Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 51, 2021 - Issue 15
221
Views
6
CrossRef citations to date
0
Altmetric
Articles

Meglumine catalyzed one pot synthesis of new fluorescent 2-amino-4-pyrazolyl-6-aryldiazenyl-4H-chromene-3-carbonitriles

, , , &
Pages 2336-2348 | Received 22 Jan 2021, Published online: 04 Jun 2021

References

  • Dicks, A. P. A Review of Aqueous Organic Reactions for the Undergraduate Teaching Laboratory. Green Chem. Lett. Rev. 2009, 2, 9–21. DOI: 10.1080/17518250902820182.
  • Azizi, N.; Aryanasab, F. L.; Torkiyan, A.; Ziyaei, M. R. One-Pot Synthesis of Dithiocarbamates Accelerated in Water. J. Org. Chem. 2006, 71, 3634–3635. DOI: 10.1021/jo060048g.
  • Pore, D. M.; Hegade, P. G.; Gaikwad, D. S.; Patil, P. B.; Patil, J. D. Green Access to Multi-Component Synthesis of Spiropyranopyrazoles. Loc. 2014, 11, 131–135. DOI: 10.2174/15701786113106660069.
  • (a) Li, C.; Chen, L. Organic Chemistry in Water. Chem. Soc. Rev. 2006, 35, 68–82. DOI: 10.1039/B507207G. (b) Narayan, S.; Muldoon, J.; Finn, M. G.; Fokin, V. V.; Kolb, H. C.; Sharpless, K. B. “On Water”: Unique Reactivity of Organic Compounds in Aqueous Suspension. Angew Chem. Int. Ed. 2005, 44, 3275–3279. DOI: 10.1002/anie.200462883.
  • Barmade, M. A.; Sharma, M. K. Biological Spectrum of Vicinal Diaryl-Substituted Fused Heterocycles. In Vicinal Diaryl Substituted Heterocycles; Yadav, M. R., Murumkar, P. R., Ghuge, R. B., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp 363–399.
  • (a) Qiao, R.; Woon, Y. S.; Zhiyun, D.; Kun, Z.; Jian, W. Greener One-Pot Synthesis of Chromeno Oxazin and Oxazin Quinoline Derivatives and Their Antibacterial Activity. Chem. Eur. J. 2017, 4, 147–151. DOI: 10.1002/chem.201100927. (b) Kemnitzer, W.; Kasibhatla, S.; Jiang, S.; Zhang, H.; Zhao, J.; Jia, S.; Xu, L.; Crogan, G. C.; Denis, R.; Barriault, N.; et al. Discovery of 4-Aryl-4H-Chromenes as a New Series of Apoptosis Inducers Using a Cell- and Caspase-Based High-Throughput Screening Assay. 2. Structure–Activity Relationships of the 7- and 5-, 6-, 8-Positions. Bioorg. Med. Chem. Lett. 2005, 15, 4745–4751. DOI: 10.1016/j.bmcl.2005.07.066. (c) Gourdeau, H.; Leblond, L.; Hamelin, B.; Desputeau, C.; Dong, K.; Kianicka, I.; Custeau, D.; Bourdeau, C.; Geerts, L.; Cai, S. X.; et al. Antivascular and Antitumor Evaluation of 2-Amino-4-(3-Bromo-4,5-Dimethoxy-Phenyl)-3-Cyano-4H-Chromenes: A Novel Series of Anticancer Agents. Mol. Cancer Ther. 2004, 3, 1375–1383. DOI: 10.1021/jm049640t. (d) Kemnitzer, W.; Drewe, J.; Jiang, S.; Zhang, H.; Wang, Y.; Zhao, J.; Jia, S.; Herich, J.; Labreque, D.; Storer, R.; et al. Discovery of 4-Aryl-4H-Chromenes as a New Series of Apoptosis Inducers Using a Cell- and Caspase-Based High-Throughput Screening Assay. 1. Structure − Activity Relationships of the 4-Aryl Group. J. Med. Chem. 2004, 47, 6299–6310. DOI: 10.1021/jm049640t.
  • Sinha, S.; Koner, R. R.; Kumar, S.; Mathew, J.; Roy, A.; Mukhopadhyay, S. K.; Nandi, C. K.; Ghosh, S. Structurally Tuned Benzo[H]Chromene Derivative as Pb2+ Selective ‘Turn-On’ Fluorescence Sensor for Living Cell Imaging. J. Lumin. 2013, 143, 355–360. DOI: 10.1016/j.jlumin.2013.05.012.
  • Evans, B. E.; Rittle, K. E.; Bock, M. G.; Di-Pardo, R. M.; Freidinger, R. M.; Whitter, W. L.; Lundell, G. F.; Veber, D. F.; Anderson, P. S.; Chang, R. S.; et al. Solid-Phase Synthesis of Compound Libraries around the 1,5-Benzodiazocine-2,6-Dione Privileged Structure-Like Scaffold. J. Med. Chem. 1988, 31, 2235–2246. DOI: 10.1021/jm00120a002.
  • (a) Britsun, V. N.; Esipenko, A. N.; Lozinskii, M. O. Heterocyclization of Thioamides Containing an Active Methylene Group (Review). Chem. Heterocycl. Comp. 2008, 44, 1429–1459. DOI: 10.1007/s10593-009-0214-x. (b) Zhu, S. Z.; Wang, Y.; Jin, L. G. F. Study on Fluorine-Containing Active Methylene Compounds. Acta Chim. Sin. 2002, 60, 555–565. (c) Gasparova, R.; Lacova, M. Reactions of 3-Formylchromone with Active Methylene and Methyl Compounds and Some Subsequent Reactions of the Resulting Condensation Products. Molecules 2005, 10, 937–960. DOI: 10.3390/10080937. (d) Lazzaro, F.; Gissot, A.; Crucianelli, M.; Angelis, F.; Bruche, L.; Zanda, M. Mannich-Type Reaction of Methylene Active Compounds with a Chiral Sulfinimine of Trifluoropyruvate: New Highly Stereoselective Synthesis of (S)-α-Trifluoromethyl-Aspartic Acid. Loc. 2005, 2, 235–237. DOI: 10.2174/1570178053765348. (e) De-Simone, R. W.; Currie, K. S.; Mitchell, S. A.; Darrow, J. W.; Pippin, D. A. Privileged Structures: Applications in Drug Discovery. Comb. Chem. 2004, 7, 473–493. DOI: 10.2174/1386207043328544.
  • (a) Kemnitzer, W.; Kasibhatla, S.; Jiang, S.; Zhang, H.; Zhao, J.; Jia, S.; Xu, L.; Crogan, G. C.; Denis, R.; Barriault, N.; et al. Discovery of 4-Aryl-4H-Chromenes as a New Series of Apoptosis Inducers Using a Cell- and Caspase-Based High-Throughput Screening Assay. 2. Structure–Activity Relationships of the 7- and 5-, 6-, 8-Positions. Bioorg. Med. Chem. Lett. 2005, 15, 4745–4751. DOI: 10.1016/j.bmcl.2005.07.066. (b) Gourdeau, H.; Leblond, L.; Hamelin, B.; Desputeau, C.; Dong, K.; Kianicka, I.; Custeau, D.; Bourdeau, C.; Geerts, L.; Cai, S. X.; et al. Antivascularand Antitumor Evaluation of 2-Amino-4-(3-Bromo-4,5-Dimethoxy-Phenyl)-3-Cyano-4H-Chromenes: A Novel Series of Anticancer Agents. Mol. Cancer Ther. 2004, 3, 1375–1383.
  • Patil, S. A.; Wang, J.; Li, X. S.; Chen, J.; Jones, T. S.; Hosni-Ahmed, A.; Patil, R.; Seibel, W. L.; Li, W.; Miller, D. D. New Substituted 4H-Chromenes as Anticancer Agents. Bioorg. Med. Chem. Lett. 2012, 22, 4458–4461. DOI: 10.1016/j.bmcl.2012.04.074.
  • Saffari, Z.; Aryapour, H.; Akbarzadeh, A.; Foroumadi, A.; Jafari, N.; Zarabi, M. F.; Farhangi, A. In Vitro Antitumor Evaluation Of4H-Chromene-3-Carbonitrile Derivatives as a New Series of Apoptotic Inducers. Tumor Biol. 2014, 35, 5845–5855. DOI: 10.1007/s13277-014-1775-6.
  • Mungra, D. C.; Patel, M. P.; Rajani, D. P.; Patel, R. G. Synthesis and Identification of Β-Aryloxyquinolines and Their Pyrano[3,2-c]chromene Derivatives as a New Class of Antimicrobial and Antituberculosis Agents. Eur. J. Med. Chem. 2011, 46, 4192–4200. DOI: 10.1016/j.ejmech.2011.06.022.
  • Zhang, G.; Zhang, Y.; Yan, J.; Chen, R.; Wang, S.; Ma, Y.; Wang, R. One-Pot Enantioselective Synthesis of Functionalized Pyranocoumarins and 2-Amino-4H-Chromenes: Discovery of a Type of Potent Antibacterial Agent. J. Org. Chem. 2012, 77, 878–888. DOI: 10.1021/jo202020m.
  • Mansouri, K.; Khodarahmi, R.; Foroumadi, A.; Mostafaie, A.; Motlagh, H. M. Anti-Angiogenic/Proliferative Behavior of a “4-Aryl-4H-Chromene” on Blood Vessel’s Endothelial Cells: A Possible Evidence on Dual “anti-Tumor” Activity. Med. Chem. Res. 2011, 20, 920–929. DOI: 10.1007/s00044-010-9418-y.
  • Thumar, N. J.; Patel, M. P. Synthesis, Characterization, and in Vitro Microbial Evaluation of Some New 4H-Chromene and Quinoline Derivatives of 1H-Pyrazole. J. Heterocyclic Chem. 2012, 49, 1169–1178. DOI: 10.1002/jhet.1038.
  • (a) Pavlovic, G. L.; Racane, H.; Cicak, V.; Kulenovic, T. The Synthesis and Structural Study of Two Benzothiazolyl Azo Dyes: X-Ray Crystallographic and Computational Study of Azo–Hydrazone Tautomerism. Dyes Pigm. 2009, 83, 354–362. DOI: 10.1016/j.dyepig.2009.06.002. (b) Yager, K. G.; Barrett, C. J. Novel Photo-Switching Using Azobenzene Functional Materials. J. Photochem. Photobiol. A: Chem. 2006, 182, 250–261. DOI: 10.1016/j.jphotochem.2006.04.021. (c) Feringa, B. L.; Jager, W. F.; de Lange, B. Organic Materials for Reversible Optical Data Storage. Tetrahedron 1993, 49, 8267–8310. DOI: 10.1016/S0040-4020(01)81913-X.
  • Garg, H. G.; Prakash, C. Potential Antidiabetics. 11. Preparation of 4-Arylazo-3,5-Disubstituted-(2H)-1,2,6-Thiadiazine 1,1-Dioxides. J. Med. Chem. 1972, 15, 435–436. DOI: 10.1021/jm00274a035.
  • Child, R. G.; Wilkinson, R. G.; Tomcu, A. Effect of Substrate Orientation of the Adhesion of Polymer Joints. Chem. Abstr. 1977, 87, 6031.
  • Farghaly, T. A.; Abdallah, Z. A. Synthesis, Azo-Hydrazone Tautomerism and Antitumor Screening of N-(3-Ethoxy Carbonyl- 4,5,6,7- Tetrahydro-Benzo [b] Thien-2-yl) -2- Aryl Hydrazono-3-Oxo Butanamide Derivatives. Arkivoc 2009, 2008, 295–305. DOI: 10.3998/ark.5550190.0009.h28.
  • Browing, C. H.; Cohen, J. B.; Ellingworth, S.; Gulbransen, R. The Antiseptic Properties of the Amino Derivatives of Styryl and Anil Quinolone. J. Storage 1926, 100, 293–325. DOI: 10.1098/rspb.1926.0051.
  • (a) Khalid, A.; Arshad, M.; Crowley, D. E. Accelerated Decolorization of Structurally Different Azo Dyes by Newly Isolated Bacterial Strains. Appl. Microbiol. Biotech. 2008, 78, 361–369. DOI: 10.1007/s00253-007-1302-4. (b) Pagga, U.; Brown, D. The Degradation of Dyestuffs: Part II Behaviour of Dyestuffs in Aerobic Biodegradation Tests. Chemosphere 1986, 15, 479–491. DOI: 10.1016/0045-6535(86)90542-4.
  • (a) Prabhakara, C. T.; Patil, S. A.; Kulkarni, A. D.; Naik, V. H.; Manjunatha, M.; Kinnal, S. M.; Badami, P. S. Synthesis, Spectral, Thermal, Fluorescence, Antimicrobial, Anthelmintic and DNA Cleavage Studies of Mononuclear Metal Chelates of Bi-Dentate 2H-Chromene-2-One Schiff Base. J. Photochem. Photobiol. B 2015, 148, 322–332. DOI: 10.1016/j.jphotobiol.2015.03.033. (b) Kim, H. M.; Yang, P. R.; Seo, M. S.; Yi, J.; Hong, J. H.; Jeon, S.; Ko, Y.; Lee, K. J.; Cho, B. R. Magnesium Ion Selective Two-Photon Fluorescent Probe Based on a Benzo[h]Chromene Derivative for in Vivo Imaging. J. Org. Chem. 2007, 72, 2088–2096. DOI: 10.1021/jo062341m. (c) Liu, W.; Li, H.; Lv, H.; Zhao, B.; Miao, J. A Rhodamine Chromene-Based Turn-On Fluorescence Probe for Selectively Imaging Cu2+ in Living Cell. Spectrochim. Acta, Part A. 2012, 95, 658–663. DOI: 10.1016/j.saa.2012.04.073.
  • Bissell, E. R.; Mitchell, A. R.; Smith, R. E. Synthesis and Chemistry of 7-Amino-4-(Trifluoromethyl)-Coumarin and Its Amino Acid and Peptide Derivatives. J. Org. Chem. 1980, 45, 2283–2287. DOI: 10.1021/jo01300a003.
  • (a) Korade, S. N.; Pore, D. M. Basic Ionic Liquid [DPPA] Cl− Catalyzed Synthesis of Fluorescent 3‐ Acetoacetyl-6‐ Aryldiazenyl‐ Coumarins. Chem. Select 2019, 4, 4804–4808. DOI: 10.1002/slct.201900332. (b) Korade, S. N.; Patil, J. D. Gaikwad,; D. S.; Sonawane, S. A.; Vibhute, S. P.; Dige, N. C; Mhaldar P. M.; Pore, D. M. Synthesis and Biological Activities of Novel Aryldiazo Substituted Heterocycles Org Prep Proced Int .2020, 52. 147-165. DOI: 10.1080/00304948.2020.1716625 (c) Patil, M.V.; Mhaldar P.M.; Mahadik V.; Pore D. M. Novel, green and sustainable route for synthesis of 5-aryl-4-phenyl-1, 2, 4-triazolidine-3-thiones, Tetrahedron Lett. 2020, 61, 152015. DOI: 10.1016/j.tetlet.2020.152015
  • Breslow, R. Determining the Geometries of Transition States by Use of Antihydrophobic Additives in Water. Acc. Chem. Res. 2004, 37, 471–478. DOI: 10.1021/ar040001m.
  • (a) Elinson, M. N.; Nasybullin, R. F.; Ryzhkov, F. V.; Egorov, M. P. Solvent-Free and ‘on-Water’ Multicomponent Assembling of Salicylaldehydes, Malononitrile and 3-Methyl-2-Pyrazolin-5-One: A Fast and Efficient Route to the 2-Amino-4-(1H-Pyrazol-4-yl)-4H-Chromene Scaffold. C R Chim. 2014, 17, 437–442. DOI: 10.1016/j.crci.2014.09.005. (b) Elinson, M. N.; Dorofeev, A. S.; Miloserdov, F. M.; Ilovaisky, A. I.; Feducovich, S. K.; Belyakov, P. A.; Nikishin, G. I. Catalysis of Salicylaldehydes and Two Different C_H Acids with Electricity: First Example of an Efficient Multicomponent Approach to the Design of Functionalized Medicinally Privileged 2-Amino-4H-Chromene Scaffold. Adv. Synth. Catal. 2008, 350, 591–601. DOI: 10.1002/adsc.200700493. (c) Kumaravel, K.; Vasuki, G. Four-Component Catalyst-Free Reaction in Water: Combinatorial Library Synthesis of Novel 2-Amino-4-(5-Hydroxy-3-Methyl-1H-Pyrazol-4-yl)-4H-Chromene-3-Carbonitrile Derivatives. Green Chem. 2009, 11, 1945–1947. DOI: 10.1039/b913838b. (d) He, Y.; Hu, R.; Tong, R.; Li, F.; Shi, J.; Zhang, M. K2CO3Mediated Synthesis of Functionalised 4-Substituted-2-Amino-3-Cyano-4H-Chromenes via Michael-Cyclization Reactions. Molecules 2014, 19, 19253–19268. DOI: 10.3390/molecules191219253.
  • Liu, J.; Wu, B.; Zhang, B.; Liu, Y. Synthesis and Characterization of Metal Complexes of Cu(II), Ni(II), Zn(II), Co(II), Mn(II) and Cd(II) with Tetradentate Schiff Bases. Turk. J. Chem. 2006, 30, 41–48.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.