Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 52, 2022 - Issue 21
219
Views
0
CrossRef citations to date
0
Altmetric
Articles

Introduction of efficient catalytic system for the regioselective aerobic bromination of aromatic compounds

, , &
Pages 2048-2056 | Received 23 Jun 2022, Published online: 20 Sep 2022

References

  • Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. Engl. 2012, 51, 5062–5085. DOI: 10.1002/anie.201107017.
  • Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Palladium-Catalyzed Cross-Coupling Reactions in Total Synthesis. Angew. Chem. Int. Ed. Engl. 2005, 44, 4442–4489. DOI: 10.1002/anie.200500368.
  • Milstein, D.; Stille, J. K. A. A General, Selective, and Facile Method for Ketone Synthesis from Acid Chlorides and Organotin Compounds Catalyzed by Palladium. J. Am. Chem. Soc. 1978, 100, 3636–3638. DOI: 10.1021/ja00479a077.
  • Miyaura, N.; Suzuki, A. J. Stereoselective Synthesis of Arylated (E)-Alkenes by the Reaction of Alk-1-Enylboranes with Aryl Halides in the Presence of Palladium Catalyst. J. Chem. Soc. Chem. Commun. 1979, 19, 866–867. DOI: 10.1039/c39790000866.
  • Ziegler, C. B.; Heck, R. F. Palladium-Catalyzed Vinylic Substitution with Highly Activated Aryl Halides. J. Org. Chem. 1978, 43, 2941–2946. DOI: 10.1021/jo00409a001.
  • Pellissier, H.; Santelli, M. The Use of Arynes in Organic Synthesis. Tetrahedron 2003, 59, 701–730. DOI: 10.1016/S0040-4020(02)01563-6.
  • Tadross, P. M.; Stoltz, B. M. A Comprehensive History of Arynes in Natural Product Total Synthesis. Chem. Rev. 2012, 112, 3550–3577. DOI: 10.1021/cr200478h.
  • Saikia, I.; Chakraborty, P.; Sarma, M. J.; Goswami, M.; Phukan, P. Rapid and Total Bromination of Aromatic Compounds Using TsNBr 2 without Any Catalyst. Synth. Commun. 2015, 45, 211–217. DOI: 10.1080/00397911.2014.956367.
  • Das, B.; Venkateswarlu, K.; Holla, H.; Krishnaiah, M. Sulfonic Acid Functionalized Silica: A Remarkably Efficient Heterogeneous Reusable Catalyst for α-Monobromination of Carbonyl Compounds Using N-Bromosuccinimide. J. Mol. Catal. A: Chem. 2006, 253, 107–111. DOI: 10.1016/j.molcata.2006.03.011.
  • Duan, J.; Zhang, L. H.; Dolbier, W. R. A Convenient New Method for the Bromination of Deactivated Aromatic Compounds. Synlett 1999, 1999, 1245–1246. DOI: 10.1055/s-1999-2818.
  • Adibi, H.; Hajipour, A. R.; Hashemi, M. A Convenient and Regioselective Oxidative Bromination of Electron-Rich Aromatic Rings Using Potassium Bromide and Benzyltriphenylphosphonium Peroxymonosulfate under Nearly Neutral Reaction Conditions. Tetrahedron Lett. 2007, 48, 1255–1259. DOI: 10.1016/j.tetlet.2006.12.033.
  • Chen, J.; Xiong, X.; Chen, Z.; Huang, Z. Synlett 2015, 26, 2831–2834.
  • Li, J. Q.; Chen, X. H.; Wang, X. X.; Cui, H. L. Bromination of Phenyl Ether and Other Aromatics with Bromoisobutyrate and Dimethyl Sulfoxide. Tetrahedron Lett. 2021, 82, 153375. DOI: 10.1016/j.tetlet.2021.153375.
  • Bhunia, S.; Saha, D.; Koner, S. MCM-41-Supported Oxo-Vanadium(IV) Complex: A Highly Selective Heterogeneous Catalyst for the Bromination of Hydroxy Aromatic Compounds in Water. Langmuir 2011, 27, 15322–15329. DOI: 10.1021/la202094p.
  • Bhatt, S.; Nayak, S. K. Copper(II) Bromide: A Simple and Selective Monobromination Reagent for Electron‐Rich Aromatic Compounds. Synth. Commun. 2007, 37, 1381–1388. DOI: 10.1080/00908320701230026.
  • Prebil, R.; Laali, K. K.; Stavber, S. Metal and H2O2 Free Aerobic Oxidative Aromatic Halogenation with [RNH3(+)] [NO3(-)]/HX and [BMIM(SO3H)][NO3)x(X)y] (X = Br, Cl) as Multifunctional Ionic Liquids. Org Lett. 2013, 15, 2108–2111. DOI: 10.1021/ol4001476.
  • Nishina, Y.; Takami, K. Catalyst. Green Chem. 2012, 14, 2380–2383. DOI: 10.1039/c2gc35821b.
  • Menini, L.; Parreira, L. A.; Gusevskaya, E. V. A. A Practical Highly Selective Oxybromination of Phenols with Dioxygen. Tetrahedron Lett. 2007, 48, 6401–6404. DOI: 10.1016/j.tetlet.2007.06.093.
  • Shao, H.; Wang, X.; Wang, Y.; Yue, Y.; Wang, K.; Tang, Q.; Zhuo, K.; Liu, J. BF 3 ⋅Et 2 O‐Promoted Aerobic Bromination of Heteroarenes with LiBr as the Bromination Sources. ChemistrySelect 2019, 4, 8942–8945. DOI: 10.1002/slct.201902492.
  • Yang, L.; Lu, J.; Stahl, S. S. Regioselective Copper-Catalyzed Chlorination and Bromination of Arenes with O2 as the Oxidant. Chem. Commun. 2009, 42, 6460–6462. DOI: 10.1039/b915487f.
  • Carreño, M. C.; Ruano, J. L. G.; Sanz, G.; Toledo, M. A.; Urbano, A. N-Bromosuccinimide in Acetonitrile: A Mild and Regiospecific Nuclear Brominating Reagent for Methoxybenzenes and Naphthalenes. J. Org. Chem. 1995, 60, 5328–5331. DOI: 10.1021/jo00121a064.
  • Voskressensky, L. G.; Golantsov, N. E.; Maharramov, A. M. Recent Advances in Bromination of Aromatic and Heteroaromatic Compounds. Synthesis 2016, 48, 615–643. DOI: 10.1055/s-0035-1561503.
  • Ojha, N. K.; Zyryanov, G. V.; Majee, A.; Charushin, V. N.; Chupakhin, O. N.; Santra, S. Copper Nanoparticles as Inexpensive and Efficient Catalyst: A Valuable Contribution in Organic Synthesis. Coord. Chem. Rev. 2017, 353, 1–57. DOI: 10.1016/j.ccr.2017.10.004.
  • Menini, L.; Gusevskaya, E. V. Aerobic Oxychlorination of Phenols Catalyzed by Copper(II) Chloride. Appl. Catal. A 2006, 309, 122–128. DOI: 10.1016/j.apcata.2006.05.006.
  • Menini, L.; Santos, J. C. C.; Gusevskaya, E. V. Copper-Catalyzed Oxybromination and Oxychlorination of Primary Aromatic Amines Using LiBr or LiCl and Molecular Oxygen. Adv. Synth. Catal. 2008, 350, 2052–2058. DOI: 10.1002/adsc.200800223.
  • Chen, X.; Hao, X. S.; Goodhue, C. E.; Yu, J. Q. Cu(II)-Catalyzed Functionalizations of Aryl C-H Bonds Using O2 as an Oxidant. J. Am. Chem. Soc. 2006, 128, 6790–6791. DOI: 10.1021/ja061715q.
  • Wang, W.; Pan, C.; Chen, F.; Cheng, J. J. Copper(II)-Catalyzed Ortho-Functionalization of 2-Arylpyridines with Acyl Chlorides. Chem. Commun. (Camb.) 2011, 47, 3978–3980. DOI: 10.1039/c0cc05557c.
  • Saei Dehkordi, S. S.; Albadi, J.; Jafari, A. A.; Samimi, H. A. Catalytic Study of the Copper-Based Magnetic Nanocatalyst on the Aerobic Oxidation of Alcohols in Water. Res. Chem. Intermed. 2021, 47, 2527–2538. DOI: 10.1007/s11164-021-04422-w.
  • Albadi, J.; Jalali, M. Lett. Org. Chem. 2019, 16, 234–239.
  • Albadi, J.; Alihoseinzadeh, A.; Mansournezhad, A. Aerobic Oxidation of Alcohols Catalyzed by a New ZnO-Supported Copper Oxide Nanocatalyst in Aqueous Media. Synth. Commun. 2015, 45, 877–885. DOI: 10.1080/00397911.2014.993037.
  • Albadi, J.; Alihoseinzadeh, A.; Razeghi, A. Novel Metal Oxide Nanocomposite of Au/CuO–ZnO for Recyclable Catalytic Aerobic Oxidation of Alcohols in Water. Catal. Commun. 2014, 49, 1–5. DOI: 10.1016/j.catcom.2014.01.030.
  • Albadi, J.; Tajik, H.; Keshavarz, M.; Abedini, M. Poly(4-Vinylpyridinium Bromochromate): An Efficient Reagent for Bromination of Aromatic Compounds. Monatsh Chem. 2013, 144, 179–181. DOI: 10.1007/s00706-012-0779-4.
  • Albadi, J.; Abedini, M.; Iravani, N. Regioselective Iodination of Aromatic Compounds with Potassium Iodide in the Presence of Benzyltriphenylphosphonium Perchlorate. Chin. Chem. Lett. 2012, 23, 261–264. DOI: 10.1016/j.cclet.2011.12.010.
  • Kolthoff, I. M.; Coetzee, J. F. Polarography in Acetonitrile. II. Metal Ions Which Have Significantly Different Polarographic Properties in Acetonitrile and in Water. Anodic Waves. Voltammetry at Rotated Platinum Electrode. J. Am. Chem. Soc. 1957, 79, 1852–1858. DOI: 10.1021/ja01565a023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.