Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 3
264
Views
3
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

Sodium salts mediated electrochemical reactions: Recent instances

, , ORCID Icon &
Pages 169-197 | Received 24 Sep 2022, Published online: 28 Dec 2022

References

  • Horn, E. J.; Rosen, B. R.; Baran, P. S. Synthetic Organic Electrochemistry: An Enabling and Innately Sustainable Method. ACS Cent. Sci. 2016, 2, 302–308. DOI: 10.1021/acscentsci.6b00091.
  • Yan, M.; Kawamata, Y.; Baran, P. S. Synthetic Organic Electrochemical Methods since 2000: On the Verge of a Renaissance. Chem. Rev. 2017, 117, 13230–13319. DOI: 10.1021/acs.chemrev.7b00397.
  • K-rk-s, M. D. Chem. Soc. Rev. 2018, 47, 5786–5865.
  • Möhle, S.; Zirbes, M.; Rodrigo, E.; Gieshoff, T.; Wiebe, A.; Waldvogel, S. R. Modern Electrochemical Aspects for the Synthesis of Value-Added Organic Products. Angew. Chem. Int. Ed. Engl. 2018, 57, 6018–6041. DOI: 10.1002/anie.201712732.
  • Wiebe, A.; Gieshoff, T.; Möhle, S.; Rodrigo, E.; Zirbes, M.; Waldvogel, S. R. Electrifying Organic Synthesis. Angew. Chem. Int. Ed. Engl. 2018, 57, 5594–5619. DOI: 10.1002/anie.201711060.
  • Simonsson, D. Electrochemistry for a Cleaner Environment. Chem. Soc. Rev. 1997, 26, 181. DOI: 10.1039/cs9972600181.
  • Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, 1998.
  • Frontana-Uribe, B. A.; Little, R. D.; Ibanez, J. G.; Palma, A.; Vasquez-Medrano, R. Organic Electrosynthesis: A Promising Green Methodology in Organic Chemistry. Green Chem. 2010, 12, 2099–2119. DOI: 10.1039/c0gc00382d.
  • Sch-Fer, H. J. Comptes Rendus Chim. 2011, 14, 745–765. DOI: 10.1016/j.crci.2011.01.002.
  • Blanco, D. E.; Modestino, M. A. Organic Electrosynthesis for Sustainable Chemical Manufacturing. Trends Chem. 2019, 1, 8–10. DOI: 10.1016/j.trechm.2019.01.001.
  • Yuan, Y.; Lei, A. Is Electrosynthesis Always Green and Advantageous Compared to Traditional Methods? Nat. Commun. 2020, 11, 802. DOI: 10.1038/s41467-020-14322-z.
  • Martins, G. M.; Zimmer, G. C.; Mendes, S. R.; Ahmed, N. Electrifying Green Synthesis: recent Advances in Electrochemical Annulation Reactions. Green Chem. 2020, 22, 4849–4870. DOI: 10.1039/D0GC01324B.
  • Wagenknecht, J. H. Industrial Organic Electrosynthesis. J. Chem. Educ. 1983, 60, 271. DOI: 10.1021/ed060p271.
  • Danly, D. E. Development and Commercialization of the Monsanto Electrochemical Adiponitrile Process. J. Electrochem. Soc. 1984, 131, 435C–442C. DOI: 10.1149/1.2115324.
  • Matthews, M. A. Green Electrochemistry. Examples and Challenges. Pure Appl. Chem. 2001, 73, 1305–1308. DOI: 10.1351/pac200173081305.
  • Sequeira, C. A. C.; Santos, D. M. F. Electrochemical Routes for Industrial Synthesis. J. Braz. Chem. Soc. 2009, 20, 387–406. DOI: 10.1590/S0103-50532009000300002.
  • Botte, G. G. Electrochemical Manufacturing in the Chemical Industry. Electrochem. Soc. Interface 2014, 23, 49–55. DOI: 10.1149/2.F04143if.
  • Cardoso, D. S. P.; Šljukić, B.; Santos, D. M. F.; Sequeira, C. A. C. Organic Electrosynthesis: From Laboratorial Practice to Industrial Applications. Org. Process Res. Dev. 2017, 21, 1213–1226. DOI: 10.1021/acs.oprd.7b00004.
  • Leech, M. C.; Garcia, A. D.; Petti, A.; Dobbs, A. P.; Lam, K. Organic Electrosynthesis: From Academia to Industry. React. Chem. Eng. 2020, 5, 977–990. DOI: 10.1039/D0RE00064G.
  • Jagatheesan, R.; Ramesh, P.; Sambathkumar, S. Selective α-Bromination of Aryl Carbonyl Compounds: Prospects and Challenges. Synth. Commun. 2019, 49, 3265–3289. DOI: 10.1080/00397911.2019.1668415.
  • Jagatheesan, R.; Christopher, C.; Ramesh, P.; Sambathkumar, S. Exclusively Explored Electrochemical Halogenation of Aryl Compounds; Periodical Updates: Since 2000. Synth. Commun. 2020, 50, 2391–2412. DOI: 10.1080/00397911.2020.1769134.
  • Jagatheesan, R.; Joseph Santhana Raj, K.; Lawrence, S.; Christopher, C. Electroselective α-Bromination of Acetophenone Using in Situ Bromonium Ions from Ammonium Bromide. RSC Adv. 2016, 6, 35602–35608. DOI: 10.1039/C6RA04541C.
  • Jagatheesan, R.; Shanmugavelan, P.; Sambathkumar, S.; Ramesh, P. An Expeditious and Efficient Method for the Oxidation of Benzyl Alcohols by Homogeneous Electrolysis. Synth. Commun. 2021, 51, 3013–3022. DOI: 10.1080/00397911.2021.1960377.
  • Raju, T.; Kulangiappar, K.; Anbu Kulandainathan, M.; Muthukumaran, A. A Simple and Regioselective α-Bromination of Alkyl Aromatic Compounds by Two-Phase Electrolysis. Tetrahedron Lett. 2005, 46, 7047–7050. DOI: 10.1016/j.tetlet.2005.08.044.
  • Raju, T.; Kalpana Devi, G.; Kulangiappar, K. Regioselective Bromination of Toluene by Electrochemical Method. Electrochim. Acta 2006, 51, 4596–4600. DOI: 10.1016/j.electacta.2005.12.038.
  • Raju, T.; Kulangiappar, K.; Anbu Kulandainathan, M.; Uma, U.; Malini, R.; Muthukumaran, A. Site Directed Nuclear Bromination of Aromatic Compounds by an Electrochemical Method. Tetrahedron Lett. 2006, 47, 4581–4584. DOI: 10.1016/j.tetlet.2006.04.152.
  • Kulangiappar, K.; Karthik, G.; Kulandainathan, M. A. Electrochemical Method for the Preparation of Dibromomethyl, Bis(Bromomethyl), and Bis(Dibromomethyl) Arenes. Synth. Commun. 2009, 39, 2304–2309. DOI: 10.1080/00397910802654757.
  • Abirami, D.; Chithra, B.; Krishanamoorthy, T. K. Asian J. Chem. 2010, 22, 834–838.
  • Kulangiappar, K.; Anbukulandainathan, M.; Raju, T. Nuclear versus Side-Chain Bromination of 4-Methoxy Toluene by an Electrochemical Method. Synth. Commun. 2014, 44, 2494–2502. DOI: 10.1080/00397911.2014.905599.
  • Kulangiappar, K.; Ramaprakash, M.; Vasudevan, D.; Raju, T. Electrochemical Bromination of Cyclic and Acyclic Enes Using Biphasic Electrolysis. Synth. Commun. 2016, 46, 145–153. DOI: 10.1080/00397911.2015.1125498.
  • Raju, T.; Manivasagan, S.; Revathy, B.; Kulangiappar, K.; Muthukumaran, A. A Mild and Efficient Method for the Oxidation of Benzylic Alcohols by Two-Phase Electrolysis. Tetrahedron Lett. 2007, 48, 3681–3684. DOI: 10.1016/j.tetlet.2007.03.124.
  • Inês, M.; Mendonc, A. J.; Esteves, A. P.; Mendonc, D. I.; Medeiros, M. J. Comptes Rendus Chim. 2009, 12, 841–849.
  • Li, C.; Zeng, C.-C.; Hu, L.-M.; Yang, F.-L.; Yoo, S. J.; Little, R. D. Electrochemically Induced CH Functionalization Using Bromide Ion/2,2,6,6-tetramethylpiperidinyl-N-Oxyl Dual Redox Catalysts in a Two-Phase Electrolytic System. Electrochim. Acta 2013, 114, 560–566. DOI: 10.1016/j.electacta.2013.10.093.
  • Elinson, M.; Vereshchagin, A.; Tretyakova, E.; Bushmarinov, I.; Nikishin, G. Stereoselective Electrocatalytic Cyclization of 4,4′-(Arylmethylene)Bis(1H-Pyrazol-5-Ols) to (5R*,6R*)-11-Aryl-4,10-Dimethyl-2,8-Diphenyl-2,3,8,9-Tetraazadispiro[4.0.4.1]Undeca-3,9-Diene-1,7-Diones. Synthesis 2011, 2011, 3015–3019. DOI: 10.1055/s-0030-1261031.
  • Zhang, L.; Zha, Z.; Wang, Z.; Fu, S. Aqueous Electrosynthesis of Carbonyl Compounds and the Corresponding Homoallylic Alcohols in a Divided Cell. Tetrahedron Lett. 2010, 51, 1426–1429. DOI: 10.1016/j.tetlet.2010.01.026.
  • Raju, T.; Kulangiappar, K.; Kulandainathan, M. A.; Shankar, K.; Muthukumaran, A. Electrochemical Chlorination of Toluene by Two-Phase Electrolysis. Electrochim. Acta 2005, 51, 356–360. DOI: 10.1016/j.electacta.2005.05.002.
  • Bosco, A. J.; Lawrence, S.; Christopher, C.; Radhakrishnan, S.; Joseph Rosario, A. A.; Raja, S.; Vasudevan, D. Redox-Mediated Oxidation of Alcohols Using Cl−/OCl− Redox Couple in Biphasic Media. J. Phys. Org. Chem. 2015, 28, 591–595. DOI: 10.1002/poc.3454.
  • Thanh Huynh, T. N.; Tankam, T.; Koguchi, S.; Rerkrachaneekorn, T.; Sukwattanasinitt, M.; Wacharasindhu, S. Electrochemical NaI/NaCl-Mediated One-Pot Synthesis of 2-Aminobenzoxazoles in Aqueous Media via Tandem Addition–Cyclization. Green Chem. 2021, 23, 5189–5194. DOI: 10.1039/D1GC01131F.
  • Sathya, V.; Jagatheesan, R.; Gopi, D.; Sambathkumar, S. A Simple Salt Mediated Electrooxidative Method for the Synthesis of Benzaldehydes from Benzyl Alcohols. Synth. Commun. 2022, 52, 1268–1278. DOI: 10.1080/00397911.2022.2081812.
  • Park, J. W.; Kim, Y. H.; Kim, D. Y. Electrochemical Oxidative Iodination of Imidazo[1,2-a]Pyridines Using NaI as Iodine Source. Synth. Commun. 2020, 50, 710–718. DOI: 10.1080/00397911.2020.1717539.
  • Wei-Cui, L.; Cheng-Chu, Z.; Li-Ming, H.; Hong-Yu, T.; Daniel, L. R. Efficient Indirect Electrochemical Synthesis of 2-Substituted Benzoxazoles Using Sodium Iodide as Mediator. Adv. Synth. Catal. 2013, 355, 2884–2890. DOI: 10.1002/adsc.201300502.
  • Li, D.; Seavill, P. W.; Wilden, J. D. Application of Electrochemical Processes to Classical Iodocyclisation: Utility for Selectivity and Mechanistic Insight. ChemElectroChem 2019, 6, 5829–5835. DOI: 10.1002/celc.201901502.
  • Tajima, T.; Nakajima, A.; Doi, Y.; Fuchigami, T. Anodic Fluorination Based on Cation Exchange between Alkali-Metal Fluorides and Solid-Supported Acids. Angew. Chem. Int. Ed. Engl. 2007, 46, 3550–3552. DOI: 10.1002/anie.200700037.
  • Yuan, Y.; Yao, A.; Zheng, Y.; Gao, M.; Zhou, Z.; Qiao, J.; Hu, J.; Ye, B.; Zhao, J.; Wen, H.; Lei, A. Electrochemical Oxidative Clean Halogenation Using HX/NaX with Hydrogen Evolution. iScience 2019, 12, 293–303. DOI: 10.1016/j.isci.2019.01.017.
  • Sawamura, T.; Takahashi, K.; Inagi, S.; Fuchigami, T. Sodium Salts Dissolution in an Aprotic Solvent by Coordination of Poly(Ethylene Glycol) for Effective Anodic Reactions of Organic Compounds. Electrochemistry 2013, 81, 365–367. DOI: 10.5796/electrochemistry.81.365.
  • Elinson, M. N.; Dorofeev, A. S.; Feducovich, S. K.; Nasybullin, R. F.; Litvin, E. F.; Kopyshev, M. V.; Nikishin, G. I. Indirect Electrochemical Oxidation of Piperidin-4-Ones Mediated by Sodium Halide-Base System. Tetrahedron 2006, 62, 8021–8028. DOI: 10.1016/j.tet.2006.06.031.
  • Demizu, Y.; Shiigi, H.; Oda, T.; Matsumura, Y.; Onomura, O. Efficient Oxidation of Alcohols Electrochemically Mediated by Azabicyclo-N-Oxyls. Tetrahedron Lett. 2008, 49, 48–52. DOI: 10.1016/j.tetlet.2007.11.016.
  • Elinson, M. N.; Feducovich, S. K.; Starikova, Z. A.; Vereshchagin, A. N.; Gorbunov, S. V.; Nikishin, G. I. Stereoselective Electrocatalytic Transformation of Arylidene- or Alkylidenemalononitriles and Malonate into Alkyl (1R,5R,6R)* 6-Substituted 5-Cyano-4,4-Dialkoxy-2-Oxo-3-Azabicyclo[3.1.0]Hexane-1-Carboxylates. Tetrahedron Lett. 2005, 46, 6389–6393. DOI: 10.1016/j.tetlet.2005.05.101.
  • Elinson, M. N.; Dorofeev, A. S.; Feducovich, S. K.; Belyakov, P. A.; Nikishin, G. I. Stereoselective Electrocatalytic Oxidative Coupling of Phenylacetonitriles: Facile and Convenient Way Totrans-α,β-Dicyanostilbenes. Eur. J. Org. Chem. 2007, 2007, 3023–3027. DOI: 10.1002/ejoc.200601108.
  • Christopher, C.; Lawrence, S.; Anbu Kulandainathan, M.; Kulangiappar, K.; Raja, M. E.; Xavier, N.; Raja, S. Electrochemical Selective Oxidation of Aromatic Alcohols with Sodium Nitrate Mediator in Biphasic Medium at Ambient Temperature. Tetrahedron Lett. 2012, 53, 2802–2804. DOI: 10.1016/j.tetlet.2012.03.099.
  • Christopher, C.; Lawrence, S.; Bosco, A. J.; Xavier, N.; Raja, S. Selective Oxidation of Benzyl Alcohol by Two Phase Electrolysis Using Nitrate as Mediator. Catal. Sci. Technol. 2012, 2, 824. DOI: 10.1039/c2cy00424k.
  • Balaganesh, M.; Lawrence, S.; Christopher, C.; John Bosco, A.; Kulangiappar, K.; Joseph Santhana Raj, K. Nitrate Mediated Oxidation of p-Xylene by Emulsion Electrolysis. Electrochim. Acta 2013, 111, 384–389. DOI: 10.1016/j.electacta.2013.08.020.
  • DiMeglio, J. L.; Terry, B. D.; Breuhaus-Alvarez, A. G.; Whalen, M. J.; Bartlett, B. M. Base-Assisted Nitrate Mediation as the Mechanism of Electrochemical Benzyl Alcohol Oxidation. J. Phys. Chem. C 2021, 125, 8148–8154. DOI: 10.1021/acs.jpcc.0c10476.
  • Mitsudo, K.; Ishii, T.; Tanaka, H. Pd/TEMPO Double-Mediatory Electrooxidative Wacker-Type Cyclizations. Electrochemistry 2008, 76, 859–861. DOI: 10.5796/electrochemistry.76.859.
  • Mitsudo, K.; Shiraga, T.; Tanaka, H. Electrooxidative Homo-Coupling of Arylboronic Acids Catalyzed by Electrogenerated Cationic Palladium Catalysts. Tetrahedron Lett. 2008, 49, 6593–6595. DOI: 10.1016/j.tetlet.2008.09.022.
  • Cortona, M. N.; Vettorazzi, N. R.; Silber, J. J.; Sereno, L. E. Electrochemical Nitration of Naphthalene in the Presence of Nitrite Ion in Aqueous Non-Ionic Surfactant Solutions. J. Electroanal. Chem. 1999, 470, 157–165. DOI: 10.1016/S0022-0728(99)00232-6.
  • Zhang, M. M.; Sun, Y.; Wang, W. W.; Chen, K. K.; Yang, W. C.; Wang, L. Electrochemical Synthesis of Sulfonated Benzothiophenes Using 2-Alkynylthioanisoles and Sodium Sulfinates. Org. Biomol. Chem. 2021, 19, 3844–3849. DOI: 10.1039/d1ob00079a.
  • Jud, W.; Kappe, C. O.; Cantillo, D. Catalyst-Free Oxytrifluoromethylation of Alkenes through Paired Electrolysis in Organic-Aqueous Media. Chemistry 2018, 24, 17234–17238. DOI: 10.1002/chem.201804708.
  • Hou, Z. W.; Mao, Z. Y.; Melcamu, Y. Y.; Lu, X.; Xu, H. C. Electrochemical Synthesis of Imidazo-Fused N-Heteroaromatic Compounds through a C–N Bond-Forming Radical Cascade. Angew. Chem. Int. Ed. Engl. 2018, 57, 1636–1639. DOI: 10.1002/anie.201711876.
  • Guo, S.; Liu, L.; Hu, K.; Sun, Q.; Zha, Z.; Yang, Y.; Wang, Z. Electrochemical Synthesis of 3-Azido-Indolines from Amino-Azidation of Alkenes. Chin. Chem. Lett. 2021, 32, 1033–1036. DOI: 10.1016/j.cclet.2020.09.041.
  • Krishnan, C. V.; Garnett, M.; Chu, B. Int. J. Electrochem. Sci. 2008, 3, 1348–1363.
  • Cameselle, C.; Pazos, M.; Sanroman, M. A. Selection of an Electrolyte to Enhance the Electrochemical Decolourisation of Indigo. Optimisation and Scale-up. Chemosphere 2005, 60, 1080–1086. DOI: 10.1016/j.chemosphere.2005.01.018.
  • Morsi, M. S.; Al-Sarawy, A. A.; Shehab El-Dein, W. A. Electrochemical Degradation of Some Organic Dyes by Electrochemical Oxidation on a Pb/PbO2 Electrode. Desalin. Water Treat. 2011, 26, 301–308. DOI: 10.5004/dwt.2011.1926.
  • Kim, J. S.; Lee, S. W.; Liu, X.; Cho, G. B.; Kim, K. W.; Ahn, I. S.; Ahn, J. H.; Wang, G.; Ahn, H. J. Electrochemical Properties of Na/Ni3S2 Cells with Liquid Electrolytes Using Various Sodium Salts. Curr. Appl. Phys. 2011, 11, S11–S14. DOI: 10.1016/j.cap.2011.01.046.
  • Foad El-Sherbini, E. E.; Abd-El-Wahab, S. M.; Amin, M. A.; Deyab, M. A. Electrochemical Behavior of Tin in Sodium Borate Solutions and the Effect of Halide Ions and Some Inorganic Inhibitors. Corros. Sci. 2006, 48, 1885–1898. DOI: 10.1016/j.corsci.2005.08.002.
  • Zhang, G.; Wen, M.; Wang, S.; Chen, J.; Wang, J. Insights into Electrochemical Behavior and Anodic Oxidation Processing of Graphite Matrix in Aqueous Solutions of Sodium Nitrate. J. Appl. Electrochem. 2016, 46, 1163–1176. DOI: 10.1007/s10800-016-0999-0.
  • Weng, W.; Wang, M.; Gong, X.; Wang, Z.; Wang, D.; Guo, Z. Electrochemical Preparation of V2O3 from NaVO3 and Its Reduction Mechanism. J. Wuhan Univ. Technol. Mat. Sci. Ed. 2017, 32, 1019–1024. DOI: 10.1007/s11595-017-1705-8.
  • Cao, D.; Wu, L.; Sun, Y.; Wang, G.; Lv, Y. Electrochemical Behavior of Mg–Li, Mg–Li–Al and Mg–Li–Al–Ce in Sodium Chloride Solution. J. Power Sources 2008, 177, 624–630. DOI: 10.1016/j.jpowsour.2007.11.037.
  • Montes, L.; Lagowski, J. J. Electrochemical Behavior of Sodium Anions. J. Phys. Chem. B 2003, 107, 10665–10670. DOI: 10.1021/jp027268s.
  • Yu, J.; Qian, Z.; Zhao, M.; Wang, Y.; Niu, L. Effects of Sodium Sulfate as Electrolyte Additive on Electrochemical Performance of Lead Electrode. Chem. Res. Chin. Univ. 2013, 29, 374–378. DOI: 10.1007/s40242-013-2261-1.
  • Piwek, J.; Platek, A.; Fic, K.; Frackowiak, E. Carbon-Based Electrochemical Capacitors with Acetate Aqueous Electrolytes. Electrochim. Acta 2016, 215, 179–186. DOI: 10.1016/j.electacta.2016.08.061.
  • Medina, A.; Cabello, M.; Alcántara, R.; Pérez-Vicente, C.; Tirado, J. L. Theoretical and Experimental Study on the Electrochemical Behavior of Beta-Sodium Vanadate in Rechargeable Magnesium Batteries Using Several Electrolyte Solutions. J. Electrochem. Soc. 2020, 167, 070512. DOI: 10.1149/1945-7111/ab68d5.
  • Zaky, A. M. Electrochemical Behaviour of Copper–Silver Alloys in Sodium Carbonate Aqueous Solution. Br. Corros. J. 2001, 36, 59–64. DOI: 10.1179/000705901101501505.
  • Zaky, A. M.; Assaf, F. H.; Abd El Rehim, S. S.; Mohamed, B. M. Electrochemical Behaviour of Copper-Nickel Alloys in Stagnant Na2CO3 Solutions. Br. Corros. J. 2002, 37, 311–316. DOI: 10.1179/000705902225006679.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.