Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 52, 2022 - Issue 24
179
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synthesis of spirocyclopropanes via iodine-promoted bimolecular cyclization of 2-benzylidene 1,3-indandiones

, , , , , , & show all
Pages 2322-2333 | Received 25 Jul 2022, Published online: 18 Nov 2022

References

  • Zheng, Y.; Tice, C. M.; Singh, S. B. The Use of Spirocyclic Scaffolds in Drug Discovery. Bioorg Med Chem Lett 2014, 24, 3673–3682. DOI: 10.1016/j.bmcl.2014.06.081.
  • Knox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A.; Pon, A.; Banco, K.; Mak, C.; Neveu, V.; et al. DrugBank 3.0: A Comprehensive Resource for ‘Omics’. Nucleic Acids Res 2011, 39, D1035–D1041. DOI: 10.1093/nar/gkq1126.
  • (a) Kawada, M.; Sugihara, H.; Mikami, I.; Kawai, K.; Kuzuna, S.; Noguchi, S.; Sanno, Y. Spirocyclopropane Compounds. II. Synthesis and Biological Activities of Spiro [Cyclopropane-1,2'-[2H] Indol]-3'(1'H)-Ones. Chem. Pharm. Bull 1981, 29, 1912–1919. DOI: 10.1248/cpb.29.1912. (b) Jiang, T.; Kuhen, K. L.; Wolff, K.; Yin, H.; Bieza, K.; Caldwell, J.; Bursulaya, B.; Wu, T. Y.-H.; He, Y. Design, Synthesis and Biological Evaluations of Novel Oxindoles as HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors. Part I. Bioorg Med Chem Lett 2006, 16, 2105–2108. DOI: 10.1016/j.bmcl.2006.01.073. (c) Bose, G.; Bracht, K.; Bednarski, P. J.; Lalk, M.; Langer, P. Synthesis, Reactions and Structure–Activity Relationships of 1-Hydroxyspiro[2.5]Cyclooct-4-en-3-Ones: Illudin Analogs with in Vitro Cytotoxic Activity. Bioorg. Med. Chem. 2006, 14, 4694–4703. DOI: 10.1016/j.bmc.2006.03.037. (d) Revesz, L.; Schlapbach, A.; Aichholz, R.; Dawson, J.; Feifel, R.; Hawtin, S.; Littlewood-Evans, A.; Koch, G.; Kroemer, M.; Möbitz, H.; et al. In Vivo and in Vitro SAR of Tetracyclic MAPKAP-K2 (MK2) Inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 4719–4723. (e) Schobert, R.; Knauer, S.; Seibt, S.; Biersack, B. Anticancer Active Illudins: Recent Developments of a Potent Alkylating Compound Class. Curr. Med. Chem. 2011, 18, 790–807. DOI: 10.2174/092986711794927766.
  • (a) Mukherjee, P.; Das, A. R. Spirocyclopropanes from Intramolecular Cyclopropanation of Pyranopyrazoles and Pyranopyrimidine-Diones and Lewis Acid Mediated (3 + 2) Cycloadditions of Spirocyclopropylpyrazolones. J. Org. Chem. 2017, 82, 2794–2802. DOI: 10.1021/acs.joc.7b00089. (b) Nambu, H.; Tamura, T.; Yakura, T. Protecting-Group-Free Formal Synthesis of Aspidospermidine: Ring-Opening Cyclization of Spirocyclopropane with Amine Followed by Regioselective Alkylations. J. Org. Chem. 2019, 84, 15990–15996. DOI: 10.1021/acs.joc.9b02469. (c) Xiao, J.-A.; Cheng, X.-L.; Li, Y.-C.; He, Y.-M.; Li, J.-L.; Liu, Z.-P.; Xia, P.-J.; Su, W.; Yang, H. Palladium-Catalysed Ring-Opening [3 + 2]-Annulation of Spirovinylcyclopropyl Oxindole to Diastereoselectively Access Spirooxindoles. Org. Biomol. Chem. 2019, 17, 103–107. DOI: 10.1039/C8OB02859A. (d) Nambu, H.; Onuki, Y.; Ono, N.; Tsuge, K.; Yakura, T. Ring-Opening Cyclization of Spirocyclopropanes with Stabilized Sulfonium Ylides for the Construction of a Chromane Skeleton. Chem. Commun. (Camb.) 2019, 55, 6539–6542. DOI: 10.1039/c9cc03023a. (e) Sarkar, T.; Das, B. K.; Talukdar, K.; Shah, T. A.; Punniyamurthy, T. Recent Advances in Stereoselective Ring Expansion of Spirocyclopropanes: Access to the Spirocyclic Compounds. ACS Omega 2020, 5, 26316–26328. DOI: 10.1021/acsomega.0c03856.
  • For selected reviews, see: (a) D'yakonov, V. A.; Trapeznikova, O. A.; de Meijere, A.; Dzhemilev, U. M. Metal Complex Catalysis in the Synthesis of Spirocarbocycles. Chem. Rev. 2014, 114, 5775–5814. DOI: 10.1021/cr400291c. (b) Cao, Z.-Y.; Zhou, J. Catalytic Asymmetric Synthesis of Polysubstituted Spirocyclopropyl Oxindoles: Organocatalysis versus Transition Metal Catalysis. Org. Chem. Front. 2015, 2, 849–858. DOI: 10.1039/C5QO00092K.
  • (a) Dey, A.; Thrimurtulu, N.; Volla, C. M. R. Cobalt-Catalyzed Annulation Reactions of Alkylidenecyclopropanes: Access to Spirocyclopropanes at Room Temperature. Org Lett. 2019, 21, 3871–3875. DOI: 10.1021/acs.orglett.9b01392. (b) Shen, M.; Xu, Y.; Zhang, X.; Fan, X. Synthesis of Spirocyclopropylpyrazole Derivatives via the Cascade Reaction of Alkylidenecyclopropanes with Pyrazolidinones and Trifluoroethanol. Org. Chem. Front. 2022, 9, 1410–1416. DOI: 10.1039/D1QO01921J.
  • (a) Cao, Z.-Y.; Wang, W.; Liao, K.; Wang, X.; Zhou, J.; Ma, J. Catalytic Enantioselective Synthesis of Cyclopropanes Featuring Vicinal All-Carbon Quaternary Stereocenters with a CH2F Group; Study of the Influence of C–F⋯H–N Interactions on Reactivity. Org. Chem. Front. 2018, 5, 2960–2968. DOI: 10.1039/C8QO00842F. (b) Pan, B.-W.; Shi, Y.; Dong, S.-Z.; He, J.-X.; Mu, B.-S.; Wu, W.-B.; Zhou, Y.; Zhou, F.; Zhou, J. Highly Stereoselective Synthesis of Spirocyclopropylthiooxindoles and Biological Evaluation. Org. Chem. Front. 2022, 9, 2640–2646. DOI: 10.1039/D2QO00300G.
  • (a) Mishra, U. K.; Patel, K.; Ramasastry, S. S. V. Synthesis of Cyclopropanoids via Substrate-Based Cyclization Pathways. Org. Lett. 2019, 21, 175–179. DOI: 10.1021/acs.orglett.8b03537. (b) Li, S.-S.; Qin, Q.; Qi, Z.; Yang, L.-M.; Kang, Y.; Zhang, X.-Z.; Ma, A.-J.; Peng, J.-B. Synthesis of Disubstituted γ-Butyrolactones and Spirocyclopropanes via a Multicomponent Reaction of Aldehydes, Meldrum’s Acid and Sulfoxonium Ylides. Org. Chem. Front. 2021, 8, 3069–3075. DOI: 10.1039/D1QO00303H.
  • (a) Qian, P.; Du, B.; Song, R.; Wu, X.; Mei, H.; Han, J.; Pan, Y. N‑Iodosuccinimide-Initiated Spirocyclopropanation of Styrenes with 1,3-Dicarbonyl Compound for the Synthesis of Spirocyclopropanes. J. Org. Chem. 2016, 81, 6546–6553. DOI: 10.1021/acs.joc.6b01163. (b) Yan, X.; Shao, P.; Song, X.; Zhang, C.; Lu, C.; Liu, S.; Li, Y. Chemoselective Syntheses of Spirodihydrofuryl and Spirocyclopropyl Barbiturates via Cascade Reactions of Barbiturate-Based Olefins and Acetylacetone. Org. Biomol. Chem. 2019, 17, 2684–2690. DOI: 10.1039/C9OB00004F.
  • (a) Das, U.; Tsai, Y.-L.; Lin, W. An Efficient Organocatalytic Enantioselective Synthesis of Spironitrocyclopropanes. Org. Biomol. Chem. 2013, 11, 44–47. DOI: 10.1039/C2OB26943K. (b) Fang, Q.-Y.; Yi, M.-H.; Wu, X.-X.; Zhao, L.-M. Regio- and Diastereoselective Spirocyclopropanation of Benzofuran-Derived Azadienes through 1,4-Addition-Induced Dearomatization Reaction under Mild Conditions. Org. Lett. 2020, 22, 5266–5270. DOI: 10.1021/acs.orglett.0c01987.
  • (a) Ren, Z.; Cao, W.; Tong, W.; Chen, J.; Deng, H.; Wu, D. Triphenylarsine-Catalyzed Cyclopropanation: Highly Stereoselective Synthesis of Trans-2,3-Dihydro-Spiro[Cyclopropane-1,2′-Indan-1′,3′-Dione] from Alkene and Phenacyl Bromide. Synth. Commun. 2008, 38, 2200–2214. DOI: 10.1080/00397910802029406. (b) Appel, R.; Hartmann, N.; Mayr, H. Scope and Limitations of Cyclopropanations with Sulfur Ylides. J. Am. Chem. Soc. 2010, 132, 17894–17900. DOI: 10.1021/ja1084749. (c) Huang, J.; Sun, S.; Ma, P.; Wang, J.; Lee, K.; Xing, Y.; Wu, Y.; Wang, G. Highly Diastereoselective Spiro-Cyclopropanation of 2-Arylidene-1,3-Indanediones and Dimethylsulfonium Ylides. New J. Chem. 2021, 45, 18776–18780. DOI: 10.1039/D1NJ02886C. (d) Zhang, J.; Song, X.; Chen, Z.-C.; Du, W.; Chen, Y.-C. Phosphine-Catalysed Intermolecular Cyclopropanation Reaction between Benzyl Bromides and Activated Alkenes. New J. Chem. 2022, 46, 16382–16386. DOI: 10.1039/D2NJ03417D.
  • For selected reviews, see: (a) French, A. N.; Bissmire, S.; Wirth, T. Iodine Electrophiles in Stereoselective Reactions: Recent Developments and Synthetic Applications. Chem. Soc. Rev. 2004, 33, 354–362. DOI: 10.1039/b310389g. (b) Togo, H.; Iida, S. Synthetic Use of Molecular Iodine for Organic Synthesis. Synlett 2006, 2006, 2159–2175. DOI: 10.1055/s-2006-950405. (c) Parvatkar, P. T.; Parameswaran, P. S.; Tilve, S. G. Recent Developments in the Synthesis of Five- and Six-Membered Heterocycles Using Molecular Iodine. Chemistry 2012, 18, 5460–5489. DOI: 10.1002/chem.201100324. (d) Aggarwal, T.; Kumar, S.; Verma, A. K. Iodine-Mediated Synthesis of Heterocycles via Electrophilic Cyclization of Alkynes. Org. Biomol. Chem. 2016, 14, 7639–7653.(e) Wang, X.; Yan, F.; Wang, Q. Molecular Iodine: Catalysis in Heterocyclic Synthesis. Synth. Commun. 2021, 51, 1763–1781. DOI: 10.1080/00397911.2021.1904992.
  • For some recent examples, see: (a) Manne, M. R.; Panicker, R. R.; Sivaramakrishna, A. Iodine Catalysed First Synthesis of 2-Quinolone-Benzothiazolo-Quinazolinone Derivatives. Synth. Commun. 2021, 51, 103–113. DOI: 10.1080/00397911.2020.1821221. (b) Qi, H.; Yan, Y.; Liao, Y.; Jiang, F.; Gao, H.; Deng, G.-J. I2-Catalyzed Oxidative Dehydrogenative Tandem Cyclization of 2-Methylquinolines, Arylamines and 1,4-Dioxane. Org. Chem. Front. 2021, 8, 6108–6113. DOI: 10.1039/D1QO01125A. (c) Xu, C.; Yin, G.; Jia, F.-C.; Wu, Y.-D.; Wu, A.-X. Merging Annulation with Ring Deconstruction: Synthesis of (E)-3-(2-Acyl-1H-Benzo[d]Imidazol-4-yl)Acrylaldehyde Derivatives via I2/FeCl3-Promoted Dual C(sp3)–H Amination/C–N Bond Cleavage. Org. Lett. 2021, 23, 2559–2564. DOI: 10.1021/acs.orglett.1c00486. (d) Zhou, Y.; Zhao, P.; Wang, L.-S.; Yu, X.-X.; Huang, C.; Wu, Y.-D.; Wu, A.-X. Direct C–C Bond Cleavage of 1,3-Dicarbonyl Compounds as a Single-Carbon Synthon: Synthesis of 2-Aryl-4-Quinolinecarboxylates. Org. Lett. 2021, 23, 6461–6465. DOI: 10.1021/acs.orglett.1c02267. (e) Ding, Y.; Zhang, R.; Ma, R.; Ma, Y. Iodine-Catalyzed Double [4 + 2] Oxidative Annulations for the Synthesis of Bipyrazines from Ketones and Diamines by a Domino Strategy. Adv. Synth. Catal. 2022, 364, 355–361. DOI: 10.1002/adsc.202100991. (f) Li, J.; Liu, Y.; Chen, Z.; Li, J.; Ji, X.; Chen, L.; Huang, Y.; Liu, Q.; Li, Y. Synthesis of Substituted Thiophenes through Dehydration and Heterocyclization of Alkynols. J. Org. Chem. 2022, 87, 3555–3566. DOI: 10.1021/acs.joc.1c03114. (g) Hu, Y.-J.; Zhou, Y.; Gao, J.-J.; Zhang, H.; Yang, K.-R.; Li, J.-J.; Yan, X.-X.; Li, Y.-L.; Zhu, Y.-P. I2-Mediated [3 + 2] Annulation of Methyl-Azaarenes with Alkyl 2-Isocyanoacetates or Amino Acid Ester Hydrochlorides: Selective Synthesis of Iodine-Functionalized and Non-Iodine-Functionalized Fused Imidazoles. Org. Chem. Front. 2022, 9, 1403–1409. DOI: 10.1039/D1QO01940F. (h) Jinkala, R.; Kumar, K. B. S.; Rapolu, V.; Satish, P.N.; Jammula, S. R.; Vidavalur, S.; Hindupur, R.; Tadiparthi, K.; Raghunadh, A. Iodine Promoted Synthesis of Pyrido[2′,1′:2,3]Imidazo[4,5-c]Quinoline Derivatives via Oxidative Decarboxylation of Phenylacetic Acid. Synth. Commun. 2022, 52, 258–267. DOI: 10.1080/00397911.2021.2019278.
  • (a) Xu, H.; Liu, H.-W.; Lin, H.-S.; Wang, G.-W. Solvent-Free Iodine-Promoted Synthesis of 3,2′-Pyrrolinyl Spirooxindoles from Alkylidene Oxindoles and Enamino Esters under Ball-Milling Conditions. Chem. Commun. (Camb.) 2017, 53, 12477–12480. DOI: 10.1039/C7CC08306H. (b) Xu, H.; Chen, K.; Liu, H.-W.; Wang, G.-W. Solvent-Free N-Iodosuccinimide-Promoted Synthesis of Spiroimidazolines from Alkenes and Amidines under Ball-Milling Conditions. Org. Chem. Front. 2018, 5, 2864–2869. DOI: 10.1039/C8QO00723C. (c) Xu, H.; Huang, R.-L.; Shu, Z.; Hong, R.; Zhang, Z. Chemoselective Synthesis of 5,4′-Imidazolinyl Spirobarbiturates via NBS-Promoted Cyclization of Unsaturated Barbiturates and Amidines. Org. Biomol. Chem. 2021, 19, 4978–4985. DOI: 10.1039/D1OB00508A. (d) Xu, H.; Hong, R.; Weng, M.-Y.; Huang, R.-L.; Wang, G.-W.; Zhang, Z. Regiodivergent Synthesis of 4,5′- and 4,4′-Imidazolinyl Spiropyrazolones from 4‑Alkylidene Pyrazolones and Amidines. Org. Lett. 2021, 23, 5305–5310. DOI: 10.1021/acs.orglett.1c01475. (e) Chen, H.; Xu, H.; He, Z.-Y.; Zou, P.; Huang, F.-H.; Jin, Y.; Zhang, Z. N-Iodosuccinimide-Promoted Selective Construction of Cyclopropyl and Dihydrofuranyl Spirooxindoles from Alkylidene Oxindoles and Annular β-Dicarbonyl Compounds. Synthesis 2022, 54, 2423–2432. DOI: 10.1055/a-1731-2703.
  • He, Z.-Y.; Xu, H.; Wang, W.-B.; Xu, H.-J.; Zou, P. Iodine-Promoted Cyclization of Alkylidene Barbiturates in Water: Facile Synthesis of Dihydrofuryl Spirobarbiturates. Heterocycles 2022, 104, 952–960. DOI: 10.3987/COM-21-14616.
  • (a) Wang, G.-W.; Gao, J. Selective Formation of Spiro Dihydrofurans and Cyclopropanes through Unexpected Reaction of Aldehydes with 1,3-Dicarbonyl Compounds. Org. Lett. 2009, 11, 2385–2388. DOI: 10.1021/ol900451d. (b) Ghorbani-Vaghei, R.; Maghbooli, Y. Synthesis of Activated Cyclopropanes by MHIRC Strategy: A Facile and Efficient Approach to Spirocyclopropanes Using N-Halosulfonamides. Synthesis 2016, 48, 3803–3811. DOI: 10.1055/s-0035-1561653. (c) Aalinejad, M.; Pesyan, N. N. One-Pot, Fast Cyclopropanation Reaction of Indandione with Various Aldehydes in the Presence of Cyanogen Bromide and Trimethylamine. J. Chin. Chem. Soc. 2019, 66, 1523–1530. DOI: 10.1002/jccs.201800419.
  • (a) Chen, W.; Du, Y.; Wang, M.; Fang, Y.; Yu, W.; Chang, J. Synthesis of Benzo[4,5]Imidazo[1,2-a]Quinoxalines by I2-Mediated sp3 C–H Amination. Org. Chem. Front. 2020, 7, 3705–3708. DOI: 10.1039/D0QO01101K. (b) Fan, W.; Xiang, S.; Li, Y.; Zhang, W.; Guo, S.; Huang, D. Iodine-Mediated Pyridine Ring Expansion for the Construction of Azepines. Org. Lett. 2022, 24, 2075–2080. DOI: 10.1021/acs.orglett.2c00130.
  • For selected examples on iodine-catalyzed Michael addition, see: (a) Borah, K. J.; Phukan, M.; Borah, R. Aza-Michael Addition of Amines to α,β-Unsaturated Compounds Using Molecular Iodine as Catalyst. Synth. Commun. 2010, 40, 2830–2836. DOI: 10.1080/00397910903320241. (b) Yin, G.; Fan, L.; Ren, T.; Zheng, C.; Tao, Q.; Wu, A.; She, N. Synthesis of Functionalized 2-Aryl-4-(Indol-3-yl)-4H-Chromenes via Iodine-Catalyzed Domino Michael Addition–Intramolecular Cyclization Reaction. Org. Biomol. Chem. 2012, 10, 8877–8883. DOI: 10.1039/c2ob26642c. (c) Ahmed, N.; Babu, B. V. Efficient Route to Highly Functionalized Chalcone-Based Pyranocoumarins via Iodine-Promoted Michael Addition Followed by Cyclization of 4-Hydroxycoumarins. Synth. Commun. 2013, 43, 3044–3053. DOI: 10.1080/00397911.2012.763099. (d) von der Heiden, D.; Bozkus, S.; Klussmann, M.; Breugst, M. Reaction Mechanism of Iodine-Catalyzed Michael Additions. J. Org. Chem. 2017, 82, 4037–4043. DOI: 10.1021/acs.joc.7b00445.
  • (a) Shen, H.; Deng, Q.; Liu, R.; Feng, Y.; Zheng, C.; Xiong, Y. Intramolecular Aminocyanation of Alkenes Promoted by Hypervalent Iodine. Org. Chem. Front. 2017, 4, 1806–1811. DOI: 10.1039/C7QO00214A. (b) Kour, D.; Gupta, A.; Kapoor, K. K.; Gupta, V. K.; Rajnikant, R.; Singh, D.; Das, P. Iodine–NH4OAc Mediated Regioselective Synthesis of 2-Aroyl-3-Arylimidazo[1,2-a]Pyridines from 1,3-Diaryl-Prop-2-en-1-Ones. Org. Biomol. Chem. 2018, 16, 1330–1336. DOI: 10.1039/C7OB02750H. (c) He, L.; Yang, Y.; Liu, X.; Liang, G.; Li, C.; Wang, D.; Pan, W. Iodine-Mediated Oxidative Cyclization of 2-(Pyridin-2-yl)Acetate Derivatives with Alkynes: Condition-Controlled Selective Synthesis of Multisubstituted Indolizines. Synthesis 2020, 52, 459–470. DOI: 10.1055/s-0039-1690229.
  • Lee, C.-J.; Sheu, C.-N.; Tsai, C.-C.; Wu, Z.-Z.; Lin, W. Direct β-Acylation of 2-Arylidene-1,3-Indandiones with Acyl Chlorides Catalyzed by Organophosphanes. Chem. Commun. (Camb.) 2014, 50, 5304–5306. DOI: 10.1039/c3cc45201h.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.