/C4GC00418C.
  • Silva, M. F.; Oliveira, L. A. S. D.; Ciciliati, M. A.; Lima, M. K.; Ivashita, F. F.; Oliveira, D. M. F. D.; Hechenleitner, A. A. W.; Pineda, E. A. G. The Effects and Role of Polyvinylpyrrolidone on the Size and Phase Composition of Iron Oxide Nanoparticles Prepared by a Modified Sol-Gel Method. J. Nanomater. 2017, 2017, 1–10.
  • Kazemi, M. Based on MFe2O4 (M = Co, Cu, and Ni): Magnetically Recoverable Nanocatalysts in Synthesis of Heterocyclic Structural Scaffolds. Synth. Commun. 2020, 50, 1899–1935. DOI: 10.1080/00397911.2020.1723109.
  • Ghobadi, M.; Razi, M. K.; Javahershenas, R.; Kazemi, M. Nanomagnetic Reusable Catalysts in Organic Synthesis. Synth. Commun. 2020, 50, 1–23. DOI: 10.1080/00397911.2020.1819328.
  • Gebre, S. H.; Sendeku, M. G. New Frontiers in the Biosynthesis of Metal Oxide Nanoparticles and Their Environmental Applications: An Overview. SN Appl. Sci. 2019, 1, 928. DOI: 10.1007/s42452-019-0931-4.
  • Zhang, Q.; Yang, X.; Guan, J. Applications of Magnetic Nanomaterials in Heterogeneous Catalysis. ACS Appl. Nano Mater. 2019, 2, 4681–4697. DOI: 10.1021/acsanm.9b00976.
  • Blaskievicz, S. F.; Endo, W. G.; Zarbin, A. J. G.; Orth, E. S. Magnetic Nanocatalysts Derived from Carbon Nanotubes Functionalized with Imidazole: Towards Pesticide Degradation. Appl. Catal. B Environ. 2020, 264, 118496. DOI: 10.1016/j.apcatb.2019.118496.
  • Henary, M.; Kananda, C.; Rotolo, L.; Savino, B.; Owens, E. A.; Cravotto, G. Benefits and Applications of Microwave-Assisted Synthesis of Nitrogen Containing Heterocycles in Medicinal Chemistry. RSC Adv. 2020, 10, 14170–14197. DOI: 10.1039/D0RA01378A.
  • Hamada, Y. Role of Pyridines in Medicinal Chemistry and Design of BACE1 Inhibitors Possessing a Pyridine Scaffold. In Pyridine; Pandey, P. P., Ed.; London: IntechOpen, 2018, pp 9–26.
  • Qing, X.; Wang, T.; Zhang, F.; Wang, C. One-Pot Synthesis of 2,4,6-Triarylpyridines from b- Nitrostyrenes, Substituted Salicylic Aldehydes and Ammonium Acetate. RSC Adv. 2016, 6, 95957–95964. DOI: 10.1039/C6RA18630K.
  • Rohokale, R. S.; Koenig, B.; Dhavale, D. D. Synthesis of 2,4,6-Trisubstituted Pyridines by Oxidative Eosin Y Photoredox Catalysis. J. Org. Chem. 2016, 81, 7121–7126. DOI: 10.1021/acs.joc.6b00979.
  • Samanta, S.; Sarkar, S.; Pal, R.; Mallik, A. K. An Efficient and Green Method for Synthesis of 2,4,5 Triarylimidazoles without Use of Any Solvent, Catalyst, or Solid Surface. Org. Chem. Int. 2013, 2013, 1–6. DOI: 10.1155/2013/512074.
  • Sonar, J.; Pardeshi, S.; Dokhe, S.; Pawar, R.; Kharat, K.; Zine, A. An Efficient Method for the Synthesis of 2, 4, 5-Trisubstituted Imidazoles Using Lactic Acid as Promoter. SN Appl. Sci. 2019, 1, 1045. DOI: 10.1007/s42452-019-0935-0.
  • Banothu, J.; Gali, R.; Velpula, R.; Bavantula, R. Brønsted Acidic Ionic Liquid Catalyzed an Efficient and Eco-Friendly Protocol for the Synthesis of 2,4,5-Trisubstituted-1H-Imidazoles under Solvent- Free Conditions. Arab. J. Chem. 2017, 10, S2754–S2761. DOI: 10.1016/j.arabjc.2013.10.022.
  • Gopalaiah, K.; Rao, D. C.; Mahiya, K.; Tiwari, A. Iron-Catalyzed Aerobic Oxidative Cleavage and Construction of C-N Bonds: A Facile Method for Synthesis of 2,4,6-Trisubstituted Pyridines. Asian J. Org. Chem. 2018, 7, 1872–1881. DOI: 10.1002/ajoc.201800312.
  • Penta, S.; Vedula, R. R. Synthesis of 2,4,6-Tri-Substituted Pyridine Derivatives in Aqueous Medium via Hantzsch Multi-Component Reaction Catalyzed by Cerium (IV) Ammonium Nitrate. J. Heterocycl. Chem. 2013, 50, 21–24.
  • Song, Z.; Huang, X.; Yi, W.; Zhang, W. One-Pot Reactions for Modular Synthesis of Polysubstituted and Fused Pyridines. Org. Lett. 2016, 18, 5640–5643. DOI: 10.1021/acs.orglett.6b02883.
  • Rekunge, D. S.; Kale, I. A.; Chaturbhuj, G. U. An Efficient, Green Solvent-Free Protocol for the Synthesis of 2,4,6-Triarylpyridines Using Reusable Heterogeneous Activated Fuller’s Earth Catalyst. J. Iran. Chem. Soc. 2018, 15, 2455–2462. DOI: 10.1007/s13738-018-1434-8.
  • Maleki, A.; Firouzi-Haji, R. L. L-Proline Functionalized Magnetic Nanoparticles: A Novel Magnetically Reusable Nanocatalyst for One-Pot Synthesis of 2,4,6-Triarylpyridines. Sci. Rep. 2018, 8, 17303. DOI: 10.1038/s41598-018-35676-x.
  • Alinezhad, H.; Tajbakhsh, M.; Ghobadi, N. Nano Fe3O4-Supported, Hydrogensulfate Ionic Liquid-Catalyzed, One-Pot Synthesis of Polysubstituted Pyridines. Synth. Commun. 2015, 45, 1964–1976. DOI: 10.1080/00397911.2015.1041046.
  • Shaabani, A.; Boroujeni, M. B.; Laeini, M. S. Copper(II) Supported on Magnetic Chitosan: A Green Nanocatalyst for the Synthesis of 2,4,6-Triaryl Pyridines by C–N Bond Cleavage of Benzylamines. RSC Adv. 2016, 6, 27706–27713. DOI: 10.1039/C6RA00102E.
  • Tabrizian, E.; Amoozadeh, A.; Rahmani, S.; Imanifar, E.; Azhari, S.; Malmir, M. One-Pot, Solvent-Free and Efficient Synthesis of 2, 4, 6-Triarylpyridines Catalyzed by Nano-Titania-Supported Sulfonic Acid as a Novel Heterogeneous. Chinese Chem. Lett. 2015, 26, 1278–1282. DOI: 10.1016/j.cclet.2015.06.013.
  • Zolfigol, M. A.; Karimi, F.; Yarie, M.; Torabi, M. Catalytic Application of Sulfonic Acid-Functionalized Titana-Coated Magnetic Nanoparticles for the Preparation of 1, 8-Anomeric ‐ Based Oxidation. Appl. Organometal. Chem. 2017, 32, e4063.
  • Forouzandehdel, S.; Meskini, M.; Rami, M. R. Design and Application of (Fe3O4)-GO TfOH Based AgNPs Doped Starch/PEG-Poly (Acrylic Acid) Nanocomposite as the Magnetic Nanocatalyst and the Wound Dress. J. Mol. Struct. 2020, 1214, 128142. DOI: 10.1016/j.molstruc.2020.128142.
  • Gajaganti, S.; Kumar, D.; Singh, S.; Srivastava, V.; Allam, B. K. A. New Avenue to the Synthesis of Symmetrically Substituted Pyridines Catalyzed by Magnetic Nano-Fe3O4: Methyl Arenes as Sustainable Surrogates of Aryl Aldehydes. ChemistrySelect. 2019, 4, 9241–9246. DOI: 10.1002/slct.201900289.
  • Boroujeni, M. B.; Hashemzadeh, A.; Faroughi, M.; Shaabani, A.; Amini, M. M. Magnetic MIL-101-SO3H: A Highly Efficient Bifunctional Nanocatalyst for the Synthesis of 1,3,5- Triarylbenzenes and 2,4,6-Triaryl Pyridines. RSC Adv. 2016, 6, 100195–100202. DOI: 10.1039/C6RA24574A.
  • Zheng, X.; Ma, Z.; Zhang, D. Synthesis of Imidazole-Based Medicinal Molecules Utilizing the Van Leusen Imidazole Synthesis. Pharmaceuticals. 2020, 13, 37. DOI: 10.3390/ph13030037.
  • El-Remaily, M. A. E. A. A. A.; Abu-Dief, A. M. CuFe2O4 Nanoparticles: An Efficient Heterogeneous Magnetically Separable Catalyst for Synthesis of Some Novel Propynyl-1H-Imidazoles Derivatives. Tetrahedron. 2015, 71, 2579–2584. DOI: 10.1016/j.tet.2015.02.057.
  • Lemrová, B.; Smyslová, P.; Popa, I.; Oždian, T.; Zajdel, P.; Soural, M. Directed Solid-Phase Synthesis of Trisubstituted Imidazo[4,5-c]Pyridines and Imidazo[4,5-b]Pyridines. ACS Comb. Sci. 2014, 16, 558–565. DOI: 10.1021/co500090t.
  • Kazemi, M. Reusable Nanomagnetic Catalysts in Synthesis of Imidazole Scaffolds. Synth. Commun. 2020, 50, 2095–2113. DOI: 10.1080/00397911.2020.1728334.
  • Verma, A.; Joshi, S.; Singh, D. Imidazole: Having Versatile Biological Activities. J. Chem. 2013, 2013, 1–12. DOI: 10.1155/2013/329412.
  • Kerru, N.; Bhaskaruni, S. V. H. S.; Gummidi, L.; Maddila, N.; Maddila, S.; Jonnalagadda, S. B. Recent Advances in Heterogeneous Catalysts for the Synthesis of Imidazole Derivatives. Synth. Commun. 2019, 49, 2437–2459. DOI: 10.1080/00397911.2019.1639755.
  • Hassanzadeh-Afruzi, F.; Bahrami, S.; Maleki, A. ZnS/CuFe2O4: Magnetic Hybrid Nanocomposite to Catalyze the Synthesis of 2,4,5-Triaryl-1H-Imidazole. Proceedings. 2019, 41, 44. DOI: 10.3390/ecsoc-23-06654.
  • Baba, K. R.; Maripi, S.; Babu, M. S.; Appna, N. R. One Pot Multicomponent Green Synthesis of Triaryl Imidazoles Catalysed by Nano Nickel Cobalt Ferrite. Chem. Sci. Trans. 2017, 6, 428–436.
  • Hajizadeh, Z.; Radinekiyan, F.; Eivazzadeh, R.; Maleki, A. Development of Novel and Green NiFe2O4/Geopolymer Nanocatalyst Based on Bentonite for Synthesis of Imidazole Heterocycles by Ultrasonic Irradiations. Sci. Rep. 2020, 10, 11671. DOI: 10.1038/s41598-020-68426-z.
  • Safaei-Ghomi, J.; Kareem Abbas, A.; Shahpiri, M. Synthesis of Imidazoles Promoted by H3PW12O40-Amino-Functionalized CdFe12O19@SiO2 Nanocomposite. Nanocomposites. 2020, 6, 149–157. DOI: 10.1080/20550324.2020.1858246.
  • Safari, J.; Zarnegar, Z. A Highly Efficient Magnetic Solid Acid Catalyst for Synthesis of 2,4,5-Trisubstituted Imidazoles Under Ultrasound Irradiation. Ultrason. Sonochem. 2013, 20, 740–746. DOI: 10.1016/j.ultsonch.2012.10.004.
  • Arghan, M.; Koukabi, N.; Kolvari, E. Sulfonated-Polyvinyl Amine Coated on ­ Fe3O4 Nanoparticles: A High-Loaded and Magnetically Separable Acid Catalyst for Multicomponent Reactions. J. Iran. Chem. Soc. 2019, 16, 2333–2350. DOI: 10.1007/s13738-019-01700-8.
  • Esmaeilpour, M.; Javidi, J.; Zandi, M. One-Pot Synthesis of Multisubstituted Imidazoles Under Solvent-Free Conditions and Microwave Irradiation Using Fe3O4@SiO2–Imid–PMAn Magnetic Porous Nanospheres as a Recyclable Catalyst. New J. Chem. 2015, 39, 3388–3398. DOI: 10.1039/C5NJ00050E.
  • Kalhor, M.; Zarnegar, Z. Fe3O4/SO3H@zeolite-Y as a Novel Multi-Functional and Magnetic Nanocatalyst for Clean and Soft Synthesis of Imidazole and Perimidine Derivatives. RSC Adv. 2019, 9, 19333–19346. DOI: 10.1039/C9RA02910A.
  • Banazadeh, M.; Amirnejat, S.; Javanshir, S. Synthesis, Characterization, and Catalytic Properties of Magnetic Fe3O4@FU: A Heterogeneous Nanostructured Mesoporous Bio-Based Catalyst for the Synthesis of Imidazole Derivatives. Front. Chem. 2020, 8, 1–15.
  • Varzi, Z.; Maleki, A. Design and Preparation of ZnS ‐ ZnFe2O4: A Green and Efficient Hybrid Nanocatalyst for the Multicomponent Synthesis of 2, 4, 5-Triaryl-1H – Imidazoles. Appl. Organometal. Chem. 2019, 33, e5008. DOI: 10.1002/aoc.5008.
  • Khalifeh, R.; Naseri, V.; Rajabzadeh, M. Synthesis of Imidazolium-Based Ionic Liquid on Modified Magnetic Nanoparticles for Application in One-Pot Synthesis of Trisubstituted Imidazoles. ChemistrySelect 2020, 5, 11453–11462. DOI: 10.1002/slct.202003133.
  • Zarnegar, Z.; Safari, J. Catalytic Activity of Cu Nanoparticles Supported on Fe3O4-Polyethylene Glycol Nanocomposites for the Synthesis of Substituted Imidazoles. New J. Chem. 2014, 38, 4555–4565. DOI: 10.1039/C4NJ00645C.
  • Nguyen, T. T.; Le, N. T.; Nguyen, T. T.; Tran, P. H. An Efficient Multicomponent Synthesis of 2,4,5- Trisubstituted and 1,2,4,5-Tetrasubstituted Imidazoles Catalyzed by a Magnetic Nanoparticle Supported Lewis Acidic Deep Eutectic Solvent. RSC Adv. 2019, 9, 38148–38153. DOI: 10.1039/C9RA08074K.
  • Naeimi, H.; Aghaseyedkarimi, D. [email protected] as a Recyclable Heterogeneous Nanocatalyst for Microwave-Promoted Synthesis of 2,4,5-Trisubstituted Imidazoles under Solvent Free Condition. New J. Chem. 2015, 39, 9415–9421. DOI: 10.1039/C5NJ01273B.
  • Maleki, A.; Rahimi, J.; Valadi, K. Sulfonated Fe3O4@PVA Superparamagnetic Nanostructure: Design, in-Situ Preparation, Characterization and Application in the Synthesis of Imidazoles as a Highly Efficient Organic-Inorganic Bronsted Acid Catalyst. Nano-Struct. Nano-Objects. 2019, 18, 100264. DOI: 10.1016/j.nanoso.2019.100264.
  • Maleki, A.; Paydar, R. Graphene Oxide–Chitosan Bionanocomposite: A Highly Efficient Nanocatalyst for the One-Pot Three- Component Synthesis of Trisubstituted Imidazoles under Solvent-Free Conditions. RSC Adv. 2015, 5, 33177–33184. DOI: 10.1039/C5RA03355A.
  • Esmaeilpour, M.; Javidi, J.; Dehghani, F.; Zahmatkesh, S. One-Pot Synthesis of Multisubstituted Imidazoles Catalyzed by Dendrimer-PWAn Nanoparticles under Solvent-Free Conditions and Ultrasonic Irradiation. Res. Chem. Intermed. 2017, 43, 163–185. DOI: 10.1007/s11164-016-2613-9.
  • Maleki, A.; Alrezvani, Z.; Maleki, S. Design, Preparation and Characterization of Urea-Functionalized Fe3O4/SiO2 Magnetic Nanocatalyst and Application for the One-Pot Multicomponent Synthesis of Substituted Imidazole Derivatives. Catal. Commun. 2015, 69, 29–33. DOI: 10.1016/j.catcom.2015.05.014.
  • Hosseini, S.; Kiasat, A. R.; Farhadi, A. Fe3O4@SiO2/Bipyridinium Nanocomposite as a Magnetic and Recyclable Heterogeneous Catalyst for the Synthesis of Highly Substituted Imidazoles via Multi-Component Condensation Strategy. Polycycl. Aromat. Compd. 2019, 39, 1–11. DOI: 10.1080/10406638.2019.1616306.
  • Eidi, E.; Kassaee, M. Z.; Nasresfahani, Z. Synthesis of 2,4,5-Trisubstituted Imidazoles over Reusable CoFe2O4 Nanoparticles: An Efficient and Green Sonochemical Process. Appl. Organometal. Chem. 2016, 30, 561–565. DOI: 10.1002/aoc.3470.
  • Sanasi, P. D.; Majji, R. K.; Bandaru, S.; Bassa, S.; Pinninti, S.; Vasamsetty, S.; Korupolu, R. B. Nano Copper Ferrite Catalyzed Sonochemical, One-Pot Three and Four Component Synthesis of Poly Substituted Imidazoles. MRC. 2016, 05, 31–44. DOI: 10.4236/mrc.2016.51004.
  • Sanasi, P. D.; Santhipriya, D.; Ramesh, Y.; Kumar, M. R.; Swathi, B.; Rao, K. J. Nano Copper and Cobalt Ferrites as Heterogeneous Catalysts for the One-Pot Synthesis of 2, 4, 5-Tri Substituted Imidazoles. J. Chem. Sci. 2014, 126, 1715–1720. DOI: 10.1007/s12039-014-0729-2.
  • Ahooie, S. T.; Azizi, N.; Yavari, I.; Hashemi, M. M. Magnetically Separable and Recyclable g-C3N4 Nanocomposite Catalyzed One-Pot Synthesis of Substituted Imidazoles. J. Iran. Chem. Soc. 2018, 15, 855–862. DOI: 10.1007/s13738-017-1284-9.
  • Mirjalili, B. F.; Bamoniri, A.; Mirhoseini, M. A. Nano- SnCl4.SiO2: An Efficient Catalyst for One-Pot Synthesis of 2,4,5-Tri Substituted Imidazoles under Solvent-Free Conditions. Sci. Iran. 2013, 20, 587–591. DOI: http://dx.doi.org/10.1016/j.scient.2013.02.008.
  • Nikoofar, K.; Haghighi, M.; Lashanizadegan, M.; Ahmadvand, Z. ZnO Nanorods: Efficient and Reusable Catalysts for the Synthesis of Substituted Imidazoles in Water. Integr. Med. Res. 2015, 9, 570–578. DOI: 10.1016/j.jtusci.2014.12.007.
  • Maleki, A.; Movahed, H.; Paydar, R. Design and Development of a Novel Cellulose/y-Fe2O3/Ag Nanocomposite: A Potential Green Catalyst and Antibacterial Agent. RSC Adv. 2016, 6, 13657–13665. DOI: 10.1039/C5RA21350A.
  • Naeimi, H.; Aghaseyedkarimi, D. Ionophore Silica-Coated Magnetite Nanoparticles as a Recyclable Heterogeneous Catalyst for One-Pot Green Synthesis of 2,4,5-Trisubstituted Imidazoles. Dalton Trans. 2016, 45, 1243–1253. DOI: 10.1039/C5DT03488D.
  • Maleki, B.; Eshghi, H.; Khojastehnezhad, A.; Tayebee, R.; Ashraf, S. S.; Kahoo, G. E.; Moeinpour, F. Silica Coated Magnetic NiFe2O4 Nanoparticle Supported Phosphomolybdic Acid; Synthesis, Preparation and Its Application as a Heterogeneous and Recyclable Catalyst for the One-Pot Synthesis of Tri- and Tetra-Substituted Imidazoles under Solvent Free Conditi. RSC Adv. 2015, 5, 64850–64857. DOI: 10.1039/C5RA10534J.
  • Shaabani, A.; Afshari, R.; Hooshmand, S. E. Crosslinked Chitosan Nanoparticle-Anchored Magnetic Multi-Wall Carbon Nanotubes: A Bio-Nanoreactor with Extremely High Activity toward Click-Multi-Component Reactions. New J. Chem. 2017, 41, 8469–8481. DOI: 10.1039/C7NJ01150D.
  • Singh, H.; Rajput, J. K. Co(II) Anchored Glutaraldehyde Crosslinked Magnetic Chitosan Nanoparticles (MCS) for Synthesis of 2,4,5‐Trisubstituted and 1,2,4,5‐Tetrasubstituted Imidazoles. Appl. Organometal. Chem. 2018, 32, e3989. DOI: 10.1002/aoc.3989.
  • Safari, J.; Naseh, S.; Zarnegar, Z.; Akbari, Z. Applications of Microwave Technology to Rapid Synthesis of Substituted Imidazoles on Silica-Supported SbCl3 as an Efficient Heterogeneous Catalyst. Integr. Med. Res. 2014, 8, 323–330. DOI: 10.1016/j.jtusci.2014.01.007.
  • Moacă, E.-A.; Coricovac, E. D.; Soica, C. M.; Pinzaru, I. A.; Păcurariu, C. S.; Dehelean, C. A. Preclinical Aspects on Magnetic Iron Oxide Nanoparticles and Their Interventions as Anticancer Agents: Enucleation, Apoptosis and Other Mechanism. In Iron Ores and Iron Oxide Materials; Shatokha, V., Ed.; London: IntechOpen, 2018, pp 229–254.
  • Díaz-Hernández, A.; Gracida, J.; García-Almendárez, B. E.; Regalado, C.; Núñez, R.; Amaro-Reyes, A. Amaro-Reyes, A. Characterization of Magnetic Nanoparticles Coated with Chitosan: A Potential Approach for Enzyme Immobilization. J. Nanomater. 2018, 2018, 1–11. DOI: 10.1155/2018/9468574.
  • Rossi, L. M.; Costa, N. J. S.; Silva, F. P.; Wojcieszak, R. Magnetic Nanomaterials in Catalysis: Advanced Catalysts for Magnetic Separation and Beyond. Green Chem. 2014, 16, 2906–3380. DOI: 10.1039/c4gc00164h.
  • Chen, B.; He, Y.; Sung, S.; Thi, T.; Le, H.; Chen, J.; Wei, Z.; Yao, D. Synthesis and Characterization of Magnetic Nanoparticles Coated with Polystyrene Sulfonic Acid for Biomedical Applications. Sci. Technol. Adv. Mater. 2020, 21, 471–481. DOI: 10.1080/14686996.2020.1790032.
  • Dheyab, M. A.; Aziz, A. A.; Jameel, M. S.; Noqta, o. A.; Khaniabadi, P. M.; Mehrdel, B. Simple Rapid Stabilization Method through Citric Acid Modification for Magnetite Nanoparticles. Sci. Rep. 2020, 10, 10793. DOI: 10.1038/s41598-020-67869-8.
  • Madkour, M.; Bumajdad, A.; Al-Sagheer, F. To What Extent Do Polymeric Stabilizers Affect Nanoparticles Characteristics? Adv. Colloid Interface Sci. 2019, 270, 38–53. DOI: 10.1016/j.cis.2019.05.004.
  • Ma, Y. J.; Jiang, X. X.; Kai, Y. Recent Advances in Preparation and Applications of Magnetic Framework Composites. Chem. Asian J. 2019, 14, 3515–3530. DOI: 10.1002/asia.201901139.
  • Jiao, F.; Gao, F.; Wang, H.; Deng, Y.; Zhang, Y.; Qian, X.; Zhang, Y. Polymeric Hydrophilic Ionic Liquids Used to Modify Magnetic Nanoparticles for the Highly Selective Enrichment of N-Linked Glycopeptides. Sci. Rep. 2017, 7, 6984. DOI: 10.1038/s41598-017-07516-x.
  • Azarifar, D.; Ghaemi, M.; Golbaghi, M.; Karamian, R.; Asadbegy, M. Synthesis and Biological Evaluation of New Pyranopyridine Derivatives Catalyzed by Guanidinium Chloride-Functionalized g-Fe2O3/HAp Magnetic Nanoparticles. RSC Adv. 2016, 6, 92028–92039. DOI: 10.1039/C6RA15781E.
  • Zang, L.; Qiu, J.; Wu, X.; Zhang, W.; Sakai, E.; Wei, Y. Preparation of Magnetic Chitosan Nanoparticles as Support for Cellulase Immobilization. Ind. Eng. Chem. Res. 2014, 53, 3448–3454. DOI: 10.1021/ie404072s.
  • Shokrollahi, A.; Zamani, R. Synthesis of Fe3O4@SiO2 Magnetic Nanoparticle, Functionalized with 2, 6-Pyridine Dicarboxylic Acid. Inorg. Nano-Metal Chem. 2019, 49, 127–131. DOI: 10.1080/24701556.2019.1574819.
  • Alinezhad, H.; Tajbakhsh, M.; Ghobadi, N. The Synthesis of Polysubstituted Pyridines Using Nano Fe3O4 Supported Hydrogensulfate Ionic Liquid. Res. Chem. Intermed. 2015, 41, 9113–9127. DOI: 10.1007/s11164-015-1951-3.
  • Jafarzadeh, M.; Soleimani, E.; Sepahvand, H.; Adnan, R. Synthesis and Characterization of Fluconazole-Functionalized Magnetic Nanoparticles as a Catalyst for the Synthesis of 3-Aryl and 3-Amino-Imidazo- [1,2-a]Pyridines. RSC Adv. 2015, 5, 42744–42753. DOI: 10.1039/C5RA05246G.
  • Roto, R. Surface Modification of Fe3O4 as Magnetic Adsorbents for Recovery of Precious Metals. In Advanced Surface Engineering Research; Chowdhury, M. A., Ed.; London: IntechOpen, 2018, pp 128–145.
  • Prabhakaran, T.; Mangalaraja, R. V.; Denardin, J. C.; Varaprasad, K. The Effect of Capping Agents on the Structural and Magnetic Properties of Cobalt Ferrite Nanoparticles. J. Mater. Sci. Mater. Electron. 2018, 29, 11774–11782. DOI: 10.1007/s10854-018-9276-9.
  • Zirak, M.; Abdollahiyan, A.; Eftekhari-Sis, B.; Saraei, M. Carboxymethyl Cellulose Coated Fe3O4@SiO2 Core-Shell Magnetic Nanoparticles for Methylene Blue Removal: Equilibrium, Kinetic, and Thermodynamic Studies. Cellulose. 2018, 25, 503–515. DOI: 10.1007/s10570-017-1590-5.
  • Bayat, A.; Shakourian-Fard, M.; Ehyaei, N.; Hashemi, M. M. Silver Nanoparticles Supported on Silica-Coated Ferrite as Magnetic and Reusable Catalysts for Oxidant-Free Alcohol Dehydrogenation. RSC Adv. 2015, 5, 22503–22509. DOI: 10.1039/C4RA15498C.
  • Silva, S. M.; Tavallaie, R.; Sandiford, L.; Tilley, D.; Gooding, J. J. Gold Coated Magnetic Nanoparticles: From Preparation to Surface Modification for Analytical and Biomedical Applications. Chem. Commun. 2016, 52, 7528–7540. DOI: 10.1039/C6CC03225G.
  • Zhu, N.; Ji, H.; Yu, P.; Niu, J.; Farooq, M. U.; Akram, M. W.; Udego, I. O.; Li, H.; Niu, X. Surface Modification of Magnetic Iron Oxide Nanoparticles. Nanomater. Rev. 2018, 8, 810. DOI: 10.3390/nano8100810.
  • Sadeghzadeh, S. M.; Mogharabi, M. Metal Complexes Immobilized on Magnetic Nanoparticles. In Green Nanotechnology – Overview and Further Prospects; Larramendy, M. L., Soloneski, S., Eds.; London: INTECH, 2016, pp 57–85.
  • Nemati, F.; Elhampour, A.; Natanzi, M. B. Synthesis and Characterization of Nano-Copper Ferrite as a Magnetically Separable Catalyst for the One-Pot Synthesis of 2,4,5- Trisubstituted and 1,2,4,5-Tetrasubstituted Imidazoles under Solvent- Free Condition. Synth. React. Inorganic, Met. Nano-Metal Chem. 2016, 3174, 1–21.
  • Nejatianfar, M.; Akhlaghinia, B. Cu(II) Immobilized on Guanidinated Epibromohydrin-Highly Functionalized γ ‐ Fe2O3@TiO2(γ-Fe2O3@TiO2-EG -Cu (II)): A Efficient Magnetically Separable Heterogeneous Nanocatalyst for One -Pot Synthesis of Highly Substituted Imidazoles. Appl. Organometal. Chem. 2017, 32, e4095.
  • Moghadam, H. H.; Sobhani, S.; Sansano, J. M. New Nanomagnetic Heterogeneous Cobalt Catalyst for the Synthesis of Aryl Nitriles and Biaryls. ACS Omega. 2020, 5, 18619–18627. DOI: 10.1021/acsomega.0c01002.
  • Abujaber, F.; Zougagh, M.; Jodeh, S.; Ríos, Á.; Javier, F.; Bernardo, G.; Martín-Doimeadios, R. C. R. Magnetic Cellulose Nanoparticles Coated with Ionic Liquid as a New Material for the Simple and Fast Monitoring of Emerging Pollutants in Waters by Magnetic Solid Phase Extraction. Microchem. J. 2018, 137, 490–495. DOI: 10.1016/j.microc.2017.12.007.
  • Ziegler-Borowska, M.; Che, D.; Siódmiak, T.; Sikora, A.; Marsza, P.; Kaczmarek, H. Synthesis of New Chitosan Coated Magnetic Nanoparticles with Surface Modified with Long-Distanced Amino Groups as a Support for Bioligands Binding. Mater. Lett. 2014, 132, 63–65. DOI: 10.1016/j.matlet.2014.06.020.
  • Safari, J.; Javadian, L. Ultrasound Assisted the Green Synthesis of 2-Amino-4H-Chromene Derivatives Catalyzed by Fe3O4-Functionalized Nanoparticles with Chitosan as a Novel and Reusable Magnetic Catalyst. Ultrason. Sonochem. 2015, 22, 341–348. DOI: 10.1016/j.ultsonch.2014.02.002.
  • Ebrahimiasl, H.; Azarifar, D.; Rakhtshah, J.; Keypour, H.; Mahmoudabadi, M. Application of Novel and Reusable Fe3O4@CoII (Macrocyclic Schiff Base Ligand) for Multicomponent Reactions of Highly Substituted Thiopyridine and 4H-Chromene Derivatives. Appl. Organomet. Chem. 2020, 32, e5769.
  • Azizi, S.; Shadjou, N.; Soleymani, J. CuI/Fe3O4 NPs@Biimidazole IL-KCC-1 as a Leach Proof Nanocatalyst for the Synthesis of Imidazo [1, 2-a] Pyridines in Aqueous Medium. Appl. Organomet. Chem. 2020, 32, e6031.
  • Sivakami, R.; Babu, S. G.; Dhanuskodi, S.; Karvembu, R. Magnetically Retrievable Lepidocrocite Supported Copper Oxide Nanocatalyst (Fe-CuO) for N-Arylation of Imidazole. RSC Adv. 2015, 5, 8571–8578. DOI: 10.1039/C4RA13256D.
  • Marzouk, A. A.; Abu‐Dief, A. M.; Abdelhamid, A. A. Hydrothermal Preparation and Characterization of ZnFe2O4 Magnetic Nanoparticles as an Efficient Heterogeneous Catalyst for the Synthesis of Multi-Substituted Imidazoles and Study of Their Anti‐inflammatory Activity. Appl. Organometal. Chem. 2018, 32, e3794. DOI: 10.1002/aoc.3794.
  • Singh, H.; Rajput, J. K.; Govil, G.; Arora, P.; Badhan, J. Dual Functional Novel Catalytic Cu1−xZrxFe2O4 (x = 0, 0.5, 1) Nanoparticles for Synthesis of Polysubstituted Pyridines and Sunlight-Driven Degradation of Methylene Blue. Appl. Organometal. Chem. 2018, 32, e4514. DOI: 10.1002/aoc.4514.
  • Maleki, A.; Hajizadeh, Z.; Salehi, P. Mesoporous Halloysite Nanotubes Modified by CuFe2O4 Spinel Ferrite Nanoparticles and Study of Its Application as a Novel and Efficient Heterogeneous Catalyst in the Synthesis of Pyrazolopyridine Derivatives. Sci. Rep. 2019, 9, 5552. DOI: 10.1038/s41598-019-42126-9.
  • Maleki, A.; Azizi, M.; Emdadi, Z. A Novel Poly (Ethyleneoxide) -Based Magnetic Nanocomposite Catalyst for Highly Efficient Multicomponent Synthesis of Pyran Derivatives. Green Chem. Lett. Rev. 2018, 11, 573–582. DOI: 10.1080/17518253.2018.1547795.
  • Wang, D.; Liu, W.; Bian, F.; Yu, W. Magnetic Polymer Nanocomposite-Supported Pd: An Efficient and Reusable Catalyst for the Heck and Suzuki Reactions in Water. New J. Chem. 2015, 39, 2052–2059. DOI: 10.1039/C4NJ01581A.
  • Maleki, A.; Ali, A.; Yousefi, S.; Eskandarpour, V. An Efficient Protocol for the One-Pot Multicomponent Synthesis of Polysubstituted Pyridines by Using a Biopolymer-Based Magnetic Nanocomposite. Comptes rendus – Chim. 2015, 18, 1307–1312. DOI: 10.1016/j.crci.2015.09.002.
  • Maleki, B.; Natheghi, H.; Tayebee, R.; Alinezhad, H.; Amiri, A.; S, A. H.; Nouri, S. M. M. Synthesis and Characterization of Nanorod Magnetic Co-Fe Mixed Oxides and Its Catalytic Behavior towards One-Pot Synthesis of Polysubstituted Pyridine Derivatives. Polycycl. Aromat. Compd. 2020, 40, 633–643. DOI: 10.1080/10406638.2018.1469519.
  • Aguilera, G.; Berry, C. C.; West, R. M.; Gonzalez-Monterrubio, E.; Angulo-Molina, A.; Arias-Carrí, O.; M’Endez-Rojas, M. A. Carboxymethyl Cellulose Coated Magnetic Nanoparticles Transport across a Human Lung Microvascular Endothelial Cell Model of the. Nanoscale Adv. 2019, 1, 671–685. DOI: 10.1039/C8NA00010G.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.