Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 52, 2022 - Issue 24
118
Views
0
CrossRef citations to date
0
Altmetric
Articles

Reaction of 1-(2-hydroxyphenyl)-3-phenylpropane-1,3-dione with some phosphorus halides: A simple synthesis of novel 1,2-benzoxaphosphinines

, &
Pages 2334-2343 | Received 27 May 2022, Published online: 17 Nov 2022

References

  • Gubaidullin, A. T.; Mironov, V. F.; Burnaeva, L. M.; Litvinov, I. A.; Dobrynin, A. B.; Goryunov, E. I.; Ivkova, G. A.; Konovalova, I. V.; Mastryukova, T. A. Synthesis and Comparative Analysis of the Steric and Supramolecular Structures of Diastereomers of 4,4-Bis(Trifluoromethyl)-2-(Fluoroalkoxy)-6,7-Benzo-1,3,2λ5-Dioxaphosphepin-5-One 2-Oxides. Russ. J. Gen. Chem. 2004, 74, 6, 842–892.
  • Mucha, A.; Kafarski, P.; Berlicki, L. Remarkable Potential of the α-Amino-Phosphonate/Phosphinate Structural Motif in Medicinal Chemistry. J. Med. Chem. 2011, 54, 5955–5980. DOI: 10.1021/jm200587f.
  • Fañanas-Mastral, M.; Feringa, B. L. Copper-Catalyzed Synthesis of Mixed Alkyl Aryl Phosphonates. J. Am. Chem. Soc. 2014, 136, 9894–9897. DOI: 10.1021/ja505281v.
  • Katagi, M. S.; Mamledesai, S.; Bolakatti, G.; Fernandes, J.; Ml, S.; Tari, P. Design, Synthesis, and Characterization of Novel Class of 2-Quinolon-3-Oxime Reactivators for Acetylcholinesterase Inhibited by Organophosphorus Compounds. Chem. Data Collect. 2020, 30, 100560. DOI: 10.1016/j.cdc.2020.100560.
  • Elkolli, M.; Chafai, N.; Chafaa, S.; Kadi, I.; Bensouici, C.; Hellal, A. New Phosphinic and Phosphonic Acids: Synthesis, Antidiabetic, anti-Alzheimer, Antioxidant Activity, DFT Study and SARS-CoV-2 Inhibition. J. Mol. Struct. 2022, 1268, 133701. DOI: 10.1016/j.molstruc.2022.133701.
  • Abd-El-Maksoud, M. A.; El-Hussieny, M.; Awad, H. M.; Mossa, A.-T. H.; Soliman, F. M. Chemistry of Phosphorus Ylides. Part 47. Synthesis; of Organophosphorus and Selenium Pyrazolone Derivatives, Their Antioxidant Activity, and Cytotoxicity against MCF7 and HepG2. Russ. J. Gen. Chem. 2020, 90, 2356–2364. DOI: 10.1134/S1070363220120208.
  • Sankar, V.; Cheeran, V.; Ganesh, M. R.; Sivakumar, B. Synthesis, Antibacterial and Anticancer Activity of 1,2-Substituted 2,3-Dihydro-1H-Benzo[4,5]Imidazo[1,2-c][1,3,2] Diazaphosphol-1-Oxides. Pharm. Chem. J. 2020, 54, 827–833. DOI: 10.1007/s11094-020-02282-z.
  • Budzisz, E.; Brzezinska, E.; Krajewska, U.; Rozalski, M. Cytotoxic Effects, Alkylating Properties and Molecular Modelling of Coumarin Derivatives and Their Phosphonic Analogues. Eur J. Med. Chem. 2003, 38, 597–603. DOI: 10.1016/S0223-5234(03)00086-2.
  • Li, X.; Zhang, D.; Pang, H.; Shen, F.; Fu, H.; Jiang, Y.; Zhao, Y. Synthesis of a Diverse Series of Phosphacoumarins with Biological Activity. Org. Lett. 2005, 7, 4919–4922. DOI: 10.1021/ol051871m.
  • Budzisz, E.; Nawrot, E.; Malecka, M. Synthesis, Antimicrobial, and Alkylating Properties of 3-Phosphonic Derivatives of Chromone. Arch. Pharm. Pharm. Med. Chem. 2001, 334, 381–387. DOI: 10.1002/1521-4184(200112)334:12<381::AID-ARDP381>3.0.CO;2-0.
  • Sadykova, Y. M.; Zalaltdinova, A. V.; Smailov, A. K.; Trofimova, L. M.; Voronina, J. K.; Burilov, A. R.; Pudovik, M. A. Synthesis of Unsymmetrical Cage Phosphonates from Heterocyclic Systems Based on 2H-1,2-Benzoxaphosphinine. Chem. Heterocycl. Comp. 2020, 56, 1605–1610. DOI: 10.1007/s10593-020-02856-5.
  • Li, B.; Zhou, B.; Lu, H.; Ma, L.; Peng, A.-Y. Phosphaisocoumarins as a New Class of Potent Inhibitors for Pancreatic Cholesterol Esterase. Eur. J. Med. Chem. 2010, 45, 1955–1963. DOI: 10.1016/j.ejmech.2010.01.038.
  • Mironov, V. F.; Shtyrlina, A. A.; Varaksina, E. N.; Efremov, Y. Y.; Konovalov, A. I. Reactions of Phenylenedioxytrihalophosphoranes with Arylacetylenes: VII. Reaction of 2,2,2-Trichloro-4-Fluoro-1,3,2λ5-Benzodioxaphosphole with Phenylacetylene. Russ. J. Org. Chem. 2004, 40, 1798–1803. DOI: 10.1007/s11178-005-0102-5.
  • Mironov, V. F.; Varaksina, E. N.; Shtyrlina, A. A.; Gubaidullin, A. T.; Azancheev, N. M.; Musin, R. S.; Litvinov, I. A.; Konovalov, A. I. Reaction of Trihalo(Phenylenedioxy) Phosphoranes with Acetylenes: X. Specific Features of the Reactions of Substituted 2,2,2-Trichloro-1,3,2λ5-Benzodioxaphospholes with 3-Chloro(Bromo,Iodo)Propynes. Russ. J. Gen. Chem. 2006, 76, 391–411. DOI: 10.1134/S1070363206030091.
  • Varaksina, E. N.; Tatarinov, D. A.; Cherkin, K. Y.; Nemtarev, A. V.; Mironov, V. F.; Konovalov, A. I. Synthesis and Chemical Properties of Benzo[e]1,2-Oxaphosphorinine Derivatives-Analogues of Coumarins. Phosphorus Sulf. Silicon Relat. Element 2008, 183, 566–570. DOI: 10.1080/10426500701764957.
  • Nemtarev, A. V.; Mironov, V. F.; Bogdanov, A. V.; Cherkasov, V. K.; Druzhkov, N. O.; Gubaidullin, A. T.; Litvinov, I. A.; Musin, R. Z. Reaction of 3,6-di(Tert-Butyl)-1,2-Benzoquinone with Terminal Alkylacetylenes in the Presence of Phosphorus Trichloride. Russ. Chem. Bull. 2009, 58, 182–190. DOI: 10.1007/s11172-009-0028-0.
  • Nemtarev, A. V.; Aniskin, A. S.; Makarova, Z. Y.; Mironov, V. F. P,P,P-Trihalobenzo-1,3,2-Dioxaphopholes in the Reaction with Aliphatic Acetylenes and Diacetylenes: Synthesis of New Phosphacoumarins. Phosphorus Sulf. Silicon Relat. Element 2013, 188, 200–204. DOI: 10.1080/10426507.2012.744009.
  • Nemtarev, A. V.; Mironov, V. F.; Aniskin, A. S.; Baranov, D. S.; Mironova, E. V.; Krivolapov, D. B.; Musin, R. Z.; Vasilevskii, S. F.; Druzhkov, N. O.; Cherkasov, V. K. Reaction of Arylenedioxytrihalophosphoranes with Acetylenes 11. Electronic Effect of the Substituent in Arylacetylene on the Reaction Rate. Russ. Chem. Bull. 2013, 62, 55–70. DOI: 10.1007/s11172-013-0008-2.
  • Nemtarev, A. V.; Nasibullin, I. O.; Fayzullin, R. R.; Grigor’eva, L. R.; Mironov, V. F. 2,2,2-Trichloro-4-Methoxy-1,3,2-Benzodioxaphosphole in the Reactions with Terminal Acetylenes. Mendeleev Commun. 2020, 30, 34–37. DOI: 10.1016/j.mencom.2020.01.011.
  • Nemtarev, A. V.; Mironov, V. F.; Fayzullin, R. R.; Litvinov, I. A.; Musin, R. Z. Reactions of Arylenedioxytrihalophosphoranes with Acetylenes: XV.1 Reaction of 2,2,2-Tribromo-4,6-di-Tert-Butylbenzo-1,3,2λ5-Dioxaphospholedioxaphosphole with Pent-1-Yne. Russ. J. Gen. Chem. 2018, 88, 2290–2295. DOI: 10.1134/S1070363218110075.
  • Tatarinov, D. A.; Kuznetsov, D. M.; Mironov, V. F. Intramolecular Cyclization of Dialkyl[2-(5-Chloro-2-Hydroxyphenyl)-2-Phenylethenyl]Phosphine Oxides by the Action of Thionyl Chloride. Russ. J. Org. Chem. 2014, 50, 544–546. DOI: 10.1134/S107042801404017.
  • Bojilova, A.; Nikolova, R.; Ivanov, C.; Rodios, N. A.; Terzis, A.; Raptopoulou, C. P. A Comparative Study of the Interaction of Salicylaldehydes with Phosphonoacetates under Knoevenagel Reaction Conditions. Synthesis of 1,2-Benzoxaphosphorines and Thier Dimers. Tetrahedron 1996, 52, 12597–12612. DOI: 10.1016/0040-4020(96)00748-X.
  • Petkova, N. I.; Nikolova, R. D.; Bojilova, A. G.; Rodios, N. A.; Kop, J. Synthesis of Heterocyclic Methylenebisphosphonates by 1,3-Dipolar Cycloaddition of Ethyl Diazoacetate to 1,2-Benzoxaphosphorin-3-Phosphonates. Tetrahedron 2009, 65, 1639–1647. DOI: 10.1016/j.tet.2008.12.048.
  • Ragulin, V. V. ω-Haloalkylphosphoryl Compounds: Synthesis and Properties. Russ. J. Gen. Chem. 2012, 82, 1928–1937. DOI: 10.1134/S1070363212120055.
  • Ali, T. E.; Assiri, M. A.; El-Shaaer, H. M.; Hassan, M. M.; Fouda, A. M.; Hassanin, N. M. Reaction of 2-Imino-2H-Chromene-3-Carboxamide with Some Phosphorus Esters: Synthesis of Some Novel Chromenes Containing Phosphorus Heterocycles and Phosphonate Groups and Their Antioxidant and Cytotoxicity Properties. Synth. Commun. 2019, 49, 2983–2994.
  • Hassanin, N. M.; Ali, T. E.; El-Shaaer, H. M.; Abdel-Kariem, S. M.; El-Edfawy, S. M.; Abdel-Monem, W. R. Synthesis of Some Novel Antimicrobial and Antioxidant Agents of Functionalized Pyrazolo[4′,3′:5,6]Pyrano[3,2-d][1,2]Azaphospholes and Pyrazolo[4′,3′: 5,6] Pyrano[2,3-d][1,3,2]Diazaphosphinines. Heterocycles 2020, 100, 1902–1913. DOI: 10.3987/COM-20-14325.
  • Bakhotmah, D. A.; Ali, T. E. Four-Component Domino Reaction for the Synthesis of Novel 8-Methyl-9-Substituted-2,10-Diaryl-2,3-Dihydro-10H-Pyrano[3,2-e][1,2,4,3]Triazaphospholo [1,5-c]Pyrimidines. Heterocycles 2020, 100, 1914–1919.
  • Ali, T. E.; Assiri, M. A.; Zahran, H. Y.; Yahia, I. S.; Hussien, M. S. A. Facile Synthesis of Some Novel 1,3,4,2-Oxa(Thia)Diazaphospholo[5,4-b]Quinazolinones and 1,2,4,3-Triaza-Phospholo[5,1-b]Quinazolinones. Synth. Commun. 2021, 51, 302–307. DOI: 10.1080/00397911.2020.1825745.
  • Ali, T. E.; Assiri, M. A.; El-Shaaer, H. M.; Abdel-Kariem, S. M.; Abdel-Monem, W. R.; El-Edfawy, S. M.; Hassanin, N. M.; Shati, A. A.; Alfaifi, M. Y.; Elbehairi, S. E. I. Synthesis and in Vitro Antimicrobial, Antioxidant, and Antiproliferative Activities of Some New Pyrano[2,3-c]Pyrazoles Containing 1,2-Azaphospholes, 1,3,2-Diazaphosphinines and Phosphonate Moieties. Synth. Commun. 2021, 51, 2478–2497. DOI: 10.1080/00397911.2021.1939059.
  • Saxena, S.; Makrandi, J. K.; Grover, S. K. Synthesis of 5- and/or 7-Hydroxyflavones Using a Modified Phase Transfer-Catalysed Baker-Venkataraman Transformation. Synthesis 1985, 1985, 697–697. DOI: 10.1055/s-1985-31319.
  • Kolodiazhna, A. O.; Kolodiazhnyi, O. I. Asymmetric Electrophilic Reactions in Phosphorus Chemistry. Symmetry 2020, 12, 108–159. DOI: 10.3390/sym12010108.
  • Sarıoz, O.; Oznergiz, S.; Saracoglu, H.; Buyukgungor, O. Aminophosphines Derived from N-Phenylpiperazine and N-Ethylpiperazine: Synthesis, Oxidation Reactions, and Molybdenum Complexes. Heteroat. Chem. 2011, 22, 679–686. DOI: 10.1002/hc.20733.
  • Biricik, N.; Durap, F.; Kayan, C.; Gümgüm, B.; Gürbüz, N.; Özdemir, İ.; Ang, W. H.; Fei, Z.; Scopelliti, R. Synthesis of New Aminophosphine Complexes and Their Catalytic Activities in C–C Coupling Reactions. J. Organomet. Chem. 2008, 693, 2693–2699. DOI: 10.1016/j.jorganchem.2008.05.010.
  • Kanduluru, A. K.; Cirandur, S. R.; Kumar, N. J.; Krishnaiah, M. Synthesis, Spectral, X-Ray Diffraction Analysis and Antimicrobial Activity of 6-Aryloxy/Trichloromethyl/Chloroethoxy -12-Oxodibenzo[d,g][1,3,2]Dioxaphosphocin-6-Oxides. Phosphorus Sulf. Silicon, Relat. Element 2001, 173, 83–104.
  • Mistry, B. D. A Handbook of Spectroscopic Data, CHEMISTRY (UV, IR, HNMR, CNMR and Mass Spectroscopy); Oxford, Book Company: Jaipur, India, 2009.
  • Huq, R.; Poë, A. Synthesis and Fragmentation Kinetics of Tetrakis(Triphenylphosphine) Octacarbonyltetracobalt. J. Organomet. Chem. 1982, 226, 277–288. DOI: 10.1016/S0022-328X(00)83410-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.