Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 1
151
Views
2
CrossRef citations to date
0
Altmetric
Articles

3-Nitro-2(1H)-quinolone derivatives as 2π components in 1,3-dipolar cycloadditions of azomethine ylides: A new synthesis of pyrrolo[3,4-c]quinolines

, , &
Pages 76-84 | Received 22 Sep 2022, Published online: 11 Dec 2022

References

  • (a) Javahershenas, R.; Arlan, F. M.; Prager, R. H.; Khalafy, J. Recent Advances in the Synthesis of Pyrroles via Multicomponent Reactions Using Arylglyoxals. Arkivoc 2020, 2020, 117–152. DOI: 10.24820/ark.5550190.p011.172. (b) Nunes, P. S. G.; Vidal, H. D. A.; Correa, A. G. Recent Advances in Catalytic Enantioselective Multicomponent Reactions. Org. Biomol. Chem. 2020, 18, 7751–7773. DOI: 10.1039/D0OB01631D. (c) Innocenti, R.; Lenci, E.; Trabocchi, A. Recent Advances in Copper-Catalyzed Imine-Based Multicomponent Reactions. Tetrahedron Lett. 2020, 61, 152083. DOI: 10.1016/j.tetlet.2020.152083. (d) Susan Treesa, G. S.; Neetha, M.; Saranya, S.; Anilkumar, G. Cobalt‐Catalyzed Multi‐Component Reactions: Recent Advances and Perspectives in Organic Synthesis. ChemistrySelect 2020, 5, 7400–7416. DOI: 10.1002/slct.202002021. (e) Mohammadi, Z. G.; Moradi, R.; Ahmadi, T.; Lashgari, N. Recent Advances in the Application of Indoles in Multicomponent Reactions. RSC Adv. 2018, 8, 12069–12103. DOI: 10.1039/C7RA13321A. (f) Yunyun, L. Arkivoc 2014, [(i)] 1–20. DOI: 10.1039/C7RA13321A.
  • For reviews on the (3 + 2)-cycloaddition chemistry of azomethine ylides, see: (a) Kanemasa, S.Cornerstone Works for Catalytic 1,3-Dipolar Cycloaddition Reactions. Heterocycles 2010, 82, 87–200. DOI: 10.3987/REV-10-666. (b) Pandey, G.; Banerjee, P.; Gadre, S. R. Construction of Enantiopure Pyrrolidine Ring System via Asymmetric [3 + 2]-Cycloaddition of Azomethine Ylides. Chem. Rev. 2006, 106, 4484–4517. DOI: 10.1021/cr050011g. (c) Coldham, I.; Hufton, R. Intramolecular Dipolar Cycloaddition Reactions of Azomethine Ylides. Chem. Rev. 2005, 105, 2765–2810. DOI: 10.1021/cr040004c. (d) Padwa, A.; Pearson, W. H., Eds. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products; Wiley: New York, NY, 2002. (g) Tsuge, O.; Kanemasa, S. Adv. Heterocycl. Chem. 1989, 45, 232.
  • Nyerges, M. Construction of Pyrrolo[3,2-c]Quinolines – Recent Advances in the Synthesis of the Martinelline Alkaloids. Heterocycles 2004, 63, 1685–1712. DOI: 10.3987/REV-04-576.
  • Rovati, L. C.; Macovec, F.; Cappelli, A.; Vomero, S.; Anzini, M. EP1018512, 2000.
  • Cappelli, A.; Nannicini, C.; Valenti, S.; Giuliani, G.; Anzini, M.; Mennuni, L.; Giordani, A.; Caselli, G.; Stasi, L. P.; Makovec, F.; et al. Design, Synthesis, and Preliminary Biological Evaluation of Pyrrolo[3,4-c]Quinolin-1-One and Oxoisoindoline Derivatives as Aggrecanase Inhibitors. ChemMedChem 2010, 5, 739–748. DOI: 10.1002/cmdc.200900523.
  • Xia, L.; Idhayadhulla, A.; Lee, Y. R.; Kim, S. H.; Wee, Y. Microwave-Assisted Synthesis of Diverse Pyrrolo[3,4-c]Quinoline-1,3-Diones and Their Antibacterial Activities. ACS Comb. Sci. 2014, 16, 333–341. DOI: 10.1021/co500002s.
  • (a) Alisi, M. A.; Cazzolla, N.; Costi, R.; Di Santo, R.; Furlotti, G.; Guglielmotti, A.; Polenzani, L. US8686147 B2, 2010. (b) Cappelli, A.; Manini, M.; Valenti, S.; Castriconi, F.; Giuliani, G.; Anzini, M.; Brogi, S.; Butini, S.; Gemma, S.; Campiani, G.; et al. Synthesis and Structure-Activity Relationship Studies in Serotonin 5-HT(1A) Receptor Agonists Based on Fused Pyrrolidone Scaffolds. Eur. J. Med. Chem. 2013, 63, 85–94. DOI: 10.1016/j.ejmech.2013.01.044. (c) Furlotti, G.; Alisi, M. A.; Apicella, C.; Capezzone de Joannon, A.; Cazzolla, N.; Costi, R.; Cuzzucoli Crucitti, G.; Garrone, B.; Iacovo, A.; Magarò, G.; et al. Discovery and Pharmacological Profile of New 1H-Indazole-3-Carboxamide and 2H-Pyrrolo[3,4-c]Quinoline Derivatives as Selective Serotonin 4 Receptor Ligands. J. Med. Chem. 2012, 55, 9446–9466. DOI: 10.1021/jm300573d.
  • (a) Kravchenko, D. V.; Kysil, V. V.; Ilyn, A. P.; Tkachenko, S. E.; Maliarchouk, S.; Okun, I. M.; Ivachtchenko, A. V. 1,3-Dioxo-4-Methyl-2,3-Dihydro-1H-Pyrrolo[3,4-c]Quinolines as Potent Caspase-3 Inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 1841–1845. DOI: 10.1016/j.bmcl.2005.02.027. (b) Kravchenko, D. V.; Kuzovkova, Y. A.; Kysil, V. M.; Tkachenko, S. E.; Maliarchouk, S.; Okun, I. M.; Balakin, K. V.; Ivachtchenko, A. V. Synthesis and Structure-Activity Relationship of 4-Substituted 2-(2-Acetyloxyethyl)-8-(Morpholine-4-Sulfonyl)Pyrrolo[3,4-c]Quinoline-1,3-Diones as Potent Caspase-3 Inhibitors. J. Med. Chem. 2005, 48, 3680–3683. DOI: 10.1021/jm048987t.
  • (a) Buccini, M.; Jeow, S. Y.; Byrne, L.; Skelton, B. W.; Nguyen, T. M.; Chai, C. L. L.; Piggott, M. J. Bisannulation of 2,3-Dichloro-1,4-Naphthoquinone with o-Nitrophenylacetic Acid Derivatives: A Succinct Synthesis of the ABCD Ring System of Alpkinidine. Eur. J. Org. Chem. 2013, 2013, 3232–3240. DOI: 10.1002/ejoc.201300227. (b) Volvoikar, P. S.; Tilve, S. G.; Zubkov, F. I. A Concise Approach for the Synthesis of the ABCD Ring System of Alpkinidine. ChemistrySelect 2019, 4, 7187–7189. DOI: 10.1002/slct.201900357.
  • (a) Nyerges, M.; Virányi, A.; Tőke, L. Heterocycl. Commun. 2003, 9, 239. (b) Virányi, A.; Nyerges, M.; Blaskó, G.; Tőke, L. A Convenient Synthesis of Pyrrolo[3,4-c]Quinolines. Synthesis 2003, 17, 2655–2660. DOI: 10.1055/s-2003-42425. (c) Liu, J.; Cremosnik, G. S.; Otte, F.; Pahl, A.; Sievers, S.; Strohmann, C.; Waldmann, H. Design, Synthesis, and Biological Evaluation of Chemically and Biologically Diverse Pyrroquinoline Pseudo Natural Products. Angew. Chem. Int. Ed. Engl. 2021, 60, 4648–4656. DOI: 10.1002/anie.202013731. (d) Di Santo, R.; Costi, R.; Forte, M.; Galeffi, C. A General, Versatile Synthesis of 2H-Pyrrolo[3,4-c]Quinolines via Tosylmethylisocyanide Reaction. Arkivoc 2004, 2004, 181–195. DOI: 10.3998/ark.5550190.0005.517. (e) Liu, J.; Otte, F.; Strohmann, C.; Waldmann, H. Enantioselective Synthesis of Pyrro[3,4-c]Quinoline Pseudo-Natural Products. Tetrahedron Lett. 2021, 76, 153228. DOI: 10.1016/j.tetlet.2021.153228.
  • (a) Ren, J.-W.; Xie, Z.-Z.; Zheng, L.; Ye, Z.-P.; Deng, Z.-X.; Zhao, Q.-L.; Xiao, J.-A.; Chen, K.; Xiang, H.-Y.; Chen, X.-Q.; Yang, H. An Organocatalytic Enantioselective Ring-Reorganization Domino Sequence of Methyleneindolinones with 2-Aminomalonates. Org. Chem. Front. 2021, 8, 778–783. DOI: 10.1039/D0QO01364A. (b) Ren, J.-W.; Zhao, Q.-L.; Xiao, J.-A.; Xia, P.-J.; Xiang, H.-Y.; Chen, X.-Q.; Yang, H. A One‐Pot Ring‐Opening/Ring‐Closure Sequence for the Synthesis of Polycyclic Spirooxindoles. Chem. Eur. J. 2019, 25, 4673–4677. DOI: 10.1002/chem.201900409. (c) Jia, Z.; Hu, X.; Zhao, Y.; Qiu, F. G.; Chan, A. S. C.; Zhao, J. One-Pot Enantioselective Synthesis of 2-Pyrrolidinone Derivatives Bearing a Trifluoromethylated All-Carbon Quaternary Stereocenter. Org. Lett. 2019, 21, 9584–9588. DOI: 10.1021/acs.orglett.9b03758. (d) Ren, J.-W.; Zheng, L.; Ye, Z.-P.; Deng, Z.-X.; Xie, Z.-Z.; Xiao, J.-A.; Zhu, F.-W.; Xiang, H.-Y.; Chen, X.-Q.; Yang, H. Organocatalytic, Enantioselective, Polarity-Matched Ring-Reorganization Domino Sequence Based on the 3-Oxindole Scaffold. Org. Lett. 2019, 21, 2166–2170. DOI: 10.1021/acs.orglett.9b00477.
  • Shen, W.-B.; Sun, Q.; Li, L.; Liu, X.; Zhou, B.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Divergent Synthesis of N-Heterocycles via Controllable Cyclization of Azido-Diynes Catalyzed by Copper and Gold. Nat. Commun. 2017, 8, 9. DOI: 10.1038/s41467-017-01853-1.
  • He, J.; Bai, Z.-Q.; Yuan, P.-F.; Wu, L.-Z.; Liu, Q. Highly Efficient Iridium-Based Photosensitizers for Thia-Paternò–Büchi Reaction and Aza-Photocyclization. ACS Catal. 2021, 11, 446–455. DOI: 10.1021/acscatal.0c05005.
  • Hu, Z.; Li, Y.; Pan, L.; Xu, X. Direct Synthesis of Pyrrolo[3,4-c]Quinolines from the Domino Reaction of Tosylmethyl Isocyanides and Aminochalcones. Adv. Synth. Catal. 2014, 356, 2974–2978. DOI: 10.1002/adsc.201400468.
  • Fujita, R.; Yoshisuji, T.; Wakayanagi, S.; Wakamatsu, H.; Matsuzaki, H. Synthesis of 5(6H)-Phenanthridones Using Diels-Alder Reaction of 3-Nitro-2(1H)-Quinolones Acting as Dienophiles. Chem. Pharm. Bull. 2006, 54, 204–208. DOI: 10.1248/cpb.54.204.
  • Chen, X.-F.; Ren, C.; Xu, X.-Y.; Shao, X.-S.; Li, Z. Direct One-Pot Synthesis of 3-Nitroquinolin-2(1H)-One via H2O/AcOH System: An Improvement to Classical Friedlander Reaction. Tetrahedron Lett. 2017, 58, 1433–1436. DOI: 10.1016/j.tetlet.2017.01.092.
  • Tsuge, O.; Kanemasa, S.; Ohe, M.; Yorozu, K.; Takenaka, S.; Ueno, K. Simple Generation of Ester-Stabilized Azomethine Ylides from 2-Amino Esters and Carbonyl Compounds. Stereochemistry of Their Cycloadditions. BCSJ 1987, 60, 4067–4078. DOI: 10.1246/bcsj.60.4067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.