Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 51, 2021 - Issue 13
395
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synthesis of novel 2-methyl-4-carboxyquinolines, the new by-products of the Doebner reaction

&
Pages 1947-1955 | Received 06 Feb 2021, Published online: 10 May 2021

References

  • Weyesa, A.; Mulugeta, E. Recent Advances in the Synthesis of Biologically and Pharmaceutically Active Quinoline and Its Analogues: A Review. RSC Adv. 2020, 10, 20784–20793. DOI: 10.1039/D0RA03763J.
  • El-Damasy, A. K.; Haque, M. M.; Park, J. W.; Shin, S. C.; Lee, J.-S.; EunKyeong Kim, E.; Keum, G. 2-Anilinoquinoline Based Arylamides as Broad Spectrum Anticancer Agents with B-RAFV600E/C-RAF Kinase Inhibitory Effects: Design, Synthesis, in Vitro Cell-Based and Oncogenic Kinase Assessments. Eur. J. Med. Chem. 2020, 208, 112756. DOI: 10.1016/j.ejmech.2020.112756.
  • Hassan, S. M.; Morsy, J. M.; Hassanin, H. M.; Othman, E. S. Synthesis and Cytotoxic Evaluation of Novel Brominated N-Alkyl Pyrano[3,2-c]Quinolinones. J. Heterocyclic Chem. 2021, 58, 305–314. DOI: 10.1002/jhet.4169.
  • Krawczyk, M.; Pastuch-Gawolek, G.; Mrozek-Wilczkiewicz, A.; Kuczak, M.; Skonieczna, M.; Musiol, R. Synthesis of 8-Hydroxyquinoline Glycoconjugates and Preliminary Assay of Their β1,4-GalT Inhibitory and Anti-Cancer Properties. Bioorg. Chem. 2019, 84, 326–338. DOI: 10.1016/j.bioorg.2018.11.047.
  • Kumar, S.; Aghara, J. C.; Manoj, A.; Alex, A. T.; Jesil Mathew, A.; Joesph, A. Novel Quinolone Substituted Imidazol-5(4h)-Ones as anti-Inflammatory, Anticancer Agents: Synthesis, Biological Screening and Molecular Docking Studies. IJPER. 2020, 54, 771–780. DOI: 10.5530/ijper.54.3.129.
  • Mirzaei, S.; Eisvand, F.; Hadizadeh, F.; Mosaffa, F.; Ghodsi, R. Design, Synthesis, and Biological Evaluation of Novel 5,6,7-Trimethoxy Quinolines as Potential Anticancer Agents and Tubulin Polymerization Inhibitors. Iran. J. Basic Med. Sci. 2020, 23, 1527–1537. DOI: 10.22038/ijbms.2020.43303.10168.
  • Panda, P.; Chakroborty, S. Navigating the Synthesis of Quinoline Hybrid Molecules as Promising Anticancer Agents. ChemistrySelect 2020, 5, 10187–10199. DOI: 10.1002/slct.202002790.
  • Suresh, S.; Das, S.; Waidha, K.; Maity, R.; Basu, B.; Rajendran, S. Multi-Component Approach for Synthesis of Quinolinyl-1,4-Dihydropyridines, Evaluation of Cytotoxicity against MCF7 and Molecular Docking Studies. ChemistrySelect 2020, 5, 10501–10510. DOI: 10.1002/slct.202002612.
  • Zhou, Y.; Xu, X.; Wang, F.; He, H.; Gong, G.; Xiong, L.; Qi, B. Identification of Novel Quinoline Analogues Bearing Thiazolidinones as Potent Kinase Inhibitors for the Treatment of Colorectal Cancer. Eur. J. Med. Chem. 2020, 204, 112643. DOI: 10.1016/j.ejmech.2020.112643.
  • Ferlin, M. G.; Carta, D.; Bortolozzi, R.; Ghodsi, R.; Chimento, A.; Pezzi, V.; Moro, S.; Hanke, N.; Hartmann, R. W.; Basso, G.; et al. Design, Synthesis, and Structure-Activity Relationships of Azolylmethylpyrroloquinolines as Nonsteroidal Aromatase Inhibitors. J. Med. Chem. 2013, 56, 7536–7551. DOI: 10.1021/jm400377z.
  • Ghodsi, R.; Azizi, E.; Ferlin, M. G.; Pezzi, V.; Zarghi, A. Design, Synthesis and Biological Evaluation of 4-(Imidazolylmethyl)-2-Aryl-Quinoline Derivatives as Aromatase Inhibitors and anti-Breast Cancer Agents. LDDD. 2015, 13, 89–97. DOI: 10.2174/1570180812666150611185605.
  • Ghodsi, R.; Azizi, E.; Zarghi, A. Design, Synthesis and Biological Evaluation of4-(Imidazolylmethyl)-2-(4-Methylsulfonyl Phenyl)-Quinoline Derivatives as Selective COX-2 Inhibitors and In-Vitro Anti-Breast Cancer Agents. Iran. J. Pharm. Res. 2016, 15, 169–177.
  • Ghodsi, R.; Zarghi, A.; Daraei, B.; Hedayati, M. Design, Synthesis and Biological Evaluation of New 2,3-Diarylquinoline Derivatives as Selective Cyclooxygenase-2 Inhibitors. Bioorg. Med. Chem. 2010, 18, 1029–1033. DOI: 10.1016/j.bmc.2009.12.060.
  • Hosseinzadeh, H.; Mazaheri, F.; Ghodsi, R. Pharmacological Effects of a Synthetic Quinoline, a Hybrid of Tomoxiprole and Naproxen, Against Acute Pain and Inflammation in Mice: A Behavioral and Docking Study. Iran. J. Basic Med. Sci. 2017, 20, 446–450. DOI: 10.22038/IJBMS.2017.8588.
  • Jafari, F.; Baghayi, H.; Lavaee, P.; Hadizadeh, F.; Soltani, F.; Moallemzadeh, H.; Mirzaei, S.; Aboutorabzadeh, S. M.; Ghodsi, R. Design, Synthesis and Biological Evaluation of Novel Benzo- and Tetrahydrobenzo-[h]Quinoline Derivatives as Potential DNA-Intercalating Antitumor Agents. Eur. J. Med. Chem. 2019, 164, 292–303. DOI: 10.1016/j.ejmech.2018.12.060.
  • Malayeri, S. O.; Abnous, K.; Arab, A.; Akaberi, M.; Mehri, S.; Zarghi, A.; Ghodsi, R. Design, Synthesis and Biological Evaluation of 7-(Aryl)-2,3-Dihydro-[1,4]Dioxino[2,3-g]Quinoline Derivatives as Potential Hsp90 Inhibitors and Anticancer Agents. Bioorg. Med. Chem. 2017, 25, 1294–1302. DOI: 10.1016/j.bmc.2016.12.050.
  • Mirzaei, S.; Hadizadeh, F.; Eisvand, F.; Mosaffa, F.; Ghodsi, R. Synthesis, Structure-Activity Relationship and Molecular Docking Studies of Novel Quinoline-Chalcone Hybrids as Potential Anticancer Agents and Tubulin Inhibitors. J. Mol. Struct. 2020, 1202, 127310. DOI: 10.1016/j.molstruc.2019.127310.
  • Shobeiri, N.; Rashedi, M.; Mosaffa, F.; Zarghi, A.; Ghandadi, M.; Ghasemi, A.; Ghodsi, R. Synthesis and Biological Evaluation of Quinoline Analogues of Flavones as Potential Anticancer Agents and Tubulin Polymerization Inhibitors. Eur. J. Med. Chem. 2016, 114, 14–23. DOI: 10.1016/j.ejmech.2016.02.069.
  • Zarghi, A.; Ghodsi, R. Design, Synthesis, and Biological Evaluation of Ketoprofen Analogs as Potent Cyclooxygenase-2 Inhibitors. Bioorg. Med. Chem. 2010, 18, 5855–5860. DOI: 10.1016/j.bmc.2010.06.094.
  • Zarghi, A.; Ghodsi, R.; Azizi, E.; Daraie, B.; Hedayati, M.; Dadrass, O. G. Synthesis and Biological Evaluation of New 4-Carboxyl Quinoline Derivatives as Cyclooxygenase-2 Inhibitors. Bioorg. Med. Chem. 2009, 17, 5312–5317. DOI: 10.1016/j.bmc.2009.05.084.
  • Heravi, M. M.; Asadi, S.; Azarakhshi, F. Recent Applications of Doebner, Doebner-Von Miller and Knoevenagel-Doebner Reactions in Organic Syntheses. COS. 2014, 11, 701–731. DOI: 10.2174/1570179411666140426003616.
  • Döbner, O. 1) Ueber α‐Alkylcinchoninsäuren Und α‐Alkylchinoline. Justus Liebigs. Ann. Chem. 1887, 242, 265–289. DOI: 10.1002/jlac.18872420302.
  • Johnson, J. R.; Adams, R. 2-Phenylquinoline-4-Carboxylic Acid-6-Arsonic Acid.1. J. Am. Chem. Soc. 1921, 43, 2255–2257. DOI: 10.1021/ja01443a019.
  • Weber, L.; Illgen, K.; Almstetter, M. Discovery of New Multi Component Reactions with Combinatorial Methods. Synlett. 1999, 1999, 366–374. DOI: 10.1055/s-1999-2612.
  • Aboutorabzadeh, S. M.; Mosaffa, F.; Hadizadeh, F.; Ghodsi, R. Design, Synthesis, and Biological Evaluation of 6-Methoxy-2-Arylquinolines as Potential P-Glycoprotein Inhibitors. Iran. J. Basic Med. Sci. 2018, 21, 9–18. DOI: 10.22038/IJBMS.2017.21892.5616.
  • Dane, E.; Balcke, O.; Hammel, H.; Müller, F. Über Die Umsetzung Von Brenztraubensäure Mit Primären Aromatischen Aminen Zu Derivaten Der Brenzweinsäure Und Der Acetursäure. Reaktionen Der Brenztraubensäure I. Justus Liebigs Ann. Chem. 1957, 607, 92–108. DOI: 10.1002/jlac.19576070111.
  • Bradamante, S.; Colombo, S.; Pagani, G. A.; Roelens, S. The Reaction of Pyruvic Acid with Amines and Aminoesters Reexamined. Preliminary Communication. Helv. Chim. Acta 1981, 64, 568–571. DOI: 10.1002/hlca.19810640220.
  • Tapia, I.; Alcazar, V.; Grande, M.; Moran, J. R. A Reexamination of the Reaction between Pyruvic Acid and Aniline. Tetrahedron 1988, 44, 5113–5116. DOI: 10.1016/S0040-4020(01)86016-6.
  • Tapia, I.; Alcázar, V.; Moran, J.; Grande, M. Reaction Mechanism between Pyruvic Acid and Aromatic Amines. BCSJ. 1990, 63, 2408–2413. DOI: 10.1246/bcsj.63.2408.
  • Abdelwahid, M. A. S.; Elsaman, T.; Mohamed, M. S.; Latif, S. A.; Mukhtar, M. M.; Mohamed, M. A. Synthesis, Characterization, and Antileishmanial Activity of Certain Quinoline-4-Carboxylic Acids. J. Chem. 2019, 2019, 1–9. DOI: 10.1155/2019/2859637.
  • Brasyunas, V. B.; Andreyanova, T. A.; Safonova, T. S.; Solov'eva, N. P.; Turchin, K. F.; Sheinker, Y. N. Synthesis of Quinoline-4-Carboxylic Acid and Its Derivatives. Chem. Heterocycl. Compd. 1988, 24, 670–673. DOI: 10.1007/BF00475605.
  • Dubrovin, A. N.; Mikhalev, A. I.; Ukhov, S. V.; Goldshtein, A. G.; Novikova, V. V.; Odegova, T. F.; Makhmudov, R. R. Synthesis, Properties, and Biological Activities of 2-Methyl- and 2-Styrylquinoline-4-Carboxylic Acids. Pharm. Chem. J. 2015, 49, 309–312. DOI: 10.1007/s11094-015-1275-z.
  • El Ashry, E. S. H.; Ramadan, E. S.; Hamid, H. A.; Hagar, M. Microwave-Assisted Synthesis of Quinoline Derivatives from Isatin. Synth. Commun. 2005, 35, 2243–2250. DOI: 10.1080/00397910500184719.
  • Fang, X. N.; Li, J.; Yi, X. G.; Yi, Z. Q.; Chen, J. Y.; Li, Y. X. Synthesis, Crystal Structure, Theoretical Calculation and Properties of Cu(II) Complex with 3-Hydroxy-2-Methylquinoline-4-Carboxylic Acid. Chinese J. Inorg. Chem. 2019, 35, 930–936.
  • Lipkin, A. E.; Bespalova, Z. P. Syntheses Based on 2-Methylquinoline 4-Carboxylic Acid. Pharm. Chem. J. 1970, 4, 23–24. DOI: 10.1007/BF01159407.
  • Tseng, C.-H.; Lin, C.-K.; Chen, Y.-L.; Hsu, C.-Y.; Wu, H.-N.; Tseng, C.-K.; Lee, J.-C. Synthesis, Antiproliferative and anti-Dengue Virus Evaluations of 2-Aroyl-3-Arylquinoline Derivatives. Eur. J. Med. Chem. 2014, 79, 66–76. DOI: 10.1016/j.ejmech.2014.03.074.
  • Wu, Y.; Chen, Z.; Liu, Y.; Yu, L.; Zhou, L.; Yang, S.; Lai, L. Quinoline-4-Methyl Esters as Human Nonpancreatic Secretory Phospholipase A2 Inhibitors. Bioorg. Med. Chem. 2011, 19, 3361–3366. DOI: 10.1016/j.bmc.2011.04.039.
  • Yi, X. G.; Fang, X. N.; Guo, J.; Li, J.; Xie, Z. P. Hydrothermal Preparation, Crystal Structure, Photoluminescence and UV-Visible Diffuse Reflectance Spectroscopic Properties of a Novel Mononuclear Zinc Complex. ACSI. 2020, 67, 507–515. DOI: 10.17344/acsi.2019.5532.
  • Zemtsova, M. N.; Trakhtenberg, P. L.; Galkina, M. V. A Procedure for Preparation of 2-Methylquinoline-4-Carboxylic Acids. Russ. J. Org. Chem. 2003, 39, 1803. DOI: 10.1023/B:RUJO.0000019750.72414.48.
  • Borsche, W.; Wagner-Roemmich, M. Über Vielkernige Kondensierte Systeme Mit Heterocyclischen Ringen. VIII. Diaza‐Phenanthren‐Carbonsäuren Und Diaza‐Phenanthrene. Justus Liebigs. Ann. Chem. 1940, 544, 280–286. DOI: 10.1002/jlac.19405440117.
  • Doebner Reaction. Comprehensive Organic Name Reactions and Reagents. p. 921–923.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.