Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 51, 2021 - Issue 13
405
Views
0
CrossRef citations to date
0
Altmetric
Articles

Atom transfer radical additions (ATRAs) promoted by catalytic amounts of amines: The effective iododifluoroalkylation of alkenes/alkynes

, , , ORCID Icon &
Pages 2016-2024 | Received 23 Feb 2021, Published online: 21 May 2021

References

  • Hiyama, T. The Journal of Organic Chemistry; Springer-Verlag: Berlin Heidelberg, 2000.
  • Ojima, I. Fluorine in Medicinal Chemistry and. Chemical Biology; Wiley-Blackwell: Oxford, U.K., 2009.
  • Gaspar, A.; Matos, M. J.; Garrido, J.; Uriarte, E.; Borges, F. Chromone: A Valid Scaffold in Medicinal Chemistry. Chem. Rev. 2014, 114, 4960–4992. DOI: 10.1021/cr400265z.
  • Hussain, H.; Al-Harrasi, A.; Al-Rawahi, A.; Green, I. R.; Gibbons, S. Fruitful Decade for Antileishmanial Compounds from 2002 to Late 2011. Chem. Rev. 2014, 114, 10369–10428. DOI: 10.1021/cr400552x.
  • O’Hagan, D. Chem. Soc. Rev. 2008, 37, 308–319. DOI: 10.1039/B711844A.
  • Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Fluorine in Medicinal Chemistry. Chem. Soc. Rev. 2008, 37, 320–330. DOI: 10.1039/B610213C.
  • Muller, K.; Faeh, C.; Diederich, F. Fluorine in Pharmaceuticals: Looking beyond Intuition. Science. 2007, 317, 1881–1886. DOI: 10.1126/science.1131943.
  • Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001–2011). Chem. Rev. 2014, 114, 2432–2506. DOI: 10.1021/cr4002879.
  • Preshlock, S.; Tredwell, M.; Gouverneur, V. 18 F-Labeling of Arenes and Heteroarenes for Applications in Positron Emission Tomography. Chem. Rev. 2016, 116, 719–766. DOI: 10.1021/acs.chemrev.5b00493.
  • Furuya, T.; Kamlet, A. S.; Ritter, T. Catalysis for Fluorination and Trifluoromethylation. Nature. 2011, 473, 470–477. DOI: 10.1038/nature10108.
  • Charpentier, J.; Fruh, N.; Togni, A. Electrophilic Trifluoromethylation by Use of Hypervalent Iodine Reagents. Chem. Rev. 2015, 115, 650–682. DOI: 10.1021/cr500223h.
  • Xu, X.-H.; Matsuzaki, K.; Shibata, N. Synthetic Methods for Compounds Having CF 3 –S Units on Carbon by Trifluoromethylation, Trifluoromethylthiolation, Triflylation, and Related Reactions. Chem. Rev. 2015, 115, 731–764. DOI: 10.1021/cr500193b.
  • Barata-Vallejo, S.; Cooke, M. V.; Postigo, A. Radical Fluoroalkylation Reactions. ACS Catal. 2018, 8, 7287–7307. DOI: 10.1021/acscatal.8b02066.
  • Chu, L.; Qing, F.-L. Oxidative Trifluoromethylation and Trifluoromethylthiolation Reactions Using (Trifluoromethyl)Trimethylsilane as a Nucleophilic CF 3 Source. Acc. Chem. Res. 2014, 47, 1513–1522. DOI: 10.1021/ar4003202.
  • Shao, X.; Xu, C.; Lu, L.; Shen, Q. Shelf-Stable Electrophilic Reagents for Trifluoromethylthiolation. Acc. Chem. Res. 2015, 48, 1227–1236. DOI: 10.1021/acs.accounts.5b00047.
  • Tomashenko, O. A.; Grushin, V. V. Aromatic Trifluoromethylation with Metal Complexes. Chem. Rev. 2011, 111, 4475–4521. DOI: 10.1021/cr1004293.
  • Ni, C.; Hu, M.; Hu, J. Good Partnership between Sulfur and Fluorine: Sulfur-Based Fluorination and Fluoroalkylation Reagents for Organic Synthesis. Chem. Rev. 2015, 115, 765–825. DOI: 10.1021/cr5002386.
  • Champagne, P. A.; Desroches, J.; Hamel, J.-D.; Vandamme, M.; Paquin, J.-F. Monofluorination of Organic Compounds: 10 Years of Innovation. Chem. Rev. 2015, 115, 9073–9174. DOI: 10.1021/cr500706a.
  • Chatterjee, T.; Iqbal, N.; You, Y.; Cho, E. J. Controlled Fluoroalkylation Reactions by Visible-Light Photoredox Catalysis. Acc. Chem. Res. 2016, 49, 2284–2294. DOI: 10.1021/acs.accounts.6b00248.
  • Yerien, D. E.; Barata-Vallejo, S.; Postigo, A. Difluoromethylation Reactions of Organic Compounds. Chem. Eur. J. 2017, 23, 14676–14701. DOI: 10.1002/chem.201702311.
  • Feng, Z.; Xiao, Y.-L.; Zhang, X. Transition-Metal (Cu, Pd, Ni)-Catalyzed Difluoroalkylation via Cross-Coupling with Difluoroalkyl Halides. Acc. Chem. Res. 2018, 51, 2264–2278. DOI: 10.1021/acs.accounts.8b00230.
  • Moschner, J.; Stulberg, V.; Fernandes, R.; Huhmann, S.; Leppkes, J.; Koksch, B. Approaches to Obtaining Fluorinated α-Amino Acids. Chem. Rev. 2019, 119, 10718–10801. DOI: 10.1021/acs.chemrev.9b00024.
  • Pan, X.; Xia, H.; Wu, J. Recent Advances in Photoinduced Trifluoromethylation and Difluoroalkylation. Org. Chem. Front. 2016, 3, 1163–1185. DOI: 10.1039/C6QO00153J.
  • Dong, D.-Q.; Yang, H.; Shi, J.-L.; Si, W.-J.; Wang, Z.-L.; Xu, X.-M. Promising Reagents for Difluoroalkylation. Org. Chem. Front. 2020, 7, 2538–2575. DOI: 10.1039/D0QO00567C.
  • Grunewald, G. L.; Seim, M. R.; Lu, J.; Makboul, M.; Criscione, K. R. Application of the Goldilocks Effect to the Design of Potent and Selective Inhibitors of Phenylethanolamine N -Methyltransferase: Balancing p Ka and Steric Effects in the Optimization of 3-Methyl-1,2,3,4-Tetrahydroisoquinoline Inhibitors by β-Fluorination. J. Med. Chem. 2006, 49, 2939–2952. DOI: 10.1021/jm051262k.
  • Meanwell, N. A. Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design. J. Med. Chem. 2011, 54, 2529–2591. DOI: 10.1021/jm1013693.
  • Markovskij, L. N.; Pashinnik, V. E.; Kirsanov, A. V. Application of Dialkylaminosulfur Trifluorides in the Synthesis of Fluoroorganic Compounds. Synthesis. 1973, 1973, 787–789. DOI: 10.1055/s-1973-22302.
  • Middleton, W. J. New Fluorinating Reagents. Dialkylaminosulfur Fluorides. J. Org. Chem. 1975, 40, 574–578. DOI: 10.1021/jo00893a007.
  • Lal, G. S.; Pez, G. P.; Pesaresi, R. J.; Prozonic, F. M.; Cheng, H. Bis(2-Methoxyethyl)Aminosulfur Trifluoride: A New Broad-Spectrum Deoxofluorinating Agent with Enhanced Thermal Stability. J. Org. Chem. 1999, 64, 7048–7054. DOI: 10.1021/jo990566+.
  • Fujikawa, K.; Fujioka, Y.; Kobayashi, A.; Amii, H. A New Method for Aromatic Difluoromethylation: Copper-Catalyzed Cross-Coupling and Decarboxylation Sequence from Aryl Iodides. Org. Lett. 2011, 13, 5560–5563. DOI: 10.1021/ol202289z.
  • Min, Q.-Q.; Yin, Z.; Feng, Z.; Guo, W.-H.; Zhang, X. Highly Selective gem –Difluoroallylation of Organoborons with Bromodifluoromethylated Alkenes Catalyzed by Palladium. J. Am. Chem. Soc. 2014, 136, 1230–1233. DOI: 10.1021/ja4114825.
  • Ge, S.; Chaładaj, W.; Hartwig, J. F. Pd-Catalyzed α-Arylation of α,α-Difluoroketones with Aryl Bromides and Chlorides. A Route to Difluoromethylarenes. J. Am. Chem. Soc. 2014, 136, 4149–4152. DOI: 10.1021/ja501117v.
  • Xiao, Y.-L.; Guo, W.-H.; He, G.-Z.; Pan, Q.; Zhang, X. Nickel-Catalyzed Cross-Coupling of Functionalized Difluoromethyl Bromides and Chlorides with Aryl Boronic Acids: A General Method for Difluoroalkylated Arenes. Angew. Chem. Int. Ed. 2014, 53, 9909–9913. DOI: 10.1002/anie.201405653.
  • Yu, Y.-B.; He, G.-Z.; Zhang, X. Synthesis of α,α-Difluoromethylene Alkynes by Palladium-Catalyzed gem -Difluoropropargylation of Aryl and Alkenyl Boron Reagents. Angew. Chem. Int. Ed. 2014, 53, 10457–10461. DOI: 10.1002/anie.201405204.
  • Feng, Z.; Min, Q-Q.; Zhang, X. Access to Difluoromethylated Arenes by Pd-Catalyzed Reaction of Arylboronic Acids with Bromodifluoroacetate. Org. Lett. 2016, 18, 44–47. DOI: 10.1021/acs.orglett.5b03206.
  • Feng, Z.; Chen, F.; Zhang X. Copper Catalyzed Cross-Coupling of Iodobenzoates with Bromozinc-Difluorophosphonate. Org. Lett. 2012, 14, 1938–1941. DOI: 10.1021/ol3006425.
  • Gu, J. W.; Min, Q. Q.; Yu, L. C.; Zhang, X. Tandem Difluoroalkylation-Arylation of Enamides Catalyzed by Nickel. Angew. Chem. Int. Ed. 2016, 55, 12270–12274. DOI: 10.1002/anie.201606458.
  • Li, G.; Wang, T.; Fei, F.; Su, Y.-M.; Li, Y.; Lan, Q.; Wang, X.-S. Nickel-Catalyzed Decarboxylative Difluoroalkylation of α,β-Unsaturated Carboxylic Acids. Angew. Chem. 2016, 128, 3552–3556. DOI: 10.1002/ange.201511321.
  • Guo, Y.; Shreeve, J. M. Chem. Commun. 2007, 34, 3583–3585.
  • Feng, Z.; Min, Q.-Q.; Xiao, Y.-L.; Zhang, B.; Zhang, X. Palladium-Catalyzed Difluoroalkylation of Aryl Boronic Acids: A New Method for the Synthesis of Aryldifluoromethylated Phosphonates and Carboxylic Acid Derivatives. Angew. Chem. Int. Ed. 2014, 53, 1669–1673. DOI: 10.1002/anie.201309535.
  • Tang, X.-J.; Dolbier, W. R. Efficient Cu-Catalyzed Atom Transfer Radical Addition Reactions of Fluoroalkylsulfonyl Chlorides with Electron-Deficient Alkenes Induced by Visible Light. Angew. Chem. Int. Ed. 2015, 54, 4246–4249. DOI: 10.1002/anie.201412199.
  • Yu, C.; Iqbal, N.; Park, S.; Cho, E. J. Selective Difluoroalkylation of Alkenes by Using Visible Light Photoredox catalysis. Chem. Commun. 2014, 50, 12884–12887. DOI: 10.1039/C4CC05467A.
  • Li, W.; Zhu, X.; Mao, H.; Tang, Z.; Cheng, Y.; Zhu, C. Visible-Light-Induced Direct C(sp3)–H Difluromethylation of Tetrahydroisoquinolines with the in Situ Generated difluoroenolates. Chem. Commun. 2014, 50, 7521–7523. DOI: 10.1039/C4CC02768J.
  • Wang, L.; Wei, X.-J.; Lei, W.-L.; Chen, H.; Wu, L.-Z.; Liu, Q. Direct C–H Difluoromethylenephosphonation of Arenes and Heteroarenes with Bromodifluoromethyl Phosphonate via Visible-Light Photocatalysis. Chem. Commun. 2014, 50, 15916–15919. DOI: 10.1039/C4CC07925F.
  • Su, Y.-M.; Hou, Y.; Yin, F.; Xu, Y.-M.; Li, Y.; Zheng, X.; Wang, X.-S. Visible Light-Mediated C–H Difluoromethylation of Electron-Rich Heteroarenes. Org. Lett. 2014, 16, 2958–2961. DOI: 10.1021/ol501094z.
  • Jung, J.; Kim, E.; You, Y.; and Cho, E. J. Visible Light-Induced Aromatic Difluoroalkylation. Adv. Synth. Catal. 2014, 356, 2741–2748. DOI: 10.1002/adsc.201400542.
  • Huang, Y.; Jia, J.; Huang, Q. P.; Zhao, L.; Wang, P.; Gu, J.; He, C. Y. Visible Light Promoted Deaminative Difluoroalkylation of Aliphatic Amines with Difluoroenoxysilanes. Chem. Commun. 2020, 56, 14247–14250 DOI: 10.1039/D0CC05725H.
  • He, C-Y.; Kong, J.; Li, X.; Li, X.; Yao, Q.; Yuan, F-M. Visible-Light-Induced Direct Difluoroalkylation of Uracils, Pyridinones, and Coumarins. J. Org. Chem. 2017, 82, 910–917. DOI: 10.1021/acs.joc.6b02316.
  • Nappi, M.; Bergonzini, G.; Melchiorre, P. Metal-Free Photochemical Aromatic Perfluoroalkylation of α-Cyano Arylacetates. Angew. Chem. Int. Ed. 2014, 53, 4921–4925. DOI: 10.1002/anie.201402008.
  • Fernández-Alvarez, V. M.; Nappi, M.; Melchiorre, P.; Maseras, F. Computational Study with DFT and Kinetic Models on the Mechanism of Photoinitiated Aromatic Perfluoroalkylations. Org. Lett. 2015, 17, 2676–2679. DOI: 10.1021/acs.orglett.5b01069.
  • Kandukuri, S. R.; Bahamonde, A.; Chatterjee, I.; Jurberg, I. D.; Escudero-Adán, E. C.; Melchiorre, P. X-Ray Characterization of an Electron Donor-Acceptor Complex That Drives the Photochemical Alkylation of Indoles. Angew. Chem. Int. Ed. 2015, 54, 1485–1489. DOI: 10.1002/anie.201409529.
  • Wang, Y.; Wang, J.; Li, G.-X.; He, G.; Chen, G. Halogen-Bond-Promoted Photoactivation of Perfluoroalkyl Iodides: A Photochemical Protocol for Perfluoroalkylation Reactions. Org. Lett. 2017, 19, 1442–1445. DOI: 10.1021/acs.orglett.7b00375.
  • Liu X.‐X.; Jia, J.; Wang, Z.; Zhang, Y.‐T.; Chen, J.; Yang, K.; He, C.‐Y.; Zhao, L. Catalyst‐Free and Visible Light Promoted Aminofluoroalkylation of Unactivated Alkenes: An Access to Fluorinated Aziridines. Adv. Synth. Catal. 2020, 362, 2604–2608. DOI: 10.1002/adsc.202000342.
  • Sun, X.; Wang, W.; Li, Y.; Ma, J.; Yu, S. Halogen-Bond-Promoted Double Radical Isocyanide Insertion under Visible-Light Irradiation: Synthesis of 2-Fluoroalkylated Quinoxalines. Org. Lett. 2016, 18, 4638–4641. DOI: 10.1021/acs.orglett.6b02271.
  • Chen, T.; Guo, Y.; Sun, K.; Wu, L.-Z.; Liu, W.-Q.; Liu, C.; Huang, Y.; Chen, Q.-Y.Photoinduced Hydroxylperfluoroalkylation of styrenes. Org. Chem. Front. 2018, 5, 1045–1048. DOI: 10.1039/C7QO00946A.
  • Mao, T.; Ma, M.-J.; Zhao, L.; Xue, D.-P.; Yu, Y.; Gu, J.; He, C.-Y. A General and Green Fluoroalkylation Reaction Promoted via Noncovalent Interactions between Acetone and Fluoroalkyl iodides. Chem. Commun. 2020, 56, 1815–1818. DOI: 10.1039/C9CC09517A.
  • Guo, Q.; Wang, M.; Liu, H.; Wang, R.; Xu, Z. Visible-Light-Promoted Dearomative Fluoroalkylation of β-Naphthols through Intermolecular Charge Transfer. Angew. Chem. Int. Ed. 2018, 57, 4747–4751. DOI: 10.1002/anie.201800767.
  • Huang, Y.; Lei, Y-Y.; Zhao, L.; Gu, J.; Yao, Q.; Wang, Z.; Li, X-F.; Zhang, X.; He, C-Y. Catalyst-Free and Visible Light Promoted Trifluoromethylation and Perfluoroalkylation of Uracils and Cytosines. Chem. Commun. 2018, 54, 13662–13665. DOI: 10.1039/C8CC07759B.
  • Zhu, E.; Liu, X.-X.; Wang, A.-J.; Mao, T.; Zhao, L.; Zhang, X.; He, C.-Y. Visible Light Promoted Fluoroalkylation of Alkenes and Alkynes Using 2-Bromophenol as a catalyst. Chem. Commun. 2019, 55, 12259–12262. DOI: 10.1039/C9CC06587C.
  • Li, M.; Wang, C.-T.; Qiu, Y.-F.; Zhu, X.-Y.; Han, Y.-P.; Xia, Y.; Li, X.-S.; Liang, Y.-M. Base Promoted Direct Difunctionalization/Cascade Cyclization of 1,6-enynes. Chem. Commun. 2018, 54, 5334–5337. DOI: 10.1039/C8CC03280G.
  • Zhao, L.; Huang, Y.; Wang, Z.; Zhu, E.; Mao, T.; Jia, J.; Gu, J.; Li, X.-F.; He, C.-Y. Organophosphine-Catalyzed Difluoroalkylation of Alkenes. Org. Lett. 2019, 21, 6705–6709. DOI: 10.1021/acs.orglett.9b02314.
  • Ma, M.-J.; Jia, J.; Yan, G.; Yin, C.; Yu, W.; Guo, P.; Zhao, L.; He, C.-Y. Difluoroalkylation of Alkenes Promoted by Noncovalent Interaction: A General Method for the Synthesis of Difluoro-Contained Dihydrobenzofurans and Indolins. Tetrahedron Lett. 2020, 61, 152558. DOI: 10.1016/j.tetlet.2020.152558.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.