Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 52, 2022 - Issue 18
444
Views
2
CrossRef citations to date
0
Altmetric
Articles

Microwave-assisted synthesis of functionalized carbazoles via palladium-catalyzed aryl C–H activation and study of their interactions with calf-thymus DNA

, , , , &
Pages 1834-1855 | Received 08 Feb 2022, Published online: 01 Sep 2022

References

  • Chakraborty, A.; Ravi, S. P.; Shamiya, Y.; Cui, C.; Paul, A. Harnessing the Physicochemical Properties of DNA as a Multifunctional Biomaterial for Biomedical and Other Applications. Chem. Soc. Rev. 2021, 50, 7779–7819. DOI: 10.1039/D0CS01387K
  • Roberts, T. C.; Langer, R.; Wood, M. J. A. Advances in Oligonucleotide Drug Delivery. Nat. Rev. Drug Discov. 2020, 19, 673–694. DOI: 10.1038/s41573-020-0075-7.
  • Selvaraj, C.; Singh, S. K. Computational and Experimental Binding Mechanism of DNA-drug Interactions. Curr. Pharm. Des. 2018, 24, 3739–3757. DOI: 10.2174/1381612824666181106101448
  • Lauria, A.; Montalbano, A.; Barraja, P.; Dattolo, G.; Almerico, A. M. DNA Minor Groove Binders: an Overview on Molecular Modeling and QSAR Approaches. Curr. Med. Chem. 2007, 14, 2136–2160. DOI: 10.2174/092986707781389673
  • Rescifina, A.; Zagni, C.; Varrica, M. G.; Pistara, V.; Corsaro, A. Recent advances in small organic molecules as DNA Intercalating Agent: Synthesis, activity, and modeling.. Eur. J. Med. Chem. 2014, 74, 95–115. DOI: 10.1016/j.ejmech.2013.11.029.
  • Saha, I.; Hossain, M.; Kumar, G. S. Sequence-Selective Binding of Phenazininum Dyes Phenosafranin and Safranin O to Guanine-Cytosine Deoxyribopolynucleotides: Spectroscopic and Thermodynamic Studies.. J. Phys. Chem. B 2010, 114, 15278–15287. DOI: 10.1021/jp1064598
  • Palchaudhuri, R.; Hergenrother, P. J. DNA as a Target for Anticancer Compounds: Methods to Determine the Mode of Binding and the Mechanism of Action. Curr. Opin. Biotechnol. 2007, 18, 497–503. DOI: 10.1016/j.copbio.2007.09.006.
  • del Mundo, I. M. A.; Vasquez, K. M.; Wang, G. Modulation of DNA Structure Formation Using Small Molecules. Biochim. Biophys. Acta Mol. Cell Res. 2019, 1866, 118539. DOI: 10.1016/j.bbamcr.2019.118539.
  • Manna, A.; Chakravorti, S. Modification of a Styryl Dye Binding Mode with Calf Thymus DNA in Vesicular Medium: From Minor Groove to Intercalative. J. Phys. Chem. B. 2012, 116, 5226–5233. DOI: 10.1021/jp301211m.
  • Hudson, W. H.; Ortlund, E. A. The Structure, Function and Evolution of Proteins That Bind DNA and RNA. Nat. Rev. Mol. Cell Biol. 2014, 15, 749–760. DOI: 10.1038/nrm3884.
  • Tanious, F. A.; Ding, D.; Patrick, D. A.; Tidwell, R. R.; Wilson, W. D. A. New Type of DNA Minor-Groove Complex: Carbazole Dication-DNA Interactions. Biochemistry 1997, 36, 15315–15325. DOI: 10.1021/bi971599r.
  • Tanious, F. A.; Ding, D.; Patrick, D. A.; Bailly, C.; Tidwell, R. R.; Wilson, W. D. Effects of Compound Structure on Carbazole Dication-DNA Complexes: Tests of the Minor-Groove Complex Models. Biochemistry 2000, 39, 12091–12101. DOI: 10.1021/bi001236i.
  • Tanious, F. A.; Wilson, W. D.; Patrick, D. A.; Tidwell, R. R.; Colson, P.; Houssier, C.; Tardy, C.; Bailly, C. Sequence-Dependent Binding of Bis-Amidine Carbazole Dications to DNA. Eur. J. Biochem. 2001, 268, 3455–3464. DOI: 10.1046/j.1432-1327.2001.02242.x.
  • Głuszyńska, A. Biological Potential of Carbazole Derivatives. Eur. J. Med. Chem. 2015, 94, 405–426. DOI: 10.1016/j.ejmech.2015.02.059.
  • Liu, L. - X.; Wang, X. - Q.; Zhou, B.; Yang, L. - J.; Li, Y.; Zhang, H. - B.; Yang, X. - D. Synthesis and Antitumor Activity of Novel N-Substituted Carbazole Imidazolium Salt Derivatives. Sci. Rep. 2015, 5, 13101. DOI: 10.1038/srep13101.
  • Issa, S.; Prandina, A.; Bedel, N.; Rongved, P.; Yous, S.; Le Borgne, M.; Bouaziz, Z. Carbazole Scaffolds in Cancer Therapy: A Review from 2012 to 2018. J. Enzym Inhib. Med. Chem. 2019, 34, 1321–1346. DOI: 10.1080/14756366.2019.1640692.
  • Lemster, T.; Pindur, U.; Lenglet, G.; Depauw, S.; Dassi, C.; David-Cordonnier, M. -H . Photochemical Electrocyclization of 3-Vinylindoles to Pyrido[2,3-a]-, Pyrido[4,3-a]-, and Thieno[2,3-a]-carbazoles: Design, Synthesis, DNA Binding and Antitumor Cell Cytotoxicity. Eur. J. Med. Chem. 2009, 44, 3235–3252. DOI: 10.1016/j.ejmech.2009.03.026.
  • Shen, M.; Li, P. - T.; Wu, Y. - J.; Lin, C. - H.; Chai, E.; Chang, T. - C.; Chen, C. - T. The Antifungal Activities and Biological Consequences of BMVC-12C-P, a Carbazole Derivative against Candida Species. Med. Mycol. 2020, 58, 521–529. DOI: 10.1093/mmy/myz071.
  • Kaplancikli, Z. A. Synthesis of Some Novel Carbazole Derivatives and Evaluation of Their Antimicrobial Activity. Marmara Pharm. J. 2011, 15, 105–109. DOI: 10.12991/201115426.
  • Wei, R.; Ma, Q.; Li, T.; Liu, W.; Sang, Z.; Li, M.; Liu, S. Carbazole Alkaloids with Antiangiogenic Activities from Clausena sanki. Bioorg. Chem. 2018, 77, 387–392. DOI: 10.1016/j.bioorg.2018.01.032
  • Yang, J.-H.; Wang, X.-Y.; Zhou, Y.-P.; Lu, R.; Chen, C.-H.; Zhang, M.-H.; Cheng, Y.-Y.; Morris-Natschke, S. L.; Lee, K.-H.; Wang, Y.-S. Carbazole Alkaloids from Clausena anisum-Olens: Isolation, Characterization and Anti-HIV Evaluation. Molecules 2019, 25, 99. DOI: 10.3390/molecules25010099.
  • Zheng, Y.-C.; Zheng, M.-L.; Chen, S.; Zhao, Z.-S.; Duan, X.-M. Biscarbazolylmethane-Based Cyanine: A Two-Photon Excited Fluorescent Probe for DNA and Selective Cell Imaging. J. Mater. Chem. B 2014, 2, 2301–2310. DOI: 10.1039/c3tb21860k.
  • Feng, X. J.; Wu, P. L.; Bolze, F.; Leung, H. W. C.; Li, K. F.; Mak, N. K.; Kwong, D. W. J.; Nicoud, J. - F.; Cheah, K. W.; Wong, M. S. Cyanines as New Fluorescent Probes for DNA Detection and Two-Photon Excited Bioimaging. Org. Lett. 2010, 12, 2194–2197. DOI: 10.1021/ol100474b.
  • Zhang, Y. ; Wang, J. ; Jia, P. ; Yu, X. ; Liu, H.; Liu, X.; Zhao, N.; Huang, B. Two-Photon Fluorescence Imaging of DNA in Living Plant Turbid Tissue with Carbazole Dicationic Salt. Org. Biomol. Chem. 2010, 8, 4582–4588. DOI: 10.1039/C0OB00030B.
  • Liu, X.; Sun, Y. ; Zhang, Y. ; Miao, F.; Wang, G. ; Zhao, H. ; Yu, X. ; Liu, H.; Wong, W. - Y. A 2,7-Carbazole-Based Dicationic Salt for Fluorescence Detection of Nucleic Acids and Two-Photon Fluorescence Imaging of RNA in Nucleoli and Cytoplasm. Org. Biomol. Chem. 2011, 9, 3615–3618. DOI: 10.1039/C1OB05123G
  • Chang, C.- C.; Kuo, I.- C.; Lin, J.- J.; Lu, Y.- C.; Chen, C.- T.; Back, H.- T.; Lou, P.- J.; Chang, T.- C. A Novel Carbazole Derivative, BMVC: A Potential Antitumor Agent and Fluorescent Marker of Cancer Cells. Chem. Biodivers. 2004, 1, 1377–1384. DOI: 10.1002/cbdv.200490100.
  • Wei, Y.; Zhang, X.; Wang, L.; Liu, Y.; Bing, T.; Liu, X.; Shangguan, D. Interaction of Bisbenzimidazole-Substituted Carbazole Derivatives with G-Quadruplexes and Living Cells. RSC Adv. 2015, 5, 75911–75917. DOI: 10.1039/C5RA11543D.
  • Zhang, X.- F.; Zhang, H.- J.; Xiang, J.- F.; Li, Q. ; Yang, Q.- F.; Shang, Q. ; Zhang, Y.- X.; Tang, Y.- L. The Binding Modes of Carbazole Derivatives with Telomere G-Quadruplex. J. Mol. Struct. 2010, 982, 133–138. DOI: 10.1016/j.molstruc.2010.08.018.
  • Jia, T.; Xiang, J.; Wang, J.; Guo, P.; Yu, J. Interactions of Newly Designed Dicationic Carbazole Derivatives with Double-Stranded DNA: Syntheses, Binding Studies and AFM Imaging. Org. Biomol. Chem. 2013, 11, 5512–5520. DOI: 10.1039/C3OB40799C.
  • Hao, G.; Sun, J.; Wei, C. Studies on Interactions of Carbazole Derivatives with DNA, Cell Image and Cytotoxicity. Bioorg. Med. Chem. 2018, 26, 285–294. DOI: 10.1016/j.bmc.2017.11.044.
  • Chylewska, A.; Dąbrowska, A. M.; Ramotowska, S.; Maciejewska, N.; Olszewski, M.; Bagiński, M.; Makowski, M. Photosensitive and pH-Dependent Activity of Pyrazine-Functionalized Carbazole Derivative as Promising Antifungal and Imaging Agent. Sci. Rep. 2020, 10, 11767. DOI: 10.1038/s41598-020-68758-w.
  • (a) Knölker, H.-J.; Reddy, K. R. Isolation and Synthesis of Biologically Active Carbazole Alkaloids. Chem. Rev. 2002, 102, 4303–4427. DOI: 10.1021/cr020059j. (b) Tian, X.; Song, L.; Hashmi, A. S. K. Synthesis of Carbazoles and Related Heterocycles from Sulfilimines by Intramolecular C–H Aminations. Angew. Chem. Int. Ed. Engl. 2020, 59, 12342–12346. DOI: 10.1002/anie.202000146
  • (a) Hendrich, C. M.; Hannibal, V. D.; Eberle, L.; Hertwig, L. E.; Zschieschang, U.; Rominger, F.; Rudolph, M.; Klauk, H.; Hashmi, A. S. K. Gold-Catalyzed Synthesis of π-Extended Carbazole-Based Systems and Their Application as Organic Semiconductors. Adv. Synth. Catal. 2021, 363, 1401–1407. DOI: 10.1002/adsc.202001461. (b) Hendrich, C. M.; Bongartz, L. M.; Hoffmann, M. T.; Zschieschang, U.; Borchert, J. W.; Sauter, D.; Krämer, P.; Rominger, F.; Mulks, F. F.; Rudolph, M.; et al. Gold Catalysis Meets Materials Science – A New Approach to π-Extended Indolocarbazoles. Adv. Synth. Catal. 2021, 363, 549–557. DOI: 10.1002/adsc.202001123. (c) Banerjee, A.; Kundu, S.; Bhattacharyya, A.; Sahu, S.; Maji, M. S. Benzannulation Strategies for the Synthesis of Carbazoles, Indolocarbazoles, Benzocarbazoles, and Carbolines. Org. Chem. Front. 2021, 8, 2710–2771. DOI: 10.1039/D1QO00092F.
  • Krahl, M. P.; Jäger, A.; Krause, T.; Knölker, H.-J. First Total Synthesis of the 7-Oxygenated Carbazole Alkaloids Clauszoline-K, 3-Formyl-7-Hydroxycarbazole, Clausine M, Clausine N and the Anti-HIV Active Siamenol Using a Highly Efficient Palladium-Catalyzed Approach. Org. Biomol. Chem. 2006, 4, 3215–3219. DOI: 10.1039/B607792G.
  • Wen, L.; Tang, L.; Yang, Y.; Zha, Z.; Wang, Z. Ligand Free Pd-Catalyzed Domino Synthesis of Carbazoles via Dehydrogenative Aromatization/C(sp2)–C(sp2) Coupling Sequence. Org. Lett. 2016, 18, 1278–1281. DOI: 10.1021/acs.orglett.6b00193.
  • Bedford, R. B.; Betham, M.; Carbazole, N-H. Synthesis from 2-Chloroanilines via Consecutive Amination and C–H Activation. J. Org. Chem. 2006, 71, 9403–9410. DOI: 10.1021/jo061749g.
  • Uwa, K.; Tseng, Y.-Y.; Kamikawa, K. Synthesis of N-Arylcarbazoles by Palladium-Catalyzed Direct C–H Arylation of 2-(Diarylamino)Phenyl Triflates. Eur. J. Org. Chem. 2017, 2017, 892–895. DOI: 10.1002/ejoc.201601467.
  • (a) Parisien, M.; Valette, D.; Fagnou, K. Direct Arylation Reactions Catalyzed by Pd(OH)2/C: Evidence for a Soluble Palladium Catalyst. J. Org. Chem. 2005, 70, 7578–7584. DOI: 10.1021/jo051039v. (b) Campeau, L.-C.; Parisien, M.; Jean, A.; Fagnou, K. Catalytic Direct Arylation with Aryl Chlorides, Bromides, and Iodides: Intramolecular Studies Leading to New Intermolecular Reactions. J. Am. Chem. Soc. 2006, 128, 581–590. DOI: 10.1021/ja055819x.
  • (a) Rasheed, S.; Rao, D. N.; Reddy, K. R.; Aravinda, S.; Vishwakarma, R. A.; Das, P. C–N Bond Formation via Cu-Catalyzed Cross-Coupling with Boronic Acids Leading to Methyl Carbazole-3-Carboxylate: Synthesis of Carbazole Alkaloids. RSC Adv. 2014, 4, 4960–4969. DOI: 10.1039/c3ra44903c. (b) Kong, X.; Zhang, H.; Cao, C.; Zhou, S.; Pang, G.; Shi, Y. Synthesis of Fluorinated Carbazoles via C–H Arylation Catalyzed by Pd/Cu Bimetal System and Their Antibacterial Activities. Bioorg. Med. Chem. 2016, 24, 1376–1383. DOI: 10.1016/j.bmc.2016.02.013. (c) Iwaki, T.; Yasuhara, A.; Sakamoto, T. Novel Synthetic Strategy of Carbolines via Palladium-Catalyzed Amination and Arylation Reaction. J. Chem. Soc. Perkin Trans. 1 1999, 1505–1510. DOI: 10.1039/a901088b.
  • Sharma, N.; Sharma, U. K.; der Eycken, E. V. V. Microwave-Assisted Organic Synthesis: Overview of Recent Applications. In Green Techniques for Organic Synthesis and Medicinal Chemistry; Zhang, W., Cue, B. W., Eds.; Wiley: Hoboken, 2018, pp 441–468.
  • Banik, B. K.; Sahoo, B. M.; Kumar, B. R.; Panda, K. C. Microwave Induced Green Chemistry Approach Towards the Synthesis of Heterocyclic Compounds via C-N Bond Forming Reactions. CMIC 2021, 8, 204–214. DOI: 10.2174/2213335608666210923144201.
  • Takamatsu, K.; Hirano, K.; Satoh, T.; Miura, M. Synthesis of Carbazoles by Copper-Catalyzed Intramolecular C–H/N–H Coupling. Org. Lett. 2014, 16, 2892–2895. DOI: 10.1021/ol501037j.
  • Schuster, C.; Börger, C.; Julich-Gruner, K. K.; Hesse, R.; Jäger, A.; Kaufmann, G.; Schmidt, A. W.; Knölker, H.-J. Synthesis of 2-Hydroxy-7-Methylcarbazole, Glycozolicine, Mukoline, Mukolidine, Sansoakamine, Clausine-H, and Clausine-K and Structural Revision of Clausine-TY. Eur. J. Org. Chem. 2014, 2014, 4741–4752. DOI: 10.1002/ejoc.201402495.
  • Brütting, C.; Kataeva, O.; Schmidt, A. W.; Knölker, H.-J. First Total Synthesis of the Cytotoxic Carbazole Alkaloid Excavatine-A and Regioselective Annulation to Pyrano[2,3-a]carbazoles and [1,4]Oxazepino[2,3,4-jk]carbazoles. Eur. J. Org. Chem. 2017, 2017, 3288–3300. DOI: 10.1002/ejoc.201700515.
  • Steingruber, H. S.; Mendioroz, P.; Volpe, M. A.; Gerbino, D. C. Convenient One-Pot Synthesis of 9H-Carbazoles by Microwave Irradiation Employing a Green Palladium-Based Nanocatalyst. Synthesis 2021, 53, 4048–4058. DOI: 10.1055/s-0037-1610778.
  • (a) Chen, J.-Q.; Li, J.-H.; Dong, Z.-B. A Review on the Latest Progress of Chan-Lam Coupling Reaction. Adv. Synth. Catal. 2020, 362, 3311–3331. DOI: 10.1002/adsc.202000495. (b) Antilla, J. C.; Buchwald, S. L. Copper-Catalyzed Coupling of Arylboronic Acids and Amines. Org. Lett. 2001, 3, 2077–2079. DOI: 10.1021/ol0160396.
  • Khan, A.; Karim, R.; Dhimane, H.; Alam, S. Mild and Efficient Synthesis of Functionalized Carbazoles via a DBU‐Assisted Sequence Involving Cu‐ and Pd‐Catalyzed Coupling Reactions. ChemistrySelect 2019, 4, 6598–6605. DOI: 10.1002/slct.201900788.
  • Ganguly, A.; Ghosh, S.; Guchhait, N. Spectroscopic and Viscometric Elucidation of the Interaction between a Potential Chloride Channel Blocker and Calf-Thymus DNA: The Effect of Medium Ionic Strength on the Binding Mode. Phys. Chem. Chem. Phys. 2015, 17, 483–492. DOI: 10.1039/C4CP04175E
  • Lozano-Hernández, L.-A.; Maldonado, J.-L.; Garcias-Morales, C.; Roa, A. E.; Barbosa-García, O.; Rodríguez, M.; Pérez-Gutiérrez, E. Efficient OLEDs Fabricated by Solution Process Based on Carbazole and Thienopyrrolediones Derivatives. Molecules 2018, 23, 280. DOI: 10.3390/molecules23020280.
  • Jaumot, J.; Gargallo, R. Experimental Methods for Studying the Interactions between G-Quadruplex Structures and Ligands. Curr. Pharm. Des. 2012, 18, 1900–1916. DOI: 10.2174/138161212799958486.
  • Gonzalez-Ruiz, V.; Olives, A. I.; Martin, M. A.; Ribelles, P.; Ramos, M. T.; Menendez, J. C. An Overview of Analytical Techniques Employed to Evidence drug-DNA Interactions. Applications to the Design of Genosensors. In Biomedical Engineering Trends, Research and Technologies; Olsztynska, S. Eds.; InTech, 2011, pp 65–90. DOI: 10.5772/13586.
  • Li, N.; Ma, Y.; Yang, C.; Guo, L.; Yang, X. Interaction of Anticancer Drug Mitoxantrone with DNA Analyzed by Electrochemical and Spectroscopic Methods. Biophys. Chem. 2005, 116, 199–205. DOI: 10.1016/j.bpc.2005.04.009.
  • Pradhan, A. B.; Haque, L.; Roy, S.; Das, S. Binding of Phenazinium Dye Safranin T to Polyriboadenylic Acid: Spectroscopic and Thermodynamic Study. PLOS One 2014, 9, e87992. DOI: 10.1371/journal.pone.0087992.
  • Garbett, N. C.; Ragazzon, P. A.; Chaires, J. B. Circular Dichroism to Determine Binding Mode and Affinity of ligand-DNA Interactions. Nat. Protoc. 2007, 2, 3166–3172. DOI: 10.1038/nprot.2007.475.
  • Ghosh, S.; Khan, M. A.; Bhattacharyya, A.; Alam, M. A.; Zangrando, E.; Guchhait, N. Cu(II)-Induced Twisting of the Biphenyl Core: Exploring the Effect of Structure and Coordination Environment of Biphenyl-Based Chiral Copper(II) Complexes on Interaction with Calf-Thymus DNA. New J. Chem. 2020, 44, 20275–20284. DOI: 10.1039/C9NJ06184C.
  • (a) Sulimov, V. B.; Kutov, D. C.; Sulimov, A. V. Advances in Docking. Curr. Med. Chem. 2019, 26, 7555–7580. DOI: 10.2174/0929867325666180904115000. (b) Aucar, M. G.; Cavasotto, C. N. Molecular Docking Using Quantum Mechanical-Based Methods. Methods Mol. Biol. 2020, 2114, 269–284. DOI: 10.1007/978-1-0716-0282-9_17.
  • (a) Becke, A. D. Density‐Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. DOI: 10.1063/1.464913. (b) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. DOI: 10.1103/physrevb.37.785.
  • McLean, A. D.; Chandler, G. S. Contracted Gaussian Basis Sets for Molecular Calculations. I. Second Row Atoms, Z = 11–18. J. Chem. Phys. 1980, 72, 5639–5648. DOI: 10.1063/1.438980.
  • Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. J. Comput. Chem. 2003, 24, 669–681. DOI: 10.1002/jcc.10189.
  • (a) Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. DOI: 10.1002/jcc.21334. (b) Eberhardt, J.; Santos-Martins, D.; Tillack, A. F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. DOI: 10.1021/acs.jcim.1c00203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.