Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 9
491
Views
3
CrossRef citations to date
0
Altmetric
Articles

Mechanochemical organic synthesis in a rotary evaporator beyond conventional application: Proof-of-concept reactions

& ORCID Icon
Pages 625-639 | Received 27 Sep 2022, Published online: 14 Mar 2023

References

  • (a) Takacs, L. Quicksilver from Cinnabar: The First Documented Mechanochemical Reaction? J. Minerals Metals Mater. Soc. 2000, 52, 12–13. DOI: 10.1007/s11837-000-0106-0. (b) Tanaka, K.; Toda, F. Solvent-Free Organic Synthesis. Chem. Rev. 2000, 100, 1025–1074. DOI: 10.1021/cr940089p. (c) Takacs, L. The Historical Development of Mechanochemistry. Chem. Soc. Rev. 2013, 42, 7649–7659. DOI: 10.1039/c2cs35442j.
  • Baláž, P.; Achimovičová, M.; Baláž, M.; Billik, P.; Cherkezova-Zheleva, Z.; Criado, J. M.; Delogu, F.; Dutková, E.; Gaffet, E.; Gotor, F. J.; et al. Hallmarks of Mechanochemistry: From Nanoparticles to Technology. Chem. Soc. Rev. 2013, 42, 7571–7637. DOI: 10.1039/c3cs35468g.
  • (a) James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K. D. M.; Hyett, G.; Jones, W.; et al. Mechanochemistry: Opportunities for New and Cleaner Synthesis. Chem. Soc. Rev. 2012, 41, 413–447. DOI: 10.1039/c1cs15171a. (b) Lazuen-Garay, A.; Pichon, A.; James, S. L. Solvent-Free Synthesis of Metal Complexes. Chem. Soc. Rev. 2007, 36, 846–855. DOI: 10.1039/b600363j.
  • Wang, G.-W. Mechanochemical Organic Synthesis. Chem. Soc. Rev. 2013, 42, 7668–7700. DOI: 10.1039/c3cs35526h.
  • Burmeister, C. F.; Kwade, A. Process Engineering with Planetary Ball Mills. Chem. Soc. Rev. 2013, 42, 7660–7667. DOI: 10.1039/c3cs35455e.
  • (a) Rodrguez, B.; Bruckmann, A.; Rantanen, T.; Bolm, C. Solvent-Free Carbon-Carbon Bond Formations in Ball Mills. Adv. Synth. Catal. 2007, 349, 2213–2233. DOI: 10.1002/adsc.200700252. (b) Bruckmann, A.; Krebs, A.; Bolm, C. Organocatalytic Reactions: Effects of Ball Milling, Microwave and Ultrasound Irradiation. Green Chem. 2008, 10, 1131–1141. DOI: 10.1039/b812536h. (c) Nasir Baig, R. B.; Varma, R. S. Alternative Energy Input: Mechanochemical, Microwave and Ultrasound-Assisted Organic Synthesis. Chem. Soc. Rev. 2012, 41, 1559–1584. DOI: 10.1039/c1cs15204a.
  • Lyu, H.; Gao, B.; He, F.; Ding, C.; Tang, J.; Crittenden, J. C. Ball-Milled Carbon Nanomaterials for Energy and Environmental Applications. ACS Sustain. Chem. Eng. 2017, 5, 9568–9585. DOI: 10.1021/acssuschemeng.7b02170.
  • Craig, L. C.; Gregory, J. D.; Hausmann, W. Versatile Laboratory Concentration Device. Anal. Chem. 1950, 22, 1462–1462. DOI: 10.1021/ac60047a601.
  • (a) Clark, C. A.; Lee, D. S.; Pickering, S. J.; Poliakoff, M.; George, M. W. A Simple and Versatile Reactor for Photochemistry. Org. Process Res. Dev. 2016, 20, 1792–1798. DOI: 10.1021/acs.oprd.6b00257. (b) Clark, C. A.; Lee, D. S.; Pickering, S. J.; Poliakoff, M.; George, M. W. UV PhotoVap: Demonstrating How a Simple and Versatile Reactor Based on a Conventional Rotary Evaporator Can Be Used for UV Photochemistry. Org. Process Res. Dev. 2018, 22, 595–599. DOI: 10.1021/acs.oprd.8b00037.
  • Paveglio, G. C.; Longhi, K.; Moreira, D. N.; München, T. S.; Tier, A. Z.; Gindri, I. M.; Bender, C. R.; Frizzo, C. P.; Zanatta, N.; Bonacorso, H. G.; Martins, M. A. P. How Mechanical and Chemical Features Affect the Green Synthesis of 1H‑Pyrazoles in a Ball Mill. ACS Sustain. Chem. Eng. 2014, 2, 1895–1901.
  • Schneider, F.; Szuppa, T.; Stolle, A.; Ondruschka, B.; Hopf, H. Energetic Assessment of the Suzuki–Miyaura Reaction: A Curtate Life Cycle Assessment as an Easily Understandable and Applicable Tool for Reaction Optimization. Green Chem. 2009, 11, 1894–1899.
  • Stolle, A.; Szuppa, T.; Leonhardt, S. E.; Ondruschka, B. Ball Milling in Organic Synthesis: solutions and Challenges. Chem. Soc. Rev. 2011, 40, 2317–2329. DOI: 10.1039/c0cs00195c.
  • (a) Szuppa, T.; Stolle, A.; Ondruschka, B.; Hopfe, W. Solvent-Free Dehydrogenation of γ-Terpinene in a Ball Mill: Investigation of Reaction Parameters. Green Chem. 2010, 12, 1288–1294. DOI: 10.1039/c002819c. (b) Szuppa, T.; Stolle, A.; Ondruschka, B.; Hopfe, W. An Alternative Solvent-Free Synthesis of Nopinone under Ball-Milling Conditions: Investigation of Reaction Parameters. ChemSusChem 2010, 3, 1181–1191. DOI: 10.1002/cssc.201000122.
  • (a) Asano, K.; Enoki, H.; Akiba, E. Synthesis of HCP, FCC and BCC Structure Alloys in the Mg–Ti Binary System by Means of Ball Milling. J. Alloys Comp. 2009, 480, 558–563. DOI: 10.1016/j.jallcom.2009.01.086. (b) Fulmer, D. A.; Shearouse, W. C.; Medonza, S. T.; Mack, J. Solvent-Free Sonogashira Coupling Reaction via High Speed Ball Milling. Green Chem. 2009, 11, 1821–1825.
  • Steppeler, F.; Iwan, D.; Wojaczynska, E.; Wojaczynski, J. Chiral Thioureas – Preparation and Significance in Asymmetric Synthesis and Medicinal Chemistry. Molecules 2020, 25, 401. DOI: 10.3390/molecules25020401.
  • Ronchetti, R.; Moroni, G.; Carotti, A.; Gioiello, A.; Camaioni, E. Recent Advances in Urea- and Thiourea-Containing Compounds: Focus on Innovative Approaches in Medicinal Chemistry and Organic Synthesis. RSC Med. Chem. 2021, 12, 1046–1064. DOI: 10.1039/d1md00058f.
  • Li, J.-P.; Wang, Y.-L.; Wang, H.; Luo, Q.-F.; Wang, X.-Y. A New and Efficient Solid State Synthesis of Diaryl Thioureas. Synth. Commun. 2001, 31, 781–785. DOI: 10.1081/SCC-100103270.
  • Kaupp, G.; Naimi-Jamal, M. R.; Schmeyers, J. Quantitative Reaction Cascades of Ninhydrin in the Solid State. Chem. Eur. J. 2002, 8, 594–600. DOI: 10.1002/1521-3765(20020201)8:3<594::AID-CHEM594>3.0.CO;2-5.
  • Crawford, D. E.; Miskimmin, C. K. G.; Albadarin, A. B.; Walker, G.; James, S. L. Organic Synthesis by Twin Screw Extrusion: Continuous, Scalable and Solvent-Free. Green Chem. 2017, 19, 1507–1518. DOI: 10.1039/C6GC03413F.
  • Kaupp, G.; Naimi-Jamal, M. R.; Stepanenko, V. Waste-Free and Facile Solid-State Protection of Diamines, Anthranilic Acid, Diols, and Polyols with Phenylboronic Acid. Chemistry 2003, 9, 4156–4161. DOI: 10.1002/chem.200304793.
  • Davies, G. H. M.; Mukhtar, A.; Saeednia, B.; Sherafat, F.; Kelly, C. B.; Molander, G. A. Azaborininones: Synthesis and Structural Analysis of a Carbonyl-Containing Class of Azaborines. J. Org. Chem. 2017, 82, 5380–5390. DOI: 10.1021/acs.joc.7b00747.
  • Vogels, C. M.; Nikolcheva, L. G.; Norman, D. W.; Spinney, H. A.; Decken, A.; Baerlocher, M. O.; Baerlocher, F. J.; Westcott, S. A. Synthesis and Antifungal Properties of Benzylamines Containing Boronate Esters. Can. J. Chem. 2001, 79, 1115–1123. DOI: 10.1139/v01-090.
  • Schnurch, M.; Holzweber, M.; Mihovilovic, M. D.; Stanetty, P. A Facile and Green Synthetic Route to Boronic Acid Esters Utilizing Mechanochemistry. Green Chem. 2007, 9, 139–145. DOI: 10.1039/B611424E.
  • Burke, A. J.; Marques, C. S. Mechanistic and Synthetic Aspects of the Benzilic Acid and Ester Rearrangements. Mini Rev. Org. Chem. 2007, 4, 310–316. DOI: 10.2174/157019307782411707.
  • (a) Amure, B. O. Clinical Evaluation of Clidinium and “Libraxin” in the Management of Duodenal Ulcer. Br. J. Clin. Pract. 1969, 23, 290–292. (b) Toral, M. I.; Richter, P.; Lara, N.; Jaque, P.; Soto, C.; Saavedra, M. Simultaneous Determination of Chlordiazepoxide and Clidinium Bromide in Pharmaceutical Formulations by Derivative Spectrophotometry. Int. J. Pharm. 1999, 189, 67–74. DOI: 10.1016/s0378-5173(99)00238-0.
  • Boucher, B. A. Fosphenytoin: A Novel Phenytoin Prodrug. Pharmacotherapy 1996, 16, 777–791.
  • Zhou, Y.-M.; Ye, X.-R.; Xin, X.-Q. Solid State Synthesis of Benzils at Low-Heating Temperatures. Synth. Commun. 1999, 29, 2229–2234. DOI: 10.1080/00397919908086222.
  • Zhao, Y.-W.; Wang, Y.-L. Solvent-Free Oxidation of Benzoins Using Fe(NO3)3·9H2O as the Oxidant. J. Chem. Res. (S) 2001, 70–71. DOI: 10.3184/030823401103168983.
  • Firouzabadi, H.; Karimi, B.; Abbassi, M. Efficient Solvent-Free Oxidation of Benzylic and Aromatic Allylic Alcohols and Biaryl Acyloins by Manganese Dioxide and Barium Manganate. J. Chem. Res. (S) 1999, 236–237. DOI: 10.1039/a806954i.
  • Toda, F.; Tanaka, K.; Kagawa, Y.; Sakaino, Y. Benzylic Acid Rearrangement in the Solid State. Chem. Lett. 1990, 19, 373–376. DOI: 10.1246/cl.1990.373.
  • Ardila-Fierro, K. J.; Lukin, S.; Etter, M.; Užarević, K.; Halasz, I.; Bolm, C.; Hernández, J. G. Direct Visualization of a Mechanochemically Induced Molecular Rearrangement. Angew. Chem. Int. Ed. Engl. 2020, 59, 13458–13462. DOI: 10.1002/anie.201914921.
  • Saikia, I.; Borah, A. J.; Phukan, P. Use of Bromine and Bromo-Organic Compounds in Organic Synthesis. Chem. Rev. 2016, 116, 6837–7042. DOI: 10.1021/acs.chemrev.5b00400.
  • (a) Bandgar, B. P.; Admaneb, S. B.; Jare, S. S. Hexamethylenetetramine-Bromine: A Novel Reagent for Selective Regeneration of Carbonyl Compounds from Oximes and Tosylhydrazones. J. Chem. Res. (S) 1998, 154–155. DOI: 10.1039/a706884k. (b) Gangwani, H.; Sharma, P. K.; Banerji, K. K. Kinetics and Mechanism of Oxidation of Diols by Hexamethylenetetramine-Bromine. J. Chem. Res. (S) 1999, 180–181. DOI: 10.1039/a807200k. (c) Shaabani, A.; Teimouri, M. B.; Safaei, H. R. A Simple and Efficient Procedure for Oxidation of Sulfides to Sulfoxides by Hexamethylenetetramine–Bromine Complex (HMTAB). Synth. Commun. 2000, 30, 265–271. DOI: 10.1080/00397910008087317.
  • Heravi, M. M.; Abdolhosseini, N.; Oskooie, H. A. Regioselective and High-Yielding Bromination of Aromatic Compounds Using Hexamethylenetetramine–Bromine. Tetrahedron Lett. 2005, 46, 8959–8963. DOI: 10.1016/j.tetlet.2005.10.041.
  • (a) Teimouri, M. B.; Mivehchi, H. Efficient Hexamethylenetetramine-Bromine (HMTAB)-Catalyzed Synthesis of Bis(Indolyl)Methanes in Water. Synth. Commun. 2005, 35, 1835–1843. (b) Jin, T.; Zhang, J.; Liu, L.; Wang, A.; Li, T. Clean, One-Pot Synthesis of Naphthopyran Derivatives in Aqueous Media. Synth. Commun. 2006, 36, 2009–2015.
  • Tang, X.; Yang, J.; Zhu, Z.; Zheng, M.; Wu, W.; Jiang, H. Access to Thiazole via Copper-Catalyzed [3 + 1+1]-Type Condensation Reaction under Redox-Neutral Conditions. J. Org. Chem. 2016, 81, 11461–11466. DOI: 10.1021/acs.joc.6b02124.
  • Chiai, H.; Uetake, Y.; Niwa, T.; Hosoya, T. Rhodium-Catalyzed Decarbonylative Borylation of Aromatic Thioesters for Facile Diversification of Aromatic Carboxylic Acids. Angew. Chem. 2017, 129, 2522–2526. DOI: 10.1002/ange.201611974.
  • Eisch, J. J.; Fregene, P. O.; Gitua, J. N. The Epimetallation and Carbonation of Carbonyl and Imino Derivatives: Epivanadation Route to 2-Amino and 2-Hydroxy Acids. J. Organometallic Chem. 2007, 692, 4647–4653. DOI: 10.1016/j.jorganchem.2007.06.045.
  • Weber, F. G.; Reimann, E. 1H-NMR- und IR-spektroskopische untersuchungen an Erythro-2-Brom-3-Chlor-1,3-Diarylpropanonen-1. Tetrahedron 1973, 29, 3727–3731. DOI: 10.1016/S0040-4020(01)93538-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.