Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 52, 2022 - Issue 21
237
Views
2
CrossRef citations to date
0
Altmetric
Articles

Design, synthesis and molecular docking study of thiophenyl hydrazone derivatives as tubulin polymerization inhibitors

, , &
Pages 2029-2047 | Received 09 Jun 2022, Published online: 23 Sep 2022

References

  • (a) Muthukaman, N.; Tambe, M.; Deshmukh, S.; Pisal, D.; Tondlekar, S.; Shaikh, M.; Sarode, N.; Kattige, V. G.; Pisat, M.; Sawant, P.; et al. Discovery of Furan and Dihydrofuran-Fused Tricyclic Benzo[d]Imidazole Derivatives as Potent and Orally Efficacious Microsomal Prostaglandin E Synthase-1 (mPGES-1) Inhibitors: Part-1. Bioorg. Med. Chem. Lett. 2017, 27, 5131–5138. DOI: 10.1016/j.bmcl.2017.10.062. (b) World Health Organization. 2019. Global Cancer Report. http://www.who.int/cancer/publications/global_report/en (accessed Dec 2, 2019). (c) Subhashini, N. J. P.; Kumar, K. P.; Kumar, E. P.; Shravani, P.; Singh, S. S.; Vani, T.; Vijjulatha, M. Design and Synthesis of Novel (Z)-5-((1,3-Diphenyl-1H-Pyrazol-4-yl) Methylene)-3-((1-Substituted Phenyl-1H-1,2,3-Triazol-4-yl)Methyl) Thiazolidine-2,4-Diones: A Potential Cytotoxic Scaffolds and Their Molecular Modeling Studies. Mol. Divers. 2021, 25, 2017–2033. DOI: 10.1016/j.bmcl.2017.10.062. (d) Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal DVM, A. Cancer Statistics 2021. CA. A. Cancer J. Clin. 2021, 71, 7–33. DOI: 10.3322/caac.21654.
  • (a) Amoury, M.; Mladenov, R.; Nachreiner, T.; Pham, A.-T.; Hristodorov, D.; Fiore, S. D.; Helfrich, W.; Pardo, A.; Fey, G.; Schwenkert, M.; et al. A Novel Approach for Targeted Elimination of CSPG4-Positive Triple-Negative Breast Cancer Cells Using a MAP Tau-Based Fusion Protein. Int. J. Cancer. 2016, 139, 916–927. DOI: 10.1002/ijc.30119. (b) Levrier, C.; Sadowski, M. C.; Rockstroh, A.; Gabrielli, B.; Kavallaris, M.; Lehman, M.; Davis, R. A.; Nelson, C. C. 6α-Acetoxyanopterine: A Novel Structure Class of Mitotic Inhibitor Disrupting Microtubule Dynamics in Prostate Cancer Cells. Mol. Cancer Ther. 2017, 16, 3–15. DOI: 10.1158/1535-7163.MCT-16-0325. (c) Jordan, M. A.; Wilson, L. Microtubules as a Target for Anticancer Drugs. Nature Rev. Cancer. 2004, 4, 253–265. DOI: 10.1038/nrc1317.
  • (a) Lu, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D. D. An Overview of Tubulin Inhibitors That Interact with the Colchicine Binding site. Pharm. Res. 2012, 29, 2943–2971. DOI: 10.1007/s11095-012-0828-z. (b) Banerjee, S.; Arnst, K. E.; Wang, Y.; Kumar, G.; Deng, S. Yang, L.; Li, G-B.; Yang, J.; White, S. W.; Li, W.; Miller D. D. Heterocyclic-Fused Pyrimidines as Novel Tubulin Polymerization Inhibitors Targeting the Colchicine Binding Site: Structural Basis and Antitumor Efficacy. J. Med. Chem. 2018, 61 1704–1718. DOI: 10.1021/acs.jmedchem.7b01858.
  • (a) Sharma, S.; Kaur, C.; Budhiraja, A.; Nepali, K.; Gupta, M. K.; Saxena, A. K.; Bedi, P. M. S. Chalcone Based Azacarboline Analogues as Novel Antitubulin Agents: Design, Synthesis, Biological Evaluation and Molecular Modelling Studies. Eur. J. Med. Chem. 2014, 85, 648–660. DOI: 10.1016/j.ejmech.2014.08.005. (b) Ojha, R.; Sharma, S.; Nepali, K. Anti-Cancer Agents Targeting Tubulin. 2015, 115, 156–270. DOI: 10.2174/9781681080765115040005.
  • (a) Ojha, R.; Sharma, S.; Nepali, K.; Rahman, A.; Zaman, K. Ed. vol. 4; Bentham Science Publishers Ltd.: Bentham, 2015; pp. 156–270. (b) Sharma, S.; Kaur, C.; Budhiraja, A.; Nepali, K.; Gupta, M. K.; Saxena, A. K.; Bedi, P. M. S. Chalcone Based Azacarboline Analogues as Novel Antitubulin Agents: Design, Synthesis, Biological Evaluation and Molecular Modelling Studies. Eur. J. Med. Chem. 2014, 85, 648–660. DOI: 10.1016/j.ejmech.2014.08.005. (c) Baumeister, S.; Schepmann, D.; Wünsch, B. Receptor Binding of Thiophene Bioisosteres of Potent GluN2B Ligands with a Benzo[7]Annulene-Scaffold. Medchemcomm. 2019, 10, 315–325. DOI: 10.1039/c8md00545a.
  • (a) Mabkhot, Y. N.; Alatibi, F.; El-Sayed, N. N. E.; Kheder, N. A.; Al-Showiman, S. S. Synthesis and Structure-Activity Relationship of Some New Thiophene-Based Heterocycles as Potential Antimicrobial Agents. Molecules 2016, 21, 1036–1044. DOI: 10.3390/molecules21081036. (b) Cox, G.; Sieron, A.; King, A. M.; De Pascale, G.; Pawlowski, A.C.; Koteva, K.; Wright, G. D. A Common Platform for Antibiotic Dereplication and Adjuvant Discovery. Cell. Chem. Biol. 2017, 24, 98–109. DOI: 10.1016/j.chembiol.2016.11.011. (c) Pornpimol, R.; Panida, D.; Aruna, P.; Phisit, P. Structure-Function Relationships of Phytochemicals in Control of Mosquito Vectors. Curr. Org. Chem. 2016, 20, 2649–2673. DOI: 10.2174/1385272820666151026231234. (d) Maiti, S.; Paira, P. Biotin Conjugated Organic Molecules and Proteins for Cancer Therapy: A Review. Eur. J. Med. Chem. 2018, 145, 206–223. DOI: 10.1016/j.ejmech.2018.01.001. (e) Meyer, M. J.; Seitz, T.; Brockmöller, J.; Tzvetkov, M. V. Effects of Genetic Polymorphisms on the OCT1 and OCT2-Mediated Uptake of Ranitidine. PLoS One. 2017, 12, e0189521. DOI: 10.1371/journal.pone.0189521. (f) Kottur, J.; Sharma, A.; Gore, K. R.; Narayanan, N.; Samanta, B.; Pradeepkumar, P. I.; Nair, D. T. Unique Structural Features in DNA Polymerase IV Enable Efficient Bypass of the N2 Adduct Induced by the Nitrofurazone Antibiotic. Structure. 2015, 23, 56–67. DOI: 10.1016/j.str.2014.10.019. (g) Bao, H.; Zhang, Q.; Yu, Y.; Lin, L. Naturally Occurring Furanoditerpenoids: Distribution, Chemistry and Their Pharmacological Activities, Phytochem. Rev. 2017, 16, 235–270. DOI: 10.1007/s11101-016-9472-2.
  • (a) Mishra, R.; Jha, K. K.; Kumar, S.; Tomer, I. Synthesis, Properties and Biological Activity of Thiophene: A Review, Der. Pharma. Chemica. 2011, 2011, 38–54. (b) Valencia, D.; Klimova, T.; G-Cruz, I. Aromaticity of Five-and Six-Membered Heterocycles Present in Crude Oils – An Electronic Description for Hydrotreatment Process. Fuel. 2012, 100, 177–185. DOI: 10.1016/j.fuel.2012.05.011.
  • Sashidhara, K. V.; Avula, S. R.; Doharey, P. K.; Singh, L. R.; Balaramnavar, V. M.; Gupta, J.; Misra-Bhattacharya, S.; Rathaur, S.; Saxena, A. K.; Saxena, J. K. Designing, Synthesis of Selective and High-Affinity Chalcone-Benzothiazole Hybrids as Brugia malayi Thymidylate Kinase Inhibitors: In Vitro Validation and Docking Studies. Eur. J. Med. Chem. 2015, 103, 418–428. DOI: 10.1016/j.ejmech.2015.09.004.
  • (a) Tarade, D.; Ma, D.; Pignanelli, C.; Mansour, F.; Simard, D.; van den Berg, S.; Gauld, J.; McNulty, J.; Pandey, S. Structurally Simplified Biphenyl Combretastatin A4 Derivatives Retain In Vitro anti-Cancer Activity Dependent on Mitotic Arrest. PLoS One. 2017, 12, e0171806–21. DOI: 10.1371/journal.pone.0171806. (b) Muhammed, I. H.; Hatice, B.; Abdullahi, I. U.; Yeliz, Y.; Ercüment, K.; Ahmet, C.; Hatice, Y. K.; Kemal.; Y.; Özgür. Y, Arch. Pharm. Chem. Life Sci. 2019, 352, ardp.201800359. DOI: 10.1002/ardp.201800359. (c) Fikret, T.; Adnan, C.; Parham, T.; Halide, S. K.; Ilhami, G., Arch. Pharm. Chem. Life Sci. 2019, 352, ardp.201800365. DOI: 10.1002/ardp.201800365. (d) Salim, M. S.; Syed, T. V.; Azger, N.; Shabeer, D.; K, T. J. Pharm. Chem. Biol. Sci. 2018, 6, 158–177. DOI: 10.1371/journal.pone.0171806.
  • (a) Siegel, R. L.; Miller, K. D.; Fedewa, S. A.; Ahnen, D. J.; Meester, R. G. S.; Barzi, A.; Jemal, A. Colorectal Cancer Statistics. CA. Cancer. J. Clin. 2017, 67, 177–193. DOI: 10.3322/caac.21395. (b) Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2018, 68, 394–424. DOI: 10.3322/caac.21492. (c) Arnold, M.; Sierra, M. S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Patterns and Trends in Colorectal Cancer Incidence and Mortality. Gut. 2017, 66, 683–691. DOI: 10.3322/caac.21395.
  • (a) Kumar, D. N.; Reddy, C. R.; Das, B. Stereoselective Synthesis of Cytotoxic Marine Metabolite Harzialactone a by Three Different Routes, Synthesis. Synthesis. 2011, 2011, 3190–3194. DOI: 10.1055/s-0030-1260177. (b) Das, B.; Kumar, D. N. Highly Diastereoselective Construction of Substituted Pyrrolidines: Formal Synthesis of (–)-Bulgecinine. Synlett. 2011, 2011, 1285–1287. DOI: 10.1055/s-0030-1260546. (c) Das, B.; Kumar, D. N. Stereocontrolled Construction of Tetrasubstituted Tetrahydrofurans: Synthesis of 2,5-Anhydro d-Glucitol. Tetrahedron Lett. 2010, 51, 6011–6013. DOI: 10.1016/j.tetlet.2010.09.049. (d) Das, B.; Laxminarayana, K.; Krishnaiah, M.; Kumar, D. N. Stereoselective Total Synthesis of a Potent Natural Antifungal Compound (6S)-5,6,Dihydro-6-[(2R)-2-Hydroxy-6-Phenyl Hexyl]-2H-Pyran-2-One. Bioorg. Med. Chem. Lett. 2009, 19, 6396–6398. DOI: 10.1016/j.bmcl.2009.09.063. (e) Das, B.; Reddy, Ch. R.; Kumar, D. N.; Krishnaiah, M.; Narender, R.. A Simple, Advantageous Synthesis of 5-Substituted 1H-Tetrazoles. Synlett. 2010, 2010, e3–e3. DOI: 10.1055/s-0029-1219366. (f) Das, B.; Thirupathi, B.; Kumar, R. A.; Laxminarayana, K. Part 148 in the Series “Studies on Novel Synthetic Methodologies:” Selective Acetylation of Alcohols, Phenols and Amines and Selective Deprotection of Aromatic Acetates Using Silica‐Supported Phosphomolybdic Acid. Adv. Synth. Catal. 2007, 349, 2677–2683. DOI: 10.1055/s-0030-1260177.
  • (a) Delord, J. W.; Glorius, F.. C-H Bond Activation Enables the Rapid Construction and Late-Stage Diversification of Functional Molecules. Nature Chem. 2013, 5, 369–375. DOI: 10.1038/nchem.1607. (b) Miyaura, N.; Suzuki, A. Palladium-Catalysed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev. 1995, 95, 2457–2483. DOI: 10.1021/cr00039a007. (c) Suzuki, A. Recent Advances in the Cross-Coupling Reactions of Organoboron Derivatives with Organic Electrophiles, 1995–1998. J. Organomet. Chem. 1999, 576, 147–168. DOI: 10.1016/S0022-328X(98)01055-9.
  • Tataroğlu, A.; Sehemi, G. A. G. A.; Özdemir, M.; Özdemir, R.; Usta, H.; Ghamdi, A. A. A.; Farooq, W. A.; Yakuphanoglu, F. Frequency and Electric Controllable Photodevice: FYTRONIX Device. Physica. B. 2017, 519, 53–58. DOI: 10.1016/j.physb.2017.05.046.
  • Neises, B.; Steglich, W. Simple Method for the Esterification of Carboxylic Acids. Angew. Chem. Int. Ed. Engl. 1978, 17, 522–524. DOI: 10.1002/anie.197805221.
  • Chakraborti, A. K.; Singh, B.; Chankeshwara, S. V.; Patel, A. R. Protic Acid Immobilized on Solid Support as an Extremely Efficient Recyclable Catalyst System for a Direct and Atom Economical Esterification of Carboxylic Acids with Alcohols. J. Org. Chem. 2009, 74, 5967–5974. DOI: 10.1021/jo900614s.
  • Chen, D.; Yangmin, M.; Peiqi, L.; Liu, M.; Fang, Y.; Zhang, J.; Zhang, B.; Hui, Y.; Yin, Y. Piperlongumine Induces Apoptosis and Synergizeswith Doxorubicin by Inhibiting the JAK2-STAT3 Pathway in Triple-Negative Breast Cancer. Molecules. 2019, 24, 2338. DOI: 10.3390/molecules24122338.
  • Shrivastava, S.; Kulkarni, P.; Thummuri, D.; Jeengar, M. K.; Naidu, V. G. M.; Alvala, M.; Redddy, G. B.; Ramakrishna, S. Piperlongumine, an Alkaloid Causes Inhibition of PI3 K/Akt/mTOR Signaling Axis to Induce Caspase-Dependent Apoptosis in Human Triple-Negative Breast Cancer Cells. Apoptosis. 2014, 19, 1148–1164. DOI: 10.1007/s10495-014-0991-2.
  • Krishna, M.; Vasudevarao, P.; Bramanandam, M.; Appa Rao, P. Chitooligosaccharides Induce Apoptosis in Human Breast Cancer. Carbohydrate Pol. Techn. App. 2021, 2, 100077. DOI: 10.1016/j.carpta.2021.100077.
  • Hahm, E. R.; Moura, M. B.; Kelley, E. E.; Houten, B. V.; Shiva, S.; Singh, S. V. Withaferin A-Induced Apoptosis in Human Breast Cancer Cells is Mediated by Reactive Oxygen Species. PLoS One. 2011, 6, e23354. DOI: 10.1371/journal.pone.0023354.
  • Kennedy, S. G.; Kandel, E. S.; Cross, T. K.; Hay, N. /Protein Kinase B Inhibits Cell Death by Preventing the Release of Cytochrome c from Mitochondria. Mol. Cell. Biol. 1999, 19, 5800–5810. DOI: 10.1128/MCB.19.8.5800.
  • Pasquereau, S.; Herbein, G., CounterAKTing HIV: Toward a “Block and Clear” Strategy? Front. Cell. Infect. Microbiol. 2022, 12, e827717. DOI: 10.3389/fcimb.2022.827717.
  • Kanthou, C.; Greco, O.; Stratford, A.; Cook, I.; Knight, R.; Benzakour, O.; Tozer, G. The Tubulin-Binding Agent Combretastatin A-4-Phosphate Arrests Endothelial Cells in Mitosis and Induces Mitotic Cell Death. Am. J. Pathol. 2004, 165, 1401–1411. DOI: 10.1016/S0002-9440(10)63398-6.
  • Baytas, S. N. Recent Advances in Combretastatin A-4 Inspired Inhibitors of Tubulin Polymerization: An Update. Curr. Med. Chem. 2022, 29, 3557–3585. DOI: 10.2174/1871526522666220105114437.
  • Cormier, A.; Marchand, M.; Ravelli, R. B.; Knossow, M.; Gigant, B. Structural Insight into the Inhibition of Tubulin by Vinca Domain Peptide Ligands. EMBO Rep. 2008, 9, 1101–1106. DOI: 10.1038/embor.200.171.
  • Linda, W.; Vicente, J. J. Microtubule Targeting Agents in Disease: Classic Drugs, Novel Roles. Cancers. 2021, 13, 5650. DOI: 10.3390/cancers13225650.
  • Peddi, S. R.; Sivan, S. K.; Manga, V. Molecular Dynamics and MM/GBSA-Integrated Protocol Probing the Correlation between Biological Activities and Binding Free Energies of HIV-1 TAR RNA Inhibitors. J. Biomol. Struct. Dyn. 2018, 36, 486–503. DOI: 10.1080/07391102.2017.1281762.
  • Vinutha, K.; Vaeshnavi, K.; Sai Kiran Reddy, P.; Sreekanth, S.; Vijjulatha, M. Integrated Computational Approach for in Silico Design of New Purinyl Pyridine Derivatives as B-Raf Kinase Inhibitors. J. Recept. Signal. Transduct. Res. 2021, 46, 1–15. DOI: 10.1080/10799893.2021.1999472.
  • Itteboina, R.; Ballu, S.; Sivan, S. K.; Manga, V. Molecular Docking, 3D QSAR and Dynamics Simulation Studies of Imidazo-Pyrrolopyridines as Janus Kinase 1 (Jak 1) Inhibitors. Comput. Biol. Chem. 2016, 64, 33–46. DOI: 10.1016/j.compbiolchem.2016.04.009.
  • Hafez, R.; Ebrahimi, A.; Hashemi, M. Structural Insights for Rational Design of New PIM-1 Kinase Inhibitors Based on 3,5-Disubstituted Indole Derivatives: An Integrative Computational Approach. Comput. Biol. Med. 2020, 118, 103641. DOI: 10.1016/j.compbiomed.2020.103641.
  • Desai, N. C.; Kotadiya, G. M.; Jadeja, K. A.; Shah, K. N.; Malani, A. H.; Manga. V.; Vani, T. Synthesis, Antitubercular, Antimicrobial Activities and Molecular Docking Study of Quinoline Bearing Dihydropyrimidines. J. Bioorg. 2021, 115, 1–14. DOI: 10.1016/j.bioorg.2021.105173.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.