Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 52, 2022 - Issue 3
284
Views
1
CrossRef citations to date
0
Altmetric
Articles

A facile synthesis of a novel family of heterotricyclic hybrids: Spiro-pyrrolopyridazines

& ORCID Icon
Pages 356-367 | Received 17 Nov 2021, Published online: 08 Jan 2022

References

  • (a) Maes, B. U. W.; Lemiere, G. L. F. Pyridazines and their Benzo Derivatives. In Comprehensive Heterocyclic Chemistry III; Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K.; Aitken, A., Eds.; Pergamon-Elsevier: Oxford, 2008; Vol. 8, pp 1–116 (Chapter 8.01). (b) Elnagdi, M. H.; Al-Awadi, N. A. Abdelhamid, I. A. Recent Developments in Pyridazine and Condensed Pyridazine Synthesis. Adv. Heterocycl. Chem. 2009, 97, 1–43.
  • (a) Svete, J. Synthesis of Functionalized Compounds Containing Pyridazine and Related Moieties. J. Heterocyclic Chem. 2005, 42, 361–373. DOI: 10.1002/jhet.5570420303. (b) Wermuth, C. G. Are Pyridazines Privileged Structures? Med. Chem. Commun. 2011, 2, 935–941. DOI: 10.1039/C1MD00074H. (c) Kodama, T.; Sasaki, I.; Sugimura, T. Synthesis of Pyridazine Derivatives via Aza-Diels–Alder Reactions of 1,2,3-Triazine Derivatives and 1-Propynylamines. J. Org. Chem. 2021, 86, 8926–8932. DOI: 10.1021/acs.joc.1c00851.
  • Sergeev, P. G.; Nenajdenko, V. G. Recent Advances in the Chemistry of Pyridazine − An Important Representative of Six-Membered Nitrogen Heterocycles. Russ. Chem. Rev. 2020, 89, 393–429. DOI: 10.1070/RCR4922.
  • (a) Semeraro, C.; Dorigotti, L.; Banfi, S.; Carpi, C. Pharmacological Studies on Cadralazine: A New Antihypertensive Vasodilator Drug. J. Cardiovasc. Pharmacol. 1981, 3, 455–467. (b) Biziere, K.; Worms, P.; Kan, J.; Mandel, P.; Garattini, S.; Roncucci, R. Minaprine, a New Drug with Antidepressant Properties. Drugs Exp. Clin. Res. 1984, 11, 831–840. (c) Salvadeo, A.; Villa, G.; Segagni, S.; Piazza, V.; Picardi, L.; Romano, M.; Parini, J. Cadralazine, a new vasodilator, in Addition to a Beta-Blocker for Long-Term Treatment of Hypertension. Arzneim. Forsch. 1985, 35, 623–625. (d) Cohn, J. N.; Johnson, G.; Ziesche, S.; Cobb, F.; Francis, G.; Tristani, F.; Smith, R.; Dunkman, W. B.; Loeb, H.; Wong, M. A Comparison of Enalapril with Hydralazine-Isosorbide Dinitrate in the Treatment of Chronic Congestive Heart Failure. N Engl. J. Med. 1991, 325, 303–310. (e) Asif, M. Some Recent Approaches of Biologically Active Substituted Pyridazine and Phthalazine Drugs. Curr. Med. Chem. 2012, 19, 2984–2991. DOI: 10.2174/092986712800672139. (f) El-Sayed, A.; Abd-Elshafy, D. Synthesis of Some New Pyridazine Derivatives for anti-HAV Evaluation. Molecules 2017, 22, 148. DOI: 10.3390/molecules22010148.
  • (a) Asif, M.; Singh, A.; Ratnakar, L. Antimicrobial Agents: Brief Study of Pyridazine Derivatives against Some Phathogenic Microrganisms. J. Pharm. Res. 2011, 4, 664–667. (b) Abed, H. B.; Mammoliti, O.; Bande, O.; Lommen, G. V.; Herdewijn, P. Strategy for the Synthesis of Pyridazine Heterocycles and Their Derivatives. J Org. Chem. 2013, 78, 7845–7858. (c) Asif, M. The Anticancer Potential of Various Substituted Pyridazines and Related Compounds. IJAC. 2014, 2, 148–161. DOI: 10.14419/ijac.v2i2.2661. (d) Asif, M. The Study of Pyridazine Compounds on Prostanoids: Inhibitors of COX, cAMP Phosphodiesterase, and TXA2 Synthase. J. Chem. 2014, 2014, 1–16. DOI: 10.1155/2014/703238.
  • (a) Trofimov, B. A.; Mikhaleva, A. I.; Schmidt, E. Y.; Sobenina, L. N. Chemistry of Pyrroles; CRC Press: Boca Raton, USA, 2015. (b) Lopchuk, J. M. Five-Membered Ring Systems: Pyrroles and Benzo Analogs. In Progress in Heterocyclic Chemistry; Gribble, G. W.; Joule, J. A., Eds; Elsevier: Oxford, UK, 2016; Vol. 28, pp 165–218 (Chapter 5.2).
  • (a) Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhiman, S.; Sharma, P. Pyrrole: A Resourceful Small Molecule in Key Medicinal Hetero-Aromatics. RSC Adv. 2015, 5, 15233–15266. DOI: 10.1039/C4RA15710A. (b) Kaur, R.; Rani, V.; Abbot, V.; Kapoor, Y.; Konar, D.; Kumar, K. Recent Synthetic and Medicinal Perspectives of Pyrroles: An Overview. J. Pharm. Chem. Chem. Sci. 2017, 1, 17–32.
  • Khajuria, R.; Dham, S.; Kapoor, K. K. Active Methylenes in the Synthesis of a Pyrrole Motif: An Imperative Structural Unit of Pharmaceuticals, Natural Products and Optoelectronic Materials. RSC Adv. 2016, 6, 37039–37066. DOI: 10.1039/C6RA03411J.
  • (a) Molvi, K. I.; Haque, N.; Awen, B. Z. S.; Zameeruddin, M. Synthesis of Spiro Compounds as Medicinal Agents; New Opportunities for Drug Design and Discovery. Part I: A Review. World J. Pharm. Pharm. Sci. 2014, 3, 536–563. (b) Zheng, Y.; Tice, C. M.; Singh, S. B. The Use of Spirocyclic Scaffolds in Drug Discovery. Bioorg. Med. Chem. Lett. 2014, 24, 3673–3682. (c) Santos, M. M. M. Recent Advances in the Synthesis of Biologically Active Spirooxindoles. Tetrahedron 2014, 70, 9735–9757. DOI: 10.1016/j.tet.2014.08.005. (d) Subba Reddy, B. V.; Gopal Reddy, S.; Durgaprasad, M.; Bhadra, M. P.; Sridhar, B. Domino Prins/Pinacol Reaction for the Stereoselective Synthesis of Spiro-[Pyran-4,4′-Quinoline]-2′,3′-Dione Derivatives. Org. Biomol. Chem. 2015, 13, 8729–8733. DOI: 10.1039/C5OB01077B. (e) Kotha, S.; Panguluri, N. R.; Ali, R. Design and Synthesis of Spirocycles. Eur. J. Org. Chem. 2017, 2017, 5316–5342. DOI: 10.1002/ejoc.201700439. (f) Vacala, T. L.; Carlson, P. R.; Arreola-Hester, A.; Williams, C. G.; Makhoul, E. W.; Vadola, P. A. Gold-Catalyzed Dearomative Spirocyclization of N-Aryl Alkynamides for the Synthesis of Spirolactams. J. Org. Chem. 2018, 83, 1493–1501.
  • (a) Richie, T. J.; Macdonald, S. J. F. The Impact of Aromatic Ring Count on Compound Developability – Are Too Many Aromatic Rings a Liability in Drug Design? Drug Disc. Today. 2009, 14, 1011–1020. DOI: 10.1016/j.drudis.2009.07.014. (b) Aldeghi, M.; Malhotra, S.; Selwood, D. L.; Chan, A. W. E. Two– and Three–Dimensional Rings in Drugs. Chem. Biol. Drug Des. 2014, 83, 450–461. (c) Zheng, Y.; Tice, C. M.; Singh, S. B. The Use of Spirocyclic Scaffolds in Drug Discovery. Bioorg. Med. Chem. Lett. 2014, 24, 3673–3682.
  • (a) Claire, M.; Faraj, H.; Grassy, G.; Aumelas, A.; Rondot, A.; Auzou, G. Synthesis of New 11.beta.-Substituted Spirolactone Derivatives. Relationship with Affinity for Mineralocorticoid and Glucocorticoid Receptors. J. Med. Chem. 1993, 36, 2404–2407. (b) Lewis, E. J.; Hunsicker, L.,G.; Clarke, W. R.; Berl, T.; Pohl, M. A.; Lewis, J. B.; Ritz, E.; Atkins, R. C.; Rohde, R.; Raz, I. Renoprotective Effect of the Angiotensin-Receptor Antagonist Irbesartan in Patients with Nephropathy Due to Type 2 Diabetes. N Engl. J. Med. 2001, 345, 851–860. DOI: 10.1056/NEJMoa011303. (c) Kuhl, H. Pharmacology of Estrogens and Progestogens: Influence of Different Routes of Administration. Climacteric. 2005, 8, 3–63. DOI: 10.1080/13697130500148875. (d) Massie, B. M.; I-PRESERVE Investigators; Carson, P. E.; McMurray, J. J.; Komajda, M.; McKelvie, R.; Zile, M. R.; Anderson, S.; Donovan, M.; Iverson, E.; Staiger, C.; Ptaszynska, A. Irbesartan in Patients with Heart Failure and Preserved Ejection Fraction. N Engl. J. Med. 2008, 359, 2456–2467. (e) Friedman, A. J. Spironolactone for Adult Female Acne. Cutis. 2015, 96, 216–217. (f) Wiesinger, H.; Berse, M.; Klein, S.; Gschwend, S.; Hochel, J.; Zollmann, F. S.; Schutt, B. Pharmacokinetic Interaction Between the CYP3A4 Inhibitor Ketoconazole and the Hormone Drospirenone in Combination with Ethinylestradiol or Estradiol. Br. J. Clin. Pharmacol. 2015, 80, 1399–1410. DOI: 10.1111/bcp.12745.
  • Yang, K.; Fu, L. Mechanisms of Resistance to BCR–ABL TKIs and the Therapeutic Strategies: A Review. Crit. Rev. Oncol. Hemat. 2015, 93, 277–292. DOI: 10.1016/j.critrevonc.2014.11.001.
  • (a) Chen, Z.; Kim, S. H.; Barbosa, S. A.; Huynh, T.; Tortolani, D. R.; Leavitt, K. J.; Wei, D. D.; Manne, V.; Ricca, C. S.; Gullo-Brown, J.; Poss  et al. Pyrrolopyridazine MEK Inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 628–632. (b) Fox, B. M.; Iio, K.; Li, K.; Choi, R.; Inaba, T.; Jackson, S.; Sagawa, S.; Shan, B.; Tanaka, M.; Yoshida, A.; Kayser, F.Discovery of Pyrrolopyridazines as Novel DGAT1 Inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 6030–6033. (c) Hynes, J.; Wu, H.; Kempson, J.; Duan, J. J. W.; Lu, Z.; Jiang, B.; Stachura, S.; Tokarski, J. S.; Sack, J. S.; Khan, J. A.; et al. Discovery of Potent and Efficacious Pyrrolopyridazines as Dual JAK1/3 Inhibitors. Bioorg. Med. Chem. Lett. 2017, 27, 3101–3106. (d) Plieva, A. T. Methods for the Synthesis of Pyrrolo[1,2-b]Pyridazine and Pyrrolo[1,2-b]Cinnoline Derivatives. Chem. Heterocycl. Comp. 2019, 55, 199–201. DOI: 10.1007/s10593-019-02441-5. (e) Popovici, L.; Amarandi, R. M.; Mangalagiu, I. I.; Mangalagiu, V.; Danac, R. Synthesis, Molecular Modelling and Anticancer Evaluation of New Pyrrolo[1,2-b]Pyridazine and Pyrrolo-[2,1-a]Phthalazine Derivatives. J. Enzyme Inhib. Med. Chem. 2019, 34, 230–243. DOI: 10.1080/14756366.2018.1550085. (f) Chang, S. M.; Jain, V.; Chen, T. L.; Patel, A. S.; Pidugu, H. B.; Lin, Y. W.; Wu, M. H.; Huang, J. R.; Wu, H. C.; Shah, A.; et al. Design and Synthesis of 1,2-Bis(Hydroxymethyl)-Pyrrolo[2,1-a]Phthalazine Hybrids as Potent Anticancer Agents That Inhibit Angiogenesis and Induce DNA Interstrand Cross-Links. J. Med. Chem. 2019, 62, 2404–2418.
  • (a) Mitsumori, T.; Bendikov, M.; Sedo, J.; Wudl, F. Synthesis and Properties of Novel Highly Fluorescent Pyrrolopyridazine Derivatives. Chem. Mater. 2003, 15, 3759–3768. DOI: 10.1021/cm0340532. (b) Mitsumori, T.; Craig, I. M.; Martini, I. B.; Schwartz, B. J.; Wudl, F. Synthesis and Color Tuning Properties of Blue Highly Fluorescent Vinyl Polymers Containing a Pendant Pyrrolopyridazine. Macromolecules 2005, 38, 4698–4704. DOI: 10.1021/ma048091y. (c) Swamy, K. M. K.; Park, M. S.; Han, S. J.; Kim, S. K.; Kim, J. H.; Lee, C.; Bang, H.; Kim, Y.; Kim, S. J.; Yoon, J. New Pyrrolopyridazine Derivatives as Blue Organic Luminophors. Tetrahedron 2005, 61, 10227–10234. DOI: 10.1016/j.tet.2005.08.038. (d) Zbancioc, G. N. Mangalagiu, I. I. Microwave-Assisted Synthesis of Highly Fluorescent Pyrrolopyridazine Derivatives. Synlett 2006, 804–806.
  • (a) Vessally, E. A. A New Avenue to the Synthesis of Highly Substituted Pyrroles: synthesis from N-Propargylamines. RSC Adv. 2016, 6, 18619–18631. DOI: 10.1039/C5RA20706A. (b) Vessally, E.; Hosseinian, A.; Edjlali, L.; Bekhradnia, A.; Esrafili, M. D. New Page to Access Pyridine Derivatives: Synthesis from N-Propargylamines. RSC Adv. 2016, 6, 71662–71675. DOI: 10.1039/C6RA08720E. (c) Arshadi, S.; Vessally, E.; Edjlali, L.; Ghorbani-Kalhor, E.; Hosseinzadeh-Khanmiri, R. N-Propargylic β-Enaminocarbonyls: Powerful and Versatile Building Blocks in Organic Synthesis. RSC Adv. 2017, 7, 13198–13211. DOI: 10.1039/C7RA00746A.
  • (a) Yilmaz, E. S.; Zora, M. A New Strategy for the Synthesis of 4-Propargyl-Substituted 1H-Pyrroles from N-(5-Phenyl-2,4-Pentadiynyl) β-Enaminones. ChemistrySelect 2019, 4, 11043–11047. DOI: 10.1002/slct.201902759. (b) Kanova, N.; Dundar, B. A.; Kelgokmen, Y.; Zora, M. One-Pot Synthesis of 2-Acetyl-1H-Pyrroles from N-Propargylic β-Enaminones via Intermediacy of 1,4-Oxazepines. J. Org. Chem. 2021, 86, 6289–6304.
  • Korkmaz, E.; Zora, M. Synthesis of 3-[(4-Nitrophenyl)Thio]-Substituted 4-Methylene-1-Pyrrolines from N-Propargylic β-Enaminones. J. Org. Chem. 2020, 85, 4937–4950. DOI: 10.1021/acs.joc.0c00109.
  • (a) Karabiyikoglu, S.; Kelgokmen, Y.; Zora, M. Facile Synthesis of Iodopyridines from N-Propargylic β-Enaminones via Iodine-Mediated Electrophilic Cyclization. Tetrahedron 2015, 71, 4324–4333. DOI: 10.1016/j.tet.2015.04.070. (b) Karadeniz, E.; Zora, M.; Kılıcaslan, N. Z. Facile Synthesis of Aryl-Substituted Pyridines via Suzuki-Miyaura Approach. Tetrahedron 2015, 71, 8943–8952. DOI: 10.1016/j.tet.2015.09.063. (c) Kelgokmen, Y.; Zora, M. Facile Synthesis of Heavily-Substituted Alkynylpyridines via a Sonogashira Approach. RSC Adv. 2016, 6, 4608–4621. DOI: 10.1039/C5RA21701F. (d) Karadeniz, E.; Zora, M. One-Pot Synthesis of 2-Ferrocenyl-Substituted Pyridines. Tetrahedron Lett. 2016, 57, 4930–4934. DOI: 10.1016/j.tetlet.2016.09.080. (e) Kelgokmen, Y.; Zora, M. A New Strategy for the Synthesis of Pyridines from N-Propargylic β-Enaminothiones. Org. Biomol. Chem. 2019, 17, 2529–2541.
  • (a) Kelgokmen, Y.; Cayan, Y.; Zora, M. Zinc Chloride Mediated Synthesis of 1,4-Oxazepines from N-Propargylic β-Enaminones. Eur. J. Org. Chem. 2017, 2017, 7167–7178. DOI: 10.1002/ejoc.201701433. (b) Zora, M.; Dikmen, E.; Kelgokmen, Y. One-Pot Synthesis of Iodine-Substituted 1,4-Oxazepines. Tetrahedron Lett. 2018, 59, 823–827. DOI: 10.1016/j.tetlet.2018.01.048. (c) Ibis, O.; Zora, M. A Facile Synthesis of 6-Chloro-2-Methylene-2,3-Dihydro-1,4-Oxazepines from N-Propargylic β-Enaminones. Tetrahedron 2020, 76, 131650. DOI: 10.1016/j.tet.2020.131650. (d) Kelgokmen, Y.; Korkmaz, E.; Zora, M. A Facile Synthesis of 6-[(4-Nitrophenyl)Thio]-Substituted 2-Methylene-2,3-Dihydro-1,4-Oxazepines from N-Propargylic β-Enaminones. Synth. Commun. 2021, 51, 541–552. DOI: 10.1080/00397911.2020.1837171.
  • (a) Kelgokmen, Y.; Zora, M. Synthesis of 1,4-Thiazepines. J. Org. Chem. 2018, 83, 8376–8389. (b) Yilmaz, E. S.; Zora, M. A Facile One-Pot Synthesis of 2-(Prop-2-yn-1-Ylidene)-2,3-Dihydro-1,4-Thiazepines. Synth. Commun. 2021, 51, 709–719. DOI: 10.1080/00397911.2020.1850795.
  • Karadeniz, E.; Zora, M. Synthesis of 1-Azaspiro[4.5]Deca-1,3-Dienes from N-Propargylic β-Enaminones in Basic Medium. Synthesis 2019, 51, 2157–2170. DOI: 10.1055/s-0037-1611723.
  • Karadeniz, E.; Zora, M. One-Pot Synthesis of Spiro-2H-Pyrroles from N-Propargylic β-Enaminones. Synlett 2019, 30, 1231–1236. DOI: 10.1055/s-0037-1611816.
  • Karadeniz, E.; Kelgokmen, Y.; Zora, M. A New Approach for the Synthesis of Spiro and Gem-Dimethyl-Substituted 1,4-Oxazepines from N-Propargylic β-Enaminones. J. Heterocyclic Chem. 2021, 58, 466–477. DOI: 10.1002/jhet.4183.
  • (a) Gao, Q.; Zhu, Y.; Lian, M.; Liu, M.; Yuan, J.; Yin, G.; Wu, A. Unexpected C − C Bond Cleavage: A Route to 3,6-Diarylpyridazines and 6-Arylpyridazin-3-Ones from 1,3-Dicarbonyl Compounds and Methyl Ketones. J. Org. Chem. 2012, 77, 9865–9870. (b) Xin, L.; Xue, J.; Lei, G.; Qiao, J. Efficient near-Infrared-Emitting Cationic Iridium Complexes Based on Highly Conjugated Cyclometalated Benzo[g]Phthalazine Derivatives. RSC Adv. 2015, 5, 42354–42361. DOI: 10.1039/C5RA04511H. (c) Baumgartner, K.; Kirschbaum, T.; Krutzek, F.; Dreuw, A.; Rominger, F.; Mastalerz, M. K-Region-Extended [c]-Heteroannulated Pyrenes.  Chem. Eur. J. 2017, 23, 17817–17822.
  • (a) Zhang, F.; Wu, D.; Xu, Y.; Feng, X. Thiophene-Based Conjugated Oligomers for Organic Solar Cells. J. Mater. Chem. 2011, 21, 17590–17600. DOI: 10.1039/c1jm12801a. (b) Gramec, D.; Masic, L. P.; Dolenc, M. S. Bioactivation Potential of Thiophene-Containing Drugs. Chem. Res. Toxicol. 2014, 27, 1344–1358. (c) Smith, Z. C.; Meyer, D. M.; Simon, M. G.; Staii, C.; Shukla, D.; Thomas, S. W. III, Thiophene-Based Conjugated Polymers with Photolabile Solubilizing Side Chains. Macromolecules 2015, 48, 959–966. DOI: 10.1021/ma502289n.
  • (a) Hernandes, M. Z.; Cavalcanti, S. M. T.; Moreira, D. R. M.; de Azevedo Junior, W. F.; Leite, A. C. L. Halogen Atoms in the Modern Medicinal Chemistry: Hints for the Drug Design. Curr. Drug Targets. 2010, 11, 303–314. DOI: 10.2174/138945010790711996. (b) Wilcken, R.; Zimmermann, M. O.; Lange, A.; Joerger, A. C.; Boeckler, F. M. Principles and Applications of Halogen Bonding in Medicinal Chemistry and Chemical Biology. J. Med. Chem. 2013, 56, 1363–1388. DOI: 10.1021/jm3012068. (c) Shinada, N. K.; de Brevern, A. G.; Schmidtke, P. Halogens in Protein–Ligand Binding Mechanism: A Structural Perspective. J. Med. Chem. 2019, 62, 9341–9356.
  • (a) Filler, R.; Saha, R. Fluorine in Medicinal Chemistry: A Century of Progress and a 60-Year Retrospective of Selected Highlights. Future Med. Chem. 2009, 1, 777–791. DOI: 10.4155/fmc.09.65. (b) Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001–2011). Chem. Rev. 2014, 114, 2432–2506. DOI: 10.1021/cr4002879. (c) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. Applications of Fluorine in Medicinal Chemistry. J. Med. Chem. 2015, 58, 8315–8359.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.