Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 52, 2022 - Issue 18
270
Views
4
CrossRef citations to date
0
Altmetric
Articles

A novel and efficient magnetically recoverable copper catalyst [MNPs-guanidine-bis(ethanol)-Cu] for Pd-free Sonogashira coupling reaction

, , , &
Pages 1856-1866 | Received 04 Jul 2022, Published online: 01 Sep 2022

References

  • Sardarian, A. R.; DindarlooInaloo, I.; Zangiabadi, M. Selective Synthesis of Secondary Arylcarbamates via Efficient and Cost Effective Copper-Catalyzed Mono Arylation of Primary Carbamates with Aryl Halides and Arylboronic Acids. Catal. Lett. 2018, 148, 642–652. DOI: 10.1007/s10562-017-2277-0.
  • Inaloo, I. D.; Majnooni, S. A Fe3O4@SiO2/Schiff Base/Pd Complex as an Efficient Heterogeneous and Recyclable Nanocatalyst for One-Pot Domino Synthesis of Carbamates and Unsymmetrical Ureas. Eur. J. Org. Chem. 2019, 2019, 6359–6368. DOI: 10.1002/ejoc.201901140.
  • Dindarloo Inaloo, I.; Majnooni, S.; Eslahi, H.; Esmaeilpour, M. Efficient Nickel(II) Immobilized on EDTA‐Modified Fe3O4@SiO2 Nanospheres as a Novel Nanocatalyst for Amination of Heteroaryl Carbamates and Sulfamates through the Cleavage of C–O Bond. Mol. Catal. 2020, 492, 110915. DOI: 10.1016/j.mcat.2020.110915.
  • Sardarian, A. R.; Dindarloo Inaloo, I.; Zangiabadi, M. An Fe3O4@SiO2/Schiff Base/Cu (Ii) Complex as an Efficient Recyclable Magnetic Nanocatalyst for Selective Mono N-Arylation of Primary O-Alkyl Thiocarbamates and Primary O-Alkyl Carbamates with Aryl Halides and Arylboronic Acids. New J. Chem. 2019, 43, 8557–8565. DOI: 10.1039/C9NJ00028C.
  • Ahorsu, R.; Constanti, M.; Medina, F. Recent Impacts of Heterogeneous Catalysis in Biorefineries. Ind. Eng. Chem. Res. 2021, 60, 18612–18626. DOI: 10.1021/acs.iecr.1c02789.
  • Sharma, A.; Wakode, S.; Sharma, S.; Fayaz, F.; Pottoo, F. H. Methods and Strategies Used in Green Chemistry: A Review. COC 2020, 24, 2555–2565. DOI: 10.2174/1385272824999200802025233.
  • Maji, M.; Chakrabarti, K.; Panja, D.; Kundu, S. Sustainable Synthesis of N-Heterocycles in Water Using Alcohols following the Double Dehydrogenation Strategy. J. Catal. 2019, 373, 93–102. DOI: 10.1016/j.jcat.2019.03.028.
  • Yılmaz, M. K.; Keleş, H.; İnce, S.; Keleş, M. Iminophosphine Palladium Catalysts for Suzuki Carbonylative Coupling Reaction. Appl. Organomet. Chem. 2018, 32, e4002. DOI: 10.1002/aoc.4002.
  • Santandrea, J.; Bédard, A.-C.; Collins, S. K. Cu(I)-Catalyzed Macrocyclic Sonogashira-Type Cross-Coupling. Org. Lett. 2014, 16, 3892–3895. DOI: 10.1021/ol501898b.
  • Rovira, M.; Font, M.; Acuña-Parés, F.; Parella, T.; Luis, J. M.; Lloret-Fillol, J.; Ribas, X. Aryl-Copper(III)-Acetylides as Key Intermediates in Csp2-C Sp Model Couplings under Mild Conditions. Chemistry 2014, 20, 10005–10010. DOI: 10.1002/chem.201402711.
  • Tamoradi, T.; Daraie, M.; Heravi, M. M. Synthesis of Palladated Magnetic Nanoparticle (Pd@Fe3O4/AMOCAA) as an Efficient and Heterogeneous Catalyst for Promoting Suzuki and Sonogashira Cross-Coupling Reactions. Appl. Organomet. Chem. 2020, 34, e5538. DOI: 10.1002/aoc.5538.
  • Aflak, N.; Ben El Ayouchia, H.; Bahsis, L.; Anane, H.; Julve, M.; Stiriba, S.-E. Recent Advances in Copper-Based Solid Heterogeneous Catalysts for Azide–Alkyne Cycloaddition Reactions. Int. J. Mol. Sci. 2022, 23, 2383. DOI: 10.3390/ijms23042383.
  • Li, J.; Stephanopoulos, M. F.; Xia, Y. Introduction: Heterogeneous Single-Atom Catalysis. Chem. Rev. 2020, 120, 11699–11702. DOI: 10.1021/acs.chemrev.0c01097.
  • Kalidindi, S. B.; Jagirdar, B. R. Nanocatalysis and Prospects of Green Chemistry. ChemSusChem 2012, 5, 65–75. DOI: 10.1002/cssc.201100377.
  • Meemken, F.; Baiker, A. Recent Progress in Heterogeneous Asymmetric Hydrogenation of C=O and C=C Bonds on Supported Noble Metal Catalysts. Chem. Rev. 2017, 117, 11522–11569. DOI: 10.1021/acs.chemrev.7b00272.
  • Casti, F.; Basoccu, F.; Mocci, R.; De Luca, L.; Porcheddu, A.; Cuccu, F. Appealing Renewable Materials in Green Chemistry. Molecules 2022, 27, 1988. DOI: 10.3390/molecules27061988.
  • Yamamoto, H. Acid Catalysis in Organic Synthesis. Top. Organomet. Chem. 2013, 44, 315–334. DOI: 10.1007/3418-2012-51.
  • Ai, W.; Zhong, R.; Liu, X.; Liu, Q. Hydride Transfer Reactions Catalyzed by Cobalt Complexes. Chem. Rev. 2019, 119, 2876–2953. DOI: 10.1021/acs.chemrev.8b00404.
  • Ni, H.; Chan, W. L.; Lu, Y. Phosphine-Catalyzed Asymmetric Organic Reactions. Chem. Rev. 2018, 118, 9344–9411. DOI: 10.1021/acs.chemrev.8b00261.
  • Pritchard, J.; Filonenko, G. A.; Van Putten, R.; Hensen, E. J. M.; Pidko, E. A. Heterogeneous and Homogeneous Catalysis for the Hydrogenation of Carboxylic Acid Derivatives: History, Advances and Future Directions. Chem. Soc. Rev. 2015, 44, 3808–3833. DOI: 10.1039/c5cs00038f.
  • Zolfigol, M. A.; Ghaderi, H.; Baghery, S.; Mohammadi, L. Nanometasilica Disulfuric Acid (NMSDSA) and Nanometasilica Monosulfuric Acid Sodium Salt (NMSMSA) as Two Novel Nanostructured Catalysts: Applications in the Synthesis of Biginelli-Type, Polyhydroquinoline and 2,3-Dihydroquinazolin-4(1H)-One Derivatives. J. Iran. Chem. Soc. 2017, 14, 121–134. DOI: 10.1007/s13738-016-0964-1.
  • Schammel, W. P.; Rumplecker, A.; Zurcher, F. R.; Scher, E. C.; Cizeron, J. M.; Gamoras, J. Heterogeneous Catalysts; 2020.
  • Kazemi, M.; Shiri, L. Ionic Liquid Immobilized on Magnetic Nanoparticles: A Nice and Efficient Catalytic Strategy in Synthesis of Heterocycles. J. Synth. Chem. 2022, 1, 1–7. DOI: 10.22034/jsc.2022.149201.
  • Bokov, D.; Turki Jalil, A.; Chupradit, S.; Suksatan, W.; Javed Ansari, M.; Shewael, I. H.; Valiev, G. H.; Kianfar, E. Nanomaterial by Sol-Gel Method: Synthesis and Application. Adv. Mater. Sci. Eng. 2021, 2021, 1–21. DOI: 10.1155/2021/5102014.
  • Ngafwan, N.; Rasyid, H.; Salaam Abood, E.; Kamal Abdelbasset, W.; Al-Shawi, S. G.; Bokov, D.; Jalil, A. T. Study on Novel Fluorescent Carbon Nanomaterials in Food Analysis. Food Sci. Technol. 2022, 42, e37821. DOI: 10.1590/fst.37821.
  • Mohammadi, M.; Khazaei, A.; Rezaei, A.; Huajun, Z.; Xuwei, S. Ionic-Liquid-Modified Carbon Quantum Dots as a Support for the Immobilization of Tungstate Ions (WO 42-): Heterogeneous Nanocatalysts for the Oxidation of Alcohols in Water. ACS Sustain. Chem. Eng. 2019, 5283–5291. DOI: 10.1021/acssuschemeng.8b06279.
  • Olegovich Bokov, D.; Jalil, A. T.; Alsultany, F. H.; Mahmoud, M. Z.; Suksatan, W.; Chupradit, S.; Qasim, M. T.; Delir Kheirollahi Nezhad, P. Ir-Decorated Gallium Nitride Nanotubes as a Chemical Sensor for Recognition of Mesalamine Drug: A DFT Study. Mol. Simul. 2022, 48, 438–447. DOI: 10.1080/08927022.2021.2025234.
  • Kartika, R.; Alsultany, F. H.; Turki Jalil, A.; Mahmoud, M. Z.; Fenjan, M. N.; Rajabzadeh, H. Ca12O12 Nanocluster as Highly Sensitive Material for the Detection of Hazardous Mustard Gas: Density-Functional Theory. Inorg. Chem. Commun. 2022, 137, 109174. DOI: 10.1016/j.inoche.2021.109174.
  • Chupradit, S.; Jalil, A. T.; Enina, Y.; Neganov, D. A.; Alhassan, M. S.; Aravindhan, S.; Davarpanah, A. Use of Organic and Copper-Based Nanoparticles on the Turbulator Installment in a Shell Tube Heat Exchanger: A CFD-Based Simulation Approach by Using Nanofluids. J. Nanomater. 2021, 2021, 1–7. DOI: 10.1155/2021/3250058.
  • Turki Jalil, A.; Emad Al. Qurabiy, H.; Hussain Dilfy, S.; Oudah Meza, S.; Aravindhan, S. M.; Kadhim, M. M.; Aljeboree, A. CuO/ZrO2 Nanocomposites: Facile Synthesis, Characterization and Photocatalytic Degradation of Tetracycline Antibiotic. J. Nanostructures 2021, 11, 333–346. DOI: 10.22052/JNS.2021.02.014.
  • Gholami, P.; Khataee, A.; Soltani, R. D. C.; Bhatnagar, A. A Review on Carbon-Based Materials for Heterogeneous Sonocatalysis: Fundamentals, Properties and Applications. Ultrason. Sonochem. 2019, 58, 104681. DOI: 10.1016/j.ultsonch.2019.104681.
  • Bai, J.; Liu, D.; Yang, J.; Chen, Y. Nanocatalysts for Electrocatalytic Oxidation of Ethanol. ChemSusChem 2019, 12, 2117–2132. DOI: 10.1002/cssc.201803063.
  • Jasim, S. A.; Hadi, J. M.; Opulencia, M. J. C.; Karim, Y. S.; Mahdi, A. B.; Kadhim, M. M.; D.O, B.; Jalil, A. T.; Mustafa, Y. F.; Falih, K. T. MXene/Metal and Polymer Nanocomposites: Preparation, Properties, and Applications. J. Alloys Compd. 2022, 917, 165404. DOI: 10.1016/j.jallcom.2022.165404.
  • Chumkaeo, P.; Poonsawat, T.; Meechai, T.; Somsook, E. Synergistic Activities in the Ullmann Coupling of Chloroarenes at Ambient Temperature by Pd-Supported Calcined Ferrocenated La2O3. Appl. Organomet. Chem. 2019, 33, e4675. DOI: 10.1002/aoc.4675.
  • Xu, Y.; Cao, M.; Zhang, Q. Recent Advances and Perspective on Heterogeneous Catalysis Using Metals and Oxide Nanocrystals. Mater. Chem. Front. 2021, 5, 151–222. DOI: 10.1039/D0QM00549E.
  • Pawar, A.; Gajare, S.; Jagdale, A.; Patil, S.; Chandane, W.; Rashinkar, G.; Patil, S. Supported NHC-Benzimi@Cu Complex as a Magnetically Separable and Reusable Catalyst for the Multicomponent and Click Synthesis of 1,4-Disubstituted 1,2,3-Triazoles via Huisgen 1,3-Dipolar Cycloaddition. Catal. Lett. 2022, 152, 1854–1868. DOI: 10.1007/s10562-021-03772-9.
  • Mohsen, E.; Jaber, J.; Mehdi, M. A.; Fatemeh, N. D. Synthesis and Characterization of Fe3O4@SiO2-Polymer-Imid-Pd Magnetic Porous Nanospheres and Their Application as a Novel Recyclable Catalyst for Sonogashira-Hagihara Coupling Reactions. J. Iran. Chem. Soc. 2014, 11, 499–510. DOI: 10.1007/s13738-013-0323-4.
  • Zhang, L.; Miu, W.; Bin; Yao, J.; Sun, L.; Yu, B. Magnetic Ordered Mesoporous Carbon Composites Incorporating Ag Nanoparticles as SERS Substrate for Enrichment and Detection of Trace Mercaptan Compounds. Res. Chem. Intermed. 2018, 44, 3365–3374. DOI: 10.1007/s11164-018-3312-5.
  • Hu, X.; Derakhshanfard, A. H.; Patra, N.; Khalid, I.; Jalil, A. T.; Opulencia, M. J. C.; Dehkordi, R. B.; Toghraie, D.; Hekmatifar, M.; Sabetvand, R. The Microchannel Type Effects on Water-Fe3O4 Nanofluid Atomic Behavior: Molecular Dynamics Approach. J. Taiwan Inst. Chem. Eng. 2022, 135, 104396. DOI: 10.1016/j.jtice.2022.104396.
  • Hachem, K.; Jasim, S. A.; Al‐Gazally, M. E.; Riadi, Y.; Yasin, G.; Turki Jalil, A.; Abdulkadhm, M. M.; Saleh, M. M.; Fenjan, M. N.; Mustafa, Y. F.; Dehno Khalaji, A. Adsorption of Pb(II) and Cd(II) by Magnetic Chitosan-Salicylaldehyde Schiff Base: Synthesis, Characterization, Thermal Study and Antibacterial Activity. J. Chinese Chem. Soc. 2022, 69, 512–521. DOI: 10.1002/jccs.202100507.
  • Raya, I.; Chupradit, S.; Kadhim, M. M.; Mahmoud, M. Z.; Jalil, A. T.; Surendar, A.; Ghafel, S. T.; Mustafa, Y. F.; Bochvar, A. N. Role of Compositional Changes on Thermal, Magnetic, and Mechanical Properties of Fe-P-C-Based Amorphous Alloys. Chinese Phys. B 2022, 31, 016401. DOI: 10.1088/1674-1056/ac3655.
  • Eshghi, H.; Javid, A.; Khojastehnezhad, A.; Moeinpour, F.; Bamoharram, F. F.; Bakavoli, M.; Mirzaei, M. Preyssler Heteropolyacid Supported on Silica Coated NiFe2O4 Nanoparticles for the Catalytic Synthesis of Bis(Dihydropyrimidinone) Benzene and 3,4-Dihydropyrimidin-2(1H)-Ones. Cuihua Xuebao/Chinese J. Catal. 2015, 36, 299–307. DOI: 10.1016/S1872-2067(14)60265-5.
  • Kanani, N.; Bayat, M.; Shemirani, F.; Ghasemi, J. B.; Bahrami, Z.; Badiei, A. Synthesis of Magnetically Modified Mesoporous Nanoparticles and Their Application in Simultaneous Determination of Pb(II), Cd(II) and Cu(II). Res. Chem. Intermed. 2018, 44, 1689–1709. DOI: 10.1007/s11164-017-3192-0.
  • Divar, M.; Zomorodian, K.; Bastan, S.; Yazdanpanah, S.; Khabnadideh, S. Synthesis of Some Quinazolinone Derivatives Using Magnetic Nanoparticles-Supported Tungstic Acid as Antimicrobial Agents. J. Iran. Chem. Soc. 2018, 15, 1457–1466. DOI: 10.1007/s13738-018-1337-8.
  • Shylesh, S.; Schünemann, V.; Thiel, W. R. Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis. Angew. Chem. Int. Ed. Engl. 2010, 49, 3428–3459. DOI: 10.1002/anie.200905684.
  • Mariño, M. A.; Fulaz, S.; Tasic, L. Magnetic Nanomaterials as Biocatalyst Carriers for Biomass Processing: Immobilization Strategies, Reusability, and Applications. Magnetochemistry 2021, 7, 133. DOI: 10.3390/magnetochemistry7100133.
  • Rangraz, Y.; Nemati, F.; Elhampour, A. Magnetic Chitosan Composite as a Green Support for Anchoring Diphenyl Diselenide as a Biocatalyst for the Oxidation of Sulfides. Int. J. Biol. Macromol. 2018, 117, 820–830. DOI: 10.1016/j.ijbiomac.2018.05.207.
  • Mahmoudi, M.; Simchi, A.; Imani, M. Recent Advances in Surface Engineering of Superparamagnetic Iron Oxide Nanoparticles for Biomedical Applications. JICS 2010, 7, S1–S27. DOI: 10.1007/BF03246181.
  • Khosravi, K.; Naserifar, S.; Asgari, A. A Chemoselective Oxidation of Sulfides to Sulfoxides and Sulfones Using Urea-2,2-Dihydroperoxypropane as a Novel Oxidant. LOC 2017, 13, 749–756. DOI: 10.2174/1570178614666161123115100.
  • Gilman, H.; Smith Broadbent, H. Some Basically Substituted Diaryl Sulfides and Sulfones. J. Am. Chem. Soc. 1947, 69, 2053–2057. DOI: 10.1021/ja01200a069.
  • Clayden, J.; Senior, J.; Helliwell, M. Atropisomerism at C–S Bonds: Asymmetric Synthesis of Diaryl Sulfones by Dynamic Resolution under Thermodynamic Control. Angew. Chem. Int. Ed. Engl. 2009, 48, 6270–6273. DOI: 10.1002/anie.200901718.
  • Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Parisi, L. M. An Efficient Palladium-Catalyzed Synthesis of Unsymmetrical Diaryl Sulfones from Aryl Bromides/Triflates and Arenesulfinates. Synlett 2003, 2003, 361–364. DOI: 10.1055/s-2003-37117.
  • Rossy, C.; Majimel, J.; Delapierre, M. T.; Fouquet, E.; Felpin, F.-X. On the Peculiar Recycling Properties of Charcoal-Supported Palladium Oxide Nanoparticles in Sonogashira Reactions. Appl. Catal. A Gen. 2014, 482, 157–162. DOI: 10.1016/j.apcata.2014.05.019.
  • Gujadhur, R. K.; Bates, C. G.; Venkataraman, D. Formation of Aryl–Nitrogen, Aryl–Oxygen, and Aryl–Carbon Bonds Using Well-Defined Copper(I)-Based Catalysts. Org. Lett. 2001, 3, 4315–4317. DOI: 10.1021/ol0170105.
  • Komáromi, A.; Tolnai, G. L.; Novák, Z. Copper-Free Sonogashira Coupling in Amine–Water Solvent Mixtures. Tetrahedron Lett. 2008, 49, 7294–7298. DOI: 10.1016/j.tetlet.2008.10.037.
  • Sabounchei, S. J.; Ahmadi, M. An Efficient Protocol for Copper- and Amine-Free Sonogashira Reactions Catalyzed by Mononuclear Palladacycle Complexes Containing Bidentate Phosphine Ligands. Catal. Commun. 2013, 37, 114–121. DOI: 10.1016/j.catcom.2013.03.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.