Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 52, 2022 - Issue 21
283
Views
10
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

A short review on the synthesis of pyrrolo[3,4-c]coumarins an isolamellarin-B scaffolds

Pages 1999-2018 | Received 01 Jul 2022, Published online: 07 Sep 2022

References

  • Pratap, R.; Ram, V. J. Natural and Synthetic Chromenes, Fused Chromenes, and Versatility of Dihydrobenzo[h]Chromenes in Organic Synthesis. Chem. Rev. 2014, 114, 10476–10526. DOI: 10.1021/cr500075s.
  • Ibrar, A.; Shehzadi, S. A.; Saeed, F.; Khan, I. Developing Hybrid Molecule Therapeutics for Diverse Enzyme Inhibitory Action: Active Role of Coumarin-Based Structural Leads in Drug Discovery. Bioorg. Med. Chem. 2018, 26, 3731–3762. DOI: 10.1016/j.bmc.2018.05.042.
  • Cao, D.; Liu, Z.; Verwilst, P.; Koo, S.; Jangjili, P.; Kim, J. S.; Lin, W. Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chem. Rev. 2019, 119, 10403–10519. DOI: 10.1021/acs.chemrev.9b00145.
  • Medina, F. G.; Marrero, J. G.; Macias-Alonso, M.; Gonzalez, M. C.; Cordova-Guerrero, I.; Garcia, A. G. T.; Osegueda-Roblesa, S. Coumarin Heterocyclic Derivatives: chemical Synthesis and Biological Activity. Nat. Prod. Rep. 2015, 32, 1472–1507. DOI: 10.1039/c4np00162a.
  • Melagraki, G.; Afantitis, A.; Igglessi-Markopoulou, O.; Detsi, A.; Koufaki, M.; Kontogiorgis, C.; Hadjipavlou-Litina, D. J. Synthesis and Evaluation of the Antioxidant and anti-Inflammatory Activity of Novel Coumarin-3-Aminoamides and Their Alpha-Lipoic Acid Adducts. Eur. J. Med. Chem. 2009, 44, 3020–3026. DOI: 10.1016/j.ejmech.2008.12.027.
  • Patra, P.; Kar, G. K.; Sarkar, A.; Ray, J. K.; Dasgupta, T.; Ghosh, M.; Bhattacharya, S. N -Aryl Modification in γ -Lactam: Design and Synthesis of Novel Monocyclic γ -Lactam Derivatives as Inhibitor for Bacterial Propagation. Synth. Commun 2012, 42, 3031–3041. DOI: 10.1080/00397911.2011.574807.
  • Feng, D.; Zhang, A.; Yang, Y.; Yang, P. Coumarin-Containing Hybrids and Their Antibacterial Activities. Arch. Pharm. (Weinheim) 2020, 353, e1900380. DOI: 10.1002/ardp.201900380.
  • Wu, Y.; Xu, J.; Liu, Y.; Zeng, Y.; Wu, G. A Review on anti-Tumor Mechanisms of Coumarins. Front. Oncol. 2020, 10, 592853. DOI: 10.3389/fonc.2020.592853.
  • Vogel, A. Darstellung Von Benzoesäure Aus Der Tonka-Bohne Und Aus Den Meliloten - Oder Steinklee - Blumen. Ann. Phys. Phys. Chem. 1820, 64, 161–166. (Ger) DOI: 10.1002/andp.18200640205.
  • Guibourt, N. J. B. G. Abridged History of Simple Drugs; Mequignon-Mavis: Paris, 1820, p. 160.(in French)
  • Perkin, W. H. VI.—on the Artificial Production of Coumarin and Formation of Its Homologues. J. Chem. Soc. 1868, 21, 53–63. DOI: 10.1039/JS8682100053.
  • Patra, P. A Concise Review on Pyridocoumarin/Azacoumarin Derivatives: Synthesis and Biological Activity. ChemistrySelect 2019, 4, 2024–2043. DOI: 10.1002/slct.201803596.
  • Patra, P. Thermolysis of Chlorovinyl Imines as an Alternate Route for the Synthesis of Pyranoquinolin-3-One and Pyranoacridin-3-One Derivatives. J. Heterocyclic Chem. 2017, 54, 3656–3662. DOI: 10.1002/jhet.2993.
  • Patra, P. Solvent- and Catalyst-Free Synthesis of 6 H -Chromeno [4,3-b]Quinolin-6-Ones. Org. Prep. Proced. Int. 2021, 53, 184–189. DOI: 10.1080/00304948.2020.1868911.
  • Patra, P.; Kar, G. K. The Synthesis, Biological Evaluation and Fluorescence Study of Chromeno[4,3-b]Pyridin/Quinolin-One Derivatives, the Backbone of Natural Product Polyneomarline C Scaffolds: A Brief Review. New J. Chem. 2021, 45, 2879–2934. DOI: 10.1039/D0NJ04761A.
  • Patra, P. 4-Chloro-3-Formylcoumarin as a Multifaceted Building Block for the Development of Various Bio-Active Substituted and Fused Coumarin Heterocycles: A Brief Review. New J. Chem. 2021, 45, 14269–14327. DOI: 10.1039/D1NJ02755G.
  • Chen, Z.; Wang, X.; Zhu, W.; Cao, X.; Tong, L.; Li, H.; Xie, H.; Xu, Y.; Tan, S.; Kuang, D.; et al. Acenaphtho[1,2-b]Pyrrole-Based Selective Fibroblast Growth Factor Receptors 1 (FGFR1) Inhibitors: Design, Synthesis, and Biological Activity. J. Med. Chem. 2011, 54, 3732–3745. DOI: 10.1021/jm200258t.
  • Pullar, I. A.; Carney, S. L.; Colvin, E. M.; Lucaites, V. L.; Nelson, D. L.; Wedley, S. LY367265, an Inhibitor of the 5-Hydroxytryptamine Transporter and 5-Hydroxytryptamine(2A) Receptor Antagonist: A Comparison with the Antidepressant, Nefazodone. Eur. J. Pharmacol. 2000, 407, 39–46. DOI: 10.1016/S0014-2999(00)00728-7.
  • Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhiman, S.; Sharma, P. Pyrrole: A Resourceful Small Molecule in Key Medicinal Hetero-Aromatics. RSC Adv. 2015, 5, 15233–15266. DOI: 10.1039/C4RA15710A.
  • Pandya, M. K.; Chhasatia, M. R.; Vala, N. D.; Parekh, T. H. Synthesis of furano[2,3-c]/pyrrolo[2,3-c]coumarins and synthesis of 1(H)-[1]benzopyrano[3,4-b][1]benzopyrano[3’,4’-d] furan-7(H)-ones /1(H)-[1]benzopyrano[3,4-b][1]benzopyrano[3’,4’-d]pyrrole-7(H)-ones. J. Drug Deliv. Ther. 2019, 9, 32.
  • Watanabe, T.; Mutoh, Y.; Saito, S. Ruthenium-catalyzed cycloisomerization of 2 alkynylanilides: synthesis of 3 substituted indoles by 1,2-carbon migration. J. Am. Chem. Soc. 2017, 139, 7749.
  • Wu, C. K.; Weng, Z., Yang, D. Y. One-pot construction of 1 phenylchromeno[3,4 b]pyrrol-4(3H) one: application to total synthesis of ningalin b and a pyrrolocoumarin-based electrochromic switch. Org. Lett. 2019, 21, 5225.
  • Watanabe, T.; Mutoh, Y., Saito, S. Synthesis of lactone-fused pyrroles by rutheniumcatalyzed 1,2-carbon migration-cycloisomerization. Org. Biomol. Chem. 2020, 18, 81.
  • Imbri, D.; Tauber, J.; Opatz, T. Synthetic Approaches to the Lamellarins-a Comprehensive Review. Mar. Drugs. 2014, 12, 6142–6177. DOI: 10.3390/md12126142.
  • Fan, H.; Peng, J.; Hamann, M. T.; Hu, J.-F. Lamellarins and Related Pyrrole-Derived Alkaloids from Marine Organisms. Chem. Rev. 2008, 108, 264–287. DOI: 10.1021/cr078199m.
  • Krishnaiah, P.; Reddy, V. L. N.; Venkataramana, G.; Ravinder, K.; Srinivasulu, M.; Raju, T. V.; Ravikumar, K.; Chandrasekar, D.; Ramakrishna, S.; Venkateswarlu, Y. J. New Lamellarin Alkaloids from the Indian Ascidian Didemnum Obscurum and Their Antioxidant Properties. J. Nat. Prod. 2004, 67, 1168–1171. DOI: 10.1021/np030503t.
  • Fan, G.; Li, Z.; Shen, S.; Zeng, Y.; Yang, Y.; Xu, M.; Bruhn, T.; Bruhn, H.; Morschhäuser, J.; Bringmann, G.; Lin, W. Baculiferins A-O, O-Sulfated Pyrrole Alkaloids with anti-HIV-1 Activity, from the Chinese Marine Sponge Iotrochota Baculifera. Bioorg. Med. Chem. 2010, 18, 5466–5474. DOI: 10.1016/j.bmc.2010.06.052.
  • Bailly, C. Anticancer Properties of Lamellarins. Mar. Drugs. 2015, 13, 1105–1123. DOI: 10.3390/md13031105.
  • Ailing, W.; Zhuangzhi, Z.; Xuefang, Z.; Hongyu, C. Recent Research Progress in Anticancer Alkaloid Lamellarin N and Lamellarin L. Chin. J. Org. Chem. 2013, 33, 483.
  • Kluza, J.; Gallego, M.-A.; Loyens, A.; Beauvillain, J.-C.; Sousa-Faro, J.-M. F.; Cuevas, C.; Marchetti, P.; Bailly, C. Cancer Cell Mitochondria Are Direct Proapoptotic Targets for the Marine Antitumor Drug Lamellarin D. Cancer Res. 2006, 66, 3177–3187. DOI: 10.1158/0008-5472.CAN-05-1929.
  • Liu, R.; Liu, Y.; Zhou, Y.-D.; Nagle, D. G. Molecular-Targeted Antitumor Agents. 15. Neolamellarins from the Marine Sponge Dendrilla nigra Inhibit Hypoxia-Inducible Factor-1 Activation and Secreted Vascular Endothelial Growth Factor Production in Breast Tumor Cells. J. Nat. Prod. 2007, 70, 1741–1745. DOI: 10.1021/np070206e.
  • Baunbaek, D.; Trinkler, N.; Ferandin, Y.; Lozach, O.; Ploypradith, P.; Rucirawat, S.; Ishibashi, F.; Iwao, M.; Meijer, L. Anticancer Alkaloid Lamellarins Inhibit Protein Kinases. Mar. Drugs. 2008, 6, 514–527. DOI: 10.3390/md20080026.
  • Iwao, M.; Ishibashi, F.; Fukuda, T.; Hasegawa, H. PCT Int. Appl., WO2012/099129, 2012.
  • Wang, W.; Shenqing, F. Z. CN102321090, 2012.
  • Mohamed, K. S.; Elbialy, E. E. Synthesis, Characterization, and Cytotoxicity Evaluation of Some New Benzo[ f ]Coumarin Derivatives. J. Heterocyclic Chem. 2018, 55, 893–898. DOI: 10.1002/jhet.3115.
  • Ishibashi, F.; Fukuda, T.; Zha, S.; Hashirano, A.; Hirao, S.; Iwao, M. Concise Synthesis and in Vitro Anticancer Activity of Benzo[g][1]Benzopyrano[4,3-b]Indol-6(13H)-Ones (BBPIs), Topoisomerase I Inhibitors Based on the Marine Alkaloid Lamellarin. Biosci. Biotechnol. Biochem. 2021, 85, 181–191. DOI: 10.1093/bbb/zbaa028.
  • Plisson, F.; Huang, X. C.; Zhang, H.; Khalil, Z.; Capon, R. J. Lamellarins as Inhibitors of P-Glycoprotein-Mediated Multidrug Resistance in a Human Colon Cancer Cell Line. Chem. Asian J. 2012, 7, 1616–1623. DOI: 10.1002/asia.201101049.
  • Vanhuyse, M.; Kluza, J.; Tardy, C.; Otero, G.; Cuevas, C.; Bailly, C.; Lansiaux, A. Lamellarin D: A Novel Pro-Apoptotic Agent from Marine Origin Insensitive to P-Glycoprotein-Mediated Drug Efflux. Cancer Lett. 2005, 221, 165–175. DOI: 10.1016/j.canlet.2004.09.022.
  • Reddy, M. V. R.; Rao, M. R.; Rhodes, D.; Hansen, M. S. T.; Rubins, K.; Bushman, F. D.; Venkateswarlu, Y.; Faulkner, D. J. Lamellarin Alpha 20-Sulfate, an Inhibitor of HIV-1 Integrase Active against HIV-1 Virus in Cell Culture. J. Med. Chem. 1999, 42, 1901–1907. DOI: 10.1021/jm9806650.
  • Ridley, C. P.; Reddy, M. V. R.; Rocha, G.; Bushman, F. D.; Faulkner, D. J. Total Synthesis and Evaluation of Lamellarin Alpha 20-Sulfate Analogues. Bioorg. Med. Chem. 2002, 10, 3285–3290. DOI: 10.1016/S0968-0896(02)00237-7.
  • Fukuda, T.; Nanjo, Y.; Fujimoto, M.; Yoshida, K.; Natsui, Y.; Ishibashi, F.; Okazaki, F.; To, H.; Iwao, M. Lamellarin-Inspired Potent Topoisomerase I Inhibitors with the Unprecedented Benzo[g][1]Benzopyrano[4,3-b]Indol-6(13H)-One Scaffold. Bioorg. Med. Chem. 2019, 27, 265–277., DOI: 10.1016/j.bmc.2018.11.037.
  • Boger, D. L.; Soenen, D. R.; Boyce, C. W.; Hedrick, M. P.; Jin, Q. Total Synthesis of Ningalin B Utilizing a Heterocyclic Azadiene Diels-Alder Reaction and Discovery of a New Class of Potent Multidrug Resistant (MDR) Reversal Agents. J. Org. Chem. 2000, 65, 2479–2483. DOI: 10.1021/jo9916535.
  • Quesada, A. R.; Grávalos, M. D. G.; Puentes, J. L. F. Polyaromatic Alkaloids from Marine Invertebrates as Cytotoxic Compounds and Inhibitors of Multidrug Resistance Caused by P-Glycoprotein. Br. J. Cancer. 1996, 74, 677–682. DOI: 10.1038/bjc.1996.421.
  • Neagoie, C.; Vedrenne, E.; Buron, F.; Mérour, J. Y.; Rosca, S.; Bourg, S.; Lozach, O.; Meijer, L.; Baldeyrou, B.; Lansiaux, A.; Routier, S. Synthesis of Chromeno[3,4-b]Indoles as Lamellarin D Analogues: A Novel DYRK1A Inhibitor Class. Eur. J. Med. Chem. 2012, 49, 379–396. DOI: 10.1016/j.ejmech.2012.01.040.
  • Koo, K. A.; Kim, N. D.; Chon, Y. S.; Jung, M.-S.; Lee, B.-J.; Kim, J. H.; Song, W.-J. QSAR Analysis of Pyrazolidine-3,5-Diones Derivatives as Dyrk1A Inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 2324–2328. DOI: 10.1016/j.bmcl.2009.02.062.
  • Foucourt, A.; Hedou, D.; Dubouilh-Benard, C.; Desire, L.; Casagrande, A.-S.; Leblond, B.; Loaec, N.; Meijer, L.; Besson, T. Design and Synthesis of Thiazolo[5,4-f]Quinazolines as DYRK1A Inhibitors, Part I. Molecules 2014, 19, 15546–15571. DOI: 10.3390/molecules191015546.
  • Falke, H.; Chaikuad, A.; Becker, A.; Loaec, N.; Lozach, O.; Abu Jhaisha, S.; Becker, W.; Jones, P. G.; Preu, L.; Baumann, K.; et al. 10-iodo-11H-Indolo[3,2-c]Quinoline-6-Carboxylic Acids Are Selective Inhibitors of DYRK1A. J. Med. Chem. 2015, 58, 3131–3143. DOI: 10.1021/jm501994d.
  • Fukuda, T.; Ishibashi, F.; Iwao, M. Synthesis and Biological Activity of Lamellarin Alkaloids: An Overview. Heterocycles 2011, 83, 491. DOI: 10.3987/REV-10-686.
  • Chittchang, M.; Batsomboon, P.; Ruchirawat, S.; Ploypradith, P. Cytotoxicities and Structure-Activity Relationships of Natural and Unnatural Lamellarins Toward Cancer Cell Lines. Chem. Med. Chem 2009, 4, 457–465. DOI: 10.1002/cmdc.200800339.
  • Zhang, N.; Wang, D.; Zhu, Y.; Wang, J.; Lin, H.; Pac, A. Inhibition Effects of Lamellarin D on Human Leukemia K562 Cell Proliferation and Underlying Mechanisms. Asian Pac. J. Cancer Prev. 2014, 15, 9915–9919. DOI: 10.7314/apjcp.2014.15.22.9915.
  • Facompré, M.; Tardy, C.; Bal-Mahieu, C.; Colson, P.; Perez, C.; Manzanares, I.; Cuevas, C.; Bailly, C. Lamellarin D: A Novel Potent Inhibitor of Topoisomerase I. Cancer Res. 2003, 63, 7392.
  • Vadola, P. A.; Sames, D. Catalytic Coupling of Arene C-H Bonds and Alkynes for the Synthesis of Coumarins: Substrate Scope and Application to the Development of Neuroimaging Agents. J. Org. Chem. 2012, 77, 7804–7814. DOI: 10.1021/jo3006842.
  • Mukherjee, S.; Hazra, S.; Chowdhury, S.; Sarkar, S.; Chattopadhyay, K.; Pramanik, A. A Novel Pyrrole Fused Coumarin Based Highly Sensitive and Selective Fluorescence Chemosensor for Detection of Cu2+ Ions and Applications towards Live Cell Imaging. J. Photoch. Photobio. A 2018, 364, 635–644. DOI: 10.1016/j.jphotochem.2018.07.004.
  • Padilha, G.; Iglesias, B. A.; Back, D. F.; Kaufman, T. S.; Silveira, C. C. Synthesis of Chromeno[4,3-b]Pyrrol-4(1 H)-Ones, from β-Nitroalkenes and 4-Phenylaminocoumarins, under Solvent-Free Conditions. ChemistrySelect 2017, 2, 1297–1304. DOI: 10.1002/slct.201700114.
  • Bochkov, A. Y.; Akchurin, I. O.; Dyachenko, O. A.; Traven, V. F. NIR-Fluorescent Coumarin-Fused BODIPY Dyes With Large Stokes Shifts. Chem Commun (Camb) 2013, 49, 11653–11655. DOI: 10.1039/c3cc46498a.
  • Thakur, A.; Thakur, M.; Khadikar, P. Topological Modeling of Benzodiazepine Receptor Binding. Bioorg. Med. Chem. 2003, 11, 5203–5207. DOI: 10.1016/j.bmc.2003.08.014.
  • Balalas, T.; Abdul-Sada, A.; Hadjipavlou-Litina, D. J.; Litinas, K. E. Pd-Catalyzed Efficient Synthesis of Azacoumestans via Intramolecular Cross Coupling of 4-(Arylamino)Coumarins in the Presence of Copper Acetate Under Microwaves. Synthesis 2017, 49, 2575–2583. DOI: 10.1055/s-0036-1588955.
  • Dakshanamurthy, S.; Kim, M.; Brown, M. L.; Byers, S. W. In-Silico Fragment-Based Identification of Novel Angiogenesis Inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 4551–4556., DOI: 10.1016/j.bmcl.2007.05.104.
  • Potowski, M.; Golz, C.; Strohmann, C.; Antonchick, A. P.; Waldmann, H. Biology-Oriented Synthesis of Benzopyrano[3,4-c]Pyrrolidines. Bioorg. Med. Chem. 2015, 23, 2895–2903. DOI: 10.1016/j.bmc.2015.02.044.
  • Azab, I. H. E.; Elkanzi, N. A. A. Synthesis and Pharmacological Evaluation of Some New Chromeno[3,4-c]Pyrrole-3,4-Dione-Based N-Heterocycles as Antimicrobial Agents. J. Heterocyclic Chem. 2017, 54, 1404–1414. DOI: 10.1002/jhet.2721.
  • El Azab, I. H.; R. E. Aly, M.; Gobouri, A. A. Synthesis of New Azole and Azine Systems Based on Chromeno[3,4-c]Pyrrole-3,4-Dione and Investigation of Their Cytotoxic Activity. Heterocycles 2017, 94, 1456. DOI: 10.3987/COM-17-13727.
  • Faty, R. A. M.; Mourad, A. K.; Elmotaleb, R. M. A.; Radewan, R. M. Synthesis, Antibacterial Activity, and Fluorescence Properties of a Novel Series from [2,4-Dioxochromen-3(4H)Methyl]Amino Acid. Res. Chem. Intermed. 2018, 44, 1551–1567. DOI: 10.1007/s11164-017-3184-0.
  • Liu, X.-W.; Chang, S.-Q.; Wang, Q.-L.; Chen, S.; Wang, J.-X.; Zhou, W.; Zhou, Y. Decarboxylative-Mediated Regioselective 1,3-Dipolar Cycloaddition for Diversity-Oriented Synthesis of Structurally exo′-Selective Spiro[Oxindole-Pyrrolidine-Dihydrocoumarin] Hybrids. Synthesis 2020, 52, 3018.
  • Samanta, K.; Patra, P.; Kar, G. K.; Dinda, S. K.; Mahanty, D. S. Diverse Synthesis of Pyrrolo/Indolo[3,2-c]Coumarins as isolamellarin-A Scaffolds: A Brief Update. New J. Chem 2021, 45, 7450–7485., DOI: 10.1039/D0NJ06267G.
  • El-Sawy, R.; Abdelwahab, B.; Kirsch, G. Synthetic Routes to Coumarin(Benzopyrone)-Fused Five-Membered Aromatic Heterocycles Built on the α-Pyrone Moiety. Part 1: Five-Membered Aromatic Rings with One Heteroatom. Molecules 2021, 26, 483. DOI: 10.3390/molecules26020483.
  • Grigg, R.; Vipond, D. 4-Phenylsulphinyl- and 4-Phenylsulphonylcoumarins as 2π - Components in Cycloaddition Reactions. Tetrahedron 1989, 45, 7587–7592., DOI: 10.1016/S0040-4020(01)89220-6.
  • Alberola, A.; Calvo, L.; González-Ortega, A.; Encabo, A. P.; Sañudo, M. C. Synthesis of [1]Benzopyrano[4,3-b]Pyrrol-4(1H)-Ones from 4-Chloro-3-Formylcoumarin. Synthesis 2001, 2001, 1941–1948. DOI: 10.1055/s-2001-17696.
  • Che, C.; Li, S.; Jiang, X.; Quan, J.; Lin, S.; Yang, Z. One-Pot Syntheses of Chromeno[3,4-c]Pyrrole-3,4-Diones via Ugi-4CR and Intramolecular Michael Addition. Org. Lett. 2010, 12, 4682–4685. DOI: 10.1021/ol1020477.
  • Khoobi, M.; Ramazani, A.; Mahdavi, M.; Foroumadi, A.; Emami, S.; Joo, S. W.; Ślepokura, K.; Lis, T.; Shafiee, A. Efficient Solvent-Free Synthesis of Benzothiazine-Fused Pyrrolo[3,4-c]Coumarins: Cycloaddition Reactions Between Coumarin-Based Dihydrobenzothiazoles and Isocyanides. HCA 2014, 97, 847–853. DOI: 10.1002/hlca.201300310.
  • Rajeswari, S.; Vidhya, S.; Sundarapandiyan, S.; Saravanan, P.; Ponmariappan, S.; Vidya, K. Improvement in Treatment of Soak Liquor by Combining Electro-Oxidation and Biodegradation. RSC Adv 2016, 6, 47220–47228. DOI: 10.1039/C5RA28076A.
  • Jin, S.-J.; Guo, J.-M.; Zhu, Y.-S.; Wang, Q.-L.; Bu, Z.-W. A Copper-Catalyzed Tandem Reaction for the Construction of Coumarin Fused 9H-Pyrrolo[1,2-a]Indoles. Org. Biomol. Chem. 2017, 15, 8729–8737. DOI: 10.1039/c7ob02307c.
  • Vyasamudri, S.; Yang, D.-Y. Base-Dependent Divergent Annulation of 4-Chloro-3-Formylcoumarin and Tetrahydroisoquinoline: Application to the Synthesis of Isolamellarins and Hydroxypyrrolones. J. Org. Chem. 2019, 84, 3662–3670. DOI: 10.1021/acs.joc.8b03259.
  • Wang, Y.-J.; Wang, T.-T.; Yao, L.; Wang, Q.-L.; Zhao, L.-M. Access to 4-Alkenylated Coumarins via Ruthenium-Catalyzed Olefinic C-H Alkenylation of Coumarins with Modifiable and Removable Directing Groups. J. Org. Chem. 2020, 85, 9514–9524. DOI: 10.1021/acs.joc.0c00249.
  • Kanchithalaivan, S.; Sumesh, R. V.; Kumar, R. R. Ultrasound-Assisted Sequential Multicomponent Strategy for the Combinatorial Synthesis of Novel Coumarin Hybrids. ACS Comb. Sci. 2014, 16, 566–572. DOI: 10.1021/co500092b.
  • Lei, C.-W.; Zhang, C.-B.; Wang, Z.-H.; Xie, K.-X.; Zhao, J.-Q.; Zhou, M.-Q.; Zhang, X.-M.; Xu, X.-Y.; Yuan, W.-C. Cyclocondensation of Coumarin-3-Thioformates with 3-Hydroxyoxindoles and 3-Aminooxindoles for the Synthesis of Spiro-Fused Pentaheterocyclic Compounds. Org. Chem. Front 2020, 7, 499–506. DOI: 10.1039/C9QO01039D.
  • Ghandi, M.; Ghomi, A.-T.; Kubicki, M. Synthesis of Pyrrole-Fused Chromanones via One-Pot Multicomponent Reactions. Tetrahedron 2013, 69, 3054–3060. DOI: 10.1016/j.tet.2013.01.085.
  • Alizadeh, A.; Ghanbaripour, R.; Zhu, L.-G. An Approach to the Synthesis of 2-Acylchromeno[3,4-c]Pyrrol-4(2H)-One Derivatives via a Sequential Three-Component Reaction. Synlett, 2013, 24, 2124–2126. DOI: 10.1055/s-0033-1339521.
  • Shaabani, A.; Sepahvand, H.; Bazgir, A.; Khavasi, H. R. Tosylmethylisocyanide (TosMIC) [3 + 2] Cycloaddition Reactions: A Facile Van Leusen Protocol for the Synthesis of the New Class of Spirooxazolines, Spiropyrrolines and Chromeno[3,4-c]Pyrrols. Tetrahedron 2018, 74, 7058–7067. DOI: 10.1016/j.tet.2018.10.039.
  • Shi, Y.; Gevorgyan, V. Cu-Catalyzed Transannulation Reaction of Pyridotriazoles: General Access to Fused Polycyclic Indolizines. Chem Commun (Camb) 2015, 51, 17166–17169. DOI: 10.1039/c5cc07598j.
  • Xue, S.; Yao, J.; Liu, J.; Wang, L.; Liu, X.; Wang, C. Three-Component Reaction Between Substituted 2-(2-Nitrovinyl)-Phenols, Acetylenedicarboxylate and Amines: Diversity-Oriented Synthesis of Novel Pyrrolo[3,4-c]Coumarins. RSC Adv 2016, 6, 1700–1704. DOI: 10.1039/C6RA09547J.
  • Wu, Q.; Wang, S.; Li, J.; Li, W.; Chen, M.; Huang, C. Cascade Reaction by I2/Base-Promoted Synthesis of Chromeno-[3,4-c]pyrrol-4(2H)-ones from 2-Hydroxychalcones and β-Enamine Esters. ChemistrySelect 2022, 7, e202104106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.