Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 11
177
Views
2
CrossRef citations to date
0
Altmetric
Articles

Eucalyptol: An efficient, unexplored, green media for transition metal free synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives and isoxazolone derivatives

, &
Pages 779-794 | Received 23 Jan 2023, Published online: 07 Apr 2023

References

  • Campos, J. F.; Ferreira, V.; Raboin, S. B. Eucalyptol: A Bio-Based Solvent for the Synthesis of O,S,N-Heterocycles. Application to Hiyama Coupling, Cyanation, and Multicomponent Reactions. Catalysts 2021, 11, 222. DOI: 10.3390/catal11020222.
  • Maleki, B.; Chahkandi, M.; Tayebee, R.; Kahrobaei, S.; Alinezhad, H.; Hemmati, S. Synthesis and Characterization of Nanocrystalline Hydroxyapatite and Its Catalytic Behavior towards Synthesis of 3,4-Disubstituted Isoxazole-5(4H)-Ones in Water. Appl. Organometal. Chem. 2019, 33, e5118. DOI: 10.1002/aoc.5118.
  • Campos, J. F.; Scherrmann, M. C.; Raboin, S. B. Eucalyptol: A New Solvent for the Synthesis of Heterocycles Containing Oxygen, Sulfur and Nitrogen. Green Chem. 2019, 21, 1531–1539. DOI: 10.1039/C8GC04016H.
  • (a) Pradhan, K.; Paul, S.; Das, A. R. Synthesis of Indeno and Acenaphtho Cores Containing Dihydroxy Indolone, Pyrrole, Coumarin and Uracil Fused Heterocyclic Motifs under Sustainable Conditions Exploring the Catalytic Role of the Sno2 Quantum Dot. RSC Adv. 2015, 5, 12062–12070. DOI: 10.1039/C4RA12618A. (b) Potts, D. S.; Bregante, D. T.; Adams, J. S.; Torres, C.; Flaherty, D. W. Influence of Solvent Structure and Hydrogen Bonding on Catalysis at Solid–Liquid Interfaces. Chem. Soc. Rev. 2021, 50, 12308–12337. DOI: 10.1039/D1CS00539A. (c) Brahmachari, G. Green Synthetic Approaches for Biologically Relevant Heterocycles, 2nd ed.; Elsevier Inc.: Waltham, MA, 2021; Vol. 1. (d) Brahmachari, G. Green Synthetic Approaches for Biologically Relevant Heterocycles, 2nd ed.; Elsevier Inc.: Waltham, MA, 2021; Vol. 2. (e) Brahmachari, G.; Nurjamal, K.; Karmakar, I.; Karmakar, P. Catalyst- and Solvent-Free Csp2–H Functionalization of 4-Hydroxycoumarins via C-3 Dehydrogenative Aza-Coupling under Ball-Milling. Green Chem. 2021, 23, 4762–4770. DOI: 10.1039/D1GC01341F. (f) Karmakar, I.; Brahmachari, G. Electrochemical and Mechanochemical Synthesis of Dihydrofuro[3,2-C]Chromenones via Intramolecular Csp3–H Cross-Dehydrogenative Oxygenation within Warfarin Frameworks: An Efficient and Straightforward Dual Approach. Green Chem. 2022, 24, 2825–2838. DOI: 10.1039/D2GC00146B.
  • Wolfe, J. F.; Rathman, T. L.; Sleevi, M. C.; Campbell, J. A.; Greenwood, T. D. Synthesis and Anticonvulsant Activity of Some New 2-Substituted 3-Aryl-4(3H)-Quinazolinones. J. Med. Chem. 1990, 33, 161–166. DOI: 10.1021/jm00163a027.
  • Padia, J. K.; Field, M.; Hinton, J.; Meecham, K.; Pablo, J.; Pinnock, R.; Roth, B. D.; Singh, L.; Suman-Chauhan, N.; Trivedi, B. K.; Webdale, L. Novel Nonpeptide CCK-B Antagonists: Design and Development of Quinazolinone Derivatives as Potent, Selective, and Orally Active CCK-B Antagonists. J. Med. Chem. 1998, 41, 1042–1049. DOI: 10.1021/jm970373j.
  • Hamel, E.; Lin, C. M.; Plowman, J.; Wang, H. K.; Lee, K. H.; Paull, K. D. Antitumor 2, 3-Dihydro-2-(Aryl)-4 (1H)-Quinazolinone Derivatives: Interactions with Tubulin. Biochem. Pharmacol. 1996, 51, 53–59. DOI: 10.1016/0006-2952(95)02156-6.
  • Baker, B. R.; Schaub, R. E.; Joseph, J. P.; McEvoy, F. J.; Williams, J. H. An Antimalarial Alkaloid from Hydrangea. XVIII. Derivatives of 4-Pyrimidone. J. Org. Chem. 1953, 18, 133–137. DOI: 10.1021/jo01130a003.
  • Lowe, J. A.; Archer, R. L.; Chapin, D. S.; Chen, J. B.; Helweg, D.; Johnson, J. L.; Koe, B. K.; Lebel, L. A.; Moore, P. F.; Nielsen, J. A. Structure-Activity Relationship of Quinazolinedione Inhibitors of Calcium-Independent Phosphodiesterase. J. Med. Chem. 1991, 34, 624–628. DOI: 10.1021/jm00106a024.
  • Havera, H. J.; Vidrio, H. Derivatives of 1,3-Disubstituted 2,4(1H,3H)-Quinazolinediones as Possible Peripheral Vasodilators or Antihypertensive Agents. J. Med. Chem. 1979, 22, 1548–1550. DOI: 10.1021/jm00198a024.
  • Wagner, G.; Wunderlich, I. [Synthesis of N-Amidinobenzyl Derivatives of Salicylamide, 2,4-Dioxodihydro-5,6-Benzoxazine-(1,3) and -Benzothiazine-(1,3) and of 2,4-Dioxo-1,2,3,4-Tetrahydroquinazoline]. Pharmazie 1978, 33, 15–19. DOI: 10.1002/chin.197828198.
  • Sohn, B. Chem. Abstr. 1964, 61, 16075.
  • Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274. DOI: 10.1021/jm501100b.
  • Martins, P.; Jesus, J.; Santos, S.; Raposo, L. R.; Roma-Rodrigues, C.; Baptista, P. V.; Fernandes, A. R. Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine’s Tool Box. Molecules 2015, 20, 16852–16891. DOI: 10.3390/molecules200916852.
  • Karabasanagouda, T.; Adhikari, A. V.; Girisha, M. Synthesis of Some New Pyrazolines and Isoxazoles Carrying 4-Methylthiophenyl Moiety as Potential Analgesic and Antiinflammatory Agents. Indian J. Chem. 2009, 48, 430–437.
  • (a) Domling, A. Recent Advances in Isocyanide-Based Multicomponent Chemistry. Curr. Opin. Chem. Biol. 2002, 6, 306–313. DOI: 10.1016/S1367-5931(02)00328-9. (b) Kappe, C. O. High-Speed Combinatorial Synthesis Utilizing Microwave Irradiation. Curr. Opin. Chem. Biol. 2002, 6, 314–320. DOI: 10.1016/S1367-5931(02)00306-X.
  • (a) Rafiee, E.; Jafari, H. A Practical and Green Approach towards Synthesis of Dihydropyrimidinones: Using Heteropoly Acids as Efficient Catalysts. Bioorg. Med. Chem. Lett. 2006, 16, 2463–2466. DOI: 10.1016/j.bmcl.2006.01.087. (b) Abbiati, G.; Beccalli, E. M.; Broggini, G.; Zoni, C. A Valuable Heterocyclic Ring Transformation: From Isoxazolin-5(2H)-Ones to Quinolines. Tetrahedron 2003, 59, 9887–9893. DOI: 10.1016/j.tet.2003.10.053.
  • (a) Kalhor, M.; Banibairami, S. Design of a New Multi-Functional Catalytic System Ni/SO3H@Zeolite-Y for Three-Component Synthesis of N-Benzo-Imidazo- or -Thiazole-1,3-Thiazolidinones. RSC Adv. 2020, 10, 41410–41423. (b) Brahmachari, G.; Nurjamal, K.; Karmakar, I.; Begam, S.; Nayek, N.; Mandal, B. Development of a Water-Mediated and Catalyst-Free Green Protocol for Easy Access to a Huge Array of Diverse and Densely Functionalized Pyrido[2,3-d:6,5-d′]Dipyrimidines via One-Pot Multicomponent Reaction under Ambient Conditions. ACS Sustain. Chem. Eng. 2017, 5, 9494–9505. DOI: 10.1021/acssuschemeng.7b02696. DOI: 10.1039/D0RA08237F. (c) Dey, S.; Basak, P.; Ghosh, P. A Green Synthetic Approach towards One Pot Multi Component Synthesis of Hexahydroquinoline and 9-Arylhexahydroacridine-1,8-Dione Derivatives Catalyzed by Sulphonated Rice Husk. ChemistrySelect 2020, 5, 15209–15217. DOI: 10.1002/slct.202004121. (d) Basak, P.; Dey, S.; Ghosh, P. Sulfonated Graphene-Oxide as Metal-Free Efficient Carbocatalyst for the Synthesis of 3-Methyl-4-(Hetero)Arylmethylene Isoxazole-5. Ones and Substituted Pyrazole. ChemistrySelect 2020, 5, 626–636. DOI: 10.1002/slct.201904164. (e) Brahmachari, G.; Nurjamal, K.; Karmakar, I. Diversely Functionalized N-Alkyl/Substituted Alkyl, S-2-Nitro-1-Arylethyl Dithiocarbamates: Green Synthesis, Large Scale Application, and Insights in Reaction Mechanism. ChemistrySelect 2019, 4, 747–751. DOI: 10.1002/slct.201803531. (f) Mitra, B.; Pariyar, G. C.; Ghosh, P. Glycerol: A Benign Solvent-Assisted Metal-Free One-Pot Multi-Component Synthesis of 4H-Thiopyran and Thioamides from Easily Accessible Precursors. ChemistrySelect 2019, 4, 5476–5483. DOI: 10.1002/slct.201900982. (g) Mitra, B.; Mukherjee, S.; Pariyar, G. C.; Ghosh, P. One Pot Three-Component Synthesis of 5-Substituted 1H-Tetrazole from Aldehyde. Tetrahedron Lett. 2018, 59, 1385–1389. DOI: 10.1016/j.tetlet.2018.02.067. (h) Bhattacharya, S.; Ghosh, P.; Basu, B. Graphene Oxide (GO): an Efficient Carbocatalyst for the Benign Synthesis of Functionalized 1,4-Benzothiazines. Tetrahedron Lett. 2017, 58, 926–931. DOI: 10.1016/j.tetlet.2017.01.068. (i) Brahmachari, G.; Nayek, N.; Karmakar, I.; Nurjamal, K.; Chandra, K. S.; Bhowmick, A. Series of Functionalized 5-(2-Arylimidazo[1,2-a]Pyridin-3-yl)Pyrimidine-2,4(1H,3H)-Diones: A Water-Mediated Three-Component Catalyst-Free Protocol Revisited. J. Org. Chem. 2020, 85, 8405–8414. DOI: 10.1021/acs.joc.0c00732. (j) Banerjee, B.; Singh, A.; Sharma, A.; Priya, A.; Kaur, M.; Kaur, G.; Gupta, V. K.; Jaitak, V. Mandelic Acid Catalyzed One-Pot Pseudo Three-Component Synthesis of Various Trisubstituted Methane Derivatives at Room Temperature. Arkivoc 2022, 2022, 100–118. DOI: 10.24820/ark.5550190.p011.895. (k) Ghorbani, V. R.; Sarmast, N.; Mahmoodi, J. One-Pot Synthesis of Polysubstituted Pyrrolidinones Using Novel Magnetic Nanoparticles as an Efficient and Reusable Catalyst. Appl. Organometal. Chem. 2017, 31, e3681. DOI: 10.1002/aoc.3681. (l) Kaur, M.; Priya, A.; Sharma, A.; Singh, A.; Banerjee, B. Glycine and Its Derivatives Catalyzed One-Pot Multicomponent Synthesis of Bioactive Heterocycles. Synth. Commun. 2022, 52, 1635–1656. DOI: 10.2174/2213346110666221212152202. (m) Pariyar, G. C.; Kundu, T.; Mitra, B.; Mukherjee, S.; Ghosh, P. Ethyl Lactate: An Efficient Green Mediator for Transition Metal Free Synthesis of Symmetric and Unsymmetric Azobenzenes. ChemistrySelect 2020, 5, 9781–9786. DOI: 10.1002/slct.202002629. (n) Panahi, F.; Niknam, E.; Sarikhani, S.; Haghighi, F.; Khalafi-Nezhad, A. Multicomponent Synthesis of New Curcumin-Based Pyrano[2,3-D]Pyrimidine Derivatives Using a Nano-Magnetic Solid Acid Catalyst. New. J. Chem. 2017, 41, 12293–12302. DOI: 10.1039/C7NJ02370G. (o) Nemati, F.; Elhampour, A.; Farrokhi, H.; Natanzi, M. B. Cu2O/Nano-Cufe2o4: A Novel and Recyclable Magnetic Catalyst for Three-Component Coupling of Carbonyl Compounds–Alkynes–Amines under Solvent-Free Condition. Catal. Commun. 2015, 66, 15–20. DOI: 10.1016/j.catcom.2015.03.009. (p) Banerjee, B.; Singh, A.; Kaur, G. Baker’s Yeast (Saccharomyces cerevisiae) Catalyzed Synthesis of Bioactive Heterocycles and Some Stereoselective Reactions. Phys. Sci. Rev. 2022, 7, 301–323. DOI: 10.1515/psr-2021-0021. (q) Shojaei, S.; Ghasemi, Z.; Shahrisa, A. Three-Component Synthesis of N-Sulfonylformamidines in the Presence of Magnetic Cellulose Supported N-Heterocyclic Carbene-Copper Complex, as an Efficient Heterogeneous Nanocatalyst. Tetrahedron Lett. 2017, 58, 3957–3965. DOI: 10.1016/j.tetlet.2017.08.075. (r) Zhang, M.; Lu, J.; Zhang, J. N.; Zhang, Z. H. Magnetic Carbon Nanotube Supported Cu (Cofe2o4/CNT-Cu) Catalyst: A Sustainable Catalyst for the Synthesis of 3-Nitro-2-Arylimidazo[1,2-A]Pyridines. Catal. Commun. 2016, 78, 26–32. DOI: 10.1016/j.catcom.2016.02.004. (s) Verma, S.; Verma, D.; Sinha, A. K.; Jain, S. L. Palladium Complex Immobilized on Graphene Oxide–Magnetic Nanoparticle Composites for Ester Synthesis by Aerobic Oxidative Esterification of Alcohols. Appl. Catal. A. Gen. 2015, 489, 17–23. DOI: 10.1016/j.apcata.2014.10.004. (t) Banerjee, B. Green Synthesis of Bioactive Heterocycles-Part 1A. CGC 2022, 9, 124–126. DOI: 10.2174/221334610903230102122357. (u) Banerjee, B.; Kaur, M.; Sharma, A.; Singh, A.; Priya, A.; Gupta, V. K.; Jaitak, V. Glycine Catalyzed One-Pot Three-Component Synthesis of Structurally Diverse 2-Amino Substituted Pyran Annulated Heterocycles in Aqueous Ethanol under Refluxed Conditions. CGC 2022, 9, 162–173. DOI: 10.2174/2213346110666221212152202. (v) Sharma, A.; Singh, A.; Priya, A.; Kaur, M.; Gupta, V. K.; Jaitak, V.; Banerjee, B. Trisodium Citrate Dihydrate Catalyzed One-Pot Pseudo Four-Component Synthesis of Fully Functionalized Pyridine Derivatives. Synth. Commun. 2022, 52, 1614–1627. DOI: 10.6084/m9.figshare.20358275.v1. (x) Priya, A.; Sharma, A.; Kaur, M.; Singh, A.; Banerjee, B. Preyssler Catalyst: A Heterogeneous Polyacidic Catalyst for the Efficient Synthesis of Diverse Bioactive Heterocyclic Scaffolds. Arkivoc 2022, 2022, 85–111. DOI: 10.24820/ark.5550190.p011.783. (y) Sharma, A.; Kaur, G.; Singh, D.; Gupta, V. K.; Banerjee, B. A General Method for the Synthesis of 11H-Indeno[1,2-b]Quinoxalin-11-Ones and 6H-Indeno[1,2-b]Pyrido[3,2-e]Pyrazin-6-One Derivatives Using Mandelic Acid as an Efficient Organo-Catalyst at Room Temperature. COCAT 2022, 9, 53–61. DOI: 10.2174/2213337208666210825112301. (z) Banerjee, B.; Priya, A.; Sharma, A.; Kaur, G.; Kaur, M. Sulfonated β-Cyclodextrins: efficient Supramolecular Organocatalysts for Diverse Organic Transformations. Phys. Sci. Rev. 2022, 7, 539–565. DOI: 10.1515/psr-2021-0080.
  • Patil, M. S.; Mudaliar, C.; Chaturbhuj, G. U. Sulfated Polyborate Catalyzed Expeditious and Efficient Three-Component Synthesis of 3-Methyl-4-(Hetero)Arylmethylene Isoxazole-5(4H)-Ones. Tetrahedron Lett. 2017, 58, 3256–3261. DOI: 10.1016/j.tetlet.2017.07.019.
  • Kiyani, H.; Ghorbani, F. Sodium Saccharin as a Clean and Efficient Catalyst for the Synthesis of 4-Arylidene-3-Methylisoxazol-5(4H)-Ones via One-Pot Three-Component Reaction in Aqueous Medium. Heterocycl. Lett. 2013, 3, 359–369.
  • Kiyani, H.; Jabbari, M.; Mosallanezhad, A. Efficient Three-Component Synthesis of 3,4-Disubstituted Isoxazol-5(4H)-Ones in Green Media. JJC 2014, 9, 279–288. DOI: 10.12816/0025980.
  • Fozooni, S.; Hosseinzadeh, N. G.; Hamidian, H.; Akhgar, M. R. Nano Fe2O3, Clinoptilolite and H3PW12O40 as Efficient Catalysts for Solvent-Free Synthesis of 5(4H)-Isoxazolone under Microwave Irradiation Conditions. Braz. J. Chem. Soc. 2013, 24, 1649. DOI: 10.5935/0103-5053.20130211.
  • Kiyani, H.; Samimi, H. A. Nickel-Catalyzed One-Pot, Three-Component Synthesis of 3,4-Disubstituted Isoxazole-5(4H)-Ones in Aqueous Medium. Chiang Mai J. Sci. 2017, 44, 1011–1021.
  • Rikani, A. B.; Setamdideh, D. One-Pot and Three-Component Synthesis of Isoxazol-5(4H)-One Derivatives in the Presence of Citric Acid. Orient. J. Chem. 2016, 32, 1433–1437. DOI: 10.13005/ojc/320317.
  • Liu, Q.; Wu, R.-T. Facile Synthesis of 3-Methyl-4-Arylmethylene-Isoxazol-5(4H)-Ones Catalysed by Sodium Silicate in an Aqueous Medium. J. Chem. Res. 2011, 35, 598–599. DOI: 10.3184/174751911X13176501108975.
  • Liu, Q.; Zhang, Y. N. One-Pot Synthesis of 3-Methyl-4-Arylmethylene-Isoxazol-5(4H)-Ones Catalyzed by Sodium Benzoate in Aqueous Media: A Green Chemistry Strategy. Bull. Korean Chem. Soc. 2011, 32, 3559–3560. DOI: 10.5012/bkcs.2011.32.10.3559.
  • Liu, Q.; Hou, X. One-Pot Three-Component Synthesis of 3-Methyl-4-Arylmethylene-Isoxazol-5(4H)-Ones Catalyzed by Sodium Sulfide. Phosphorus Sulfur Silicon Relat. Element. 2012, 187, 448–453. DOI: 10.1080/10426507.2011.621003.
  • Kiyani, H.; Ghorbani, F. Boric Acid-Catalyzed Multi-Component Reaction for Efficient Synthesis of 4H-Isoxazol-5-Ones in Aqueous Medium. Res. Chem. Intermed. 2015, 41, 2653–2664. DOI: 10.1007/s11164-013-1411-x.
  • Kiyani, H.; Ghorbani, F. Potassium Phthalimide as Efficient Basic Organocatalyst for the Synthesis of 3,4-Disubstituted Isoxazol-5(4H)-Ones in Aqueous Medium. J. Saudi Chem. Soc. 2017, 21, S112–S119. DOI: 10.1016/j.jscs.2013.11.002.
  • (a) Prakash, M.; Kesavan, V. Highly Enantioselective Synthesis of 2,3-Dihydroquinazolinones through Intramolecular Amidation of Imines. Org. Lett. 2012, 14, 1896–1899. DOI: 10.1021/jo201054k. (b) Zhou, J.; Fang, J. One-Pot Synthesis of Quinazolinones via Iridium-Catalyzed Hydrogen Transfers. J. Org. Chem. 2011, 76, 7730–7736. (c) Li, H.; He, L.; Neumann, H.; Beller, M.; Wu, X. F. Cascade Synthesis of Quinazolinones from 2-Aminobenzonitriles and Aryl Bromides via Palladium-Catalyzed Carbonylation Reaction. Green Chem. 2014, 16, 1336–1343. DOI: 10.1039/C3GC42089B. (d) Hikawa, H.; Ino, Y.; Suzuki, H.; Yokoyama, Y. Pd-Catalyzed Benzylic C–H Amidation with Benzyl Alcohols in Water: A Strategy to Construct Quinazolinones. J. Org. Chem. 2012, 77, 7046–7051. DOI: 10.1021/jo301282n. (e) Jiang, X.; Tang, T.; Wang, J. M.; Chen, Z.; Zhu, Y. M.; Ji, S. J. Palladium-Catalyzed One-Pot Synthesis of Quinazolinones via Tert-Butyl Isocyanide Insertion. J. Org. Chem. 2014, 79, 5082–5087. DOI: 10.1021/jo500636y. (f) Dabiri, M.; Salehi, P.; Otokesh, S.; Baghbanzadeh, M.; Kozehgary, G.; Mohammadi, A. A. Efficient Synthesis of Mono- and Disubstituted 2,3-Dihydroquinazolin-4(1H)-Ones Using Kal(SO4)2·12H2O as a Reusable Catalyst in Water and Ethanol. Tetrahedron Lett. 2005, 46, 6123–6126. DOI: 10.1016/j.tetlet.2005.06.157. (g) Shi, D.; Rong, L.; Wang, J.; Zhuang, Q.; Wang, X.; Hu, H. Synthesis of Quinazolin-4(3H)-Ones and 1,2-Dihydroquinazolin-4(3H)-Ones with the Aid of a Low-Valent Titanium Reagent. Tetrahedron Lett. 2003, 44, 3199–3201. DOI: 10.1016/S0040-4039(03)00449-0.
  • (a) Safari, J.; Ravandi, S. G. Environmentally Friendly Synthesis of 2-Aryl-2,3-Dihydroquinazolin-4(1H)-Ones by Novel Co-CNTs as Recoverable Catalysts. C. R. Chim. 2013, 16, 1158–1164. DOI: 10.1016/j.crci.2013.06.007. (b) Choghamarani, A. G.; Norouzi, M. Synthesis of Copper (II)-Supported Magnetic Nanoparticle and Study of Its Catalytic Activity for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones. J. Mol. Catal. A Chem. 2014, 395, 172–179. DOI: 10.1016/J.Molcata.2014.08.013. (c) Safari, J.; Gandomi, R. S. Microwave-Accelerated Three Components Cyclocondensation in the Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones Promoted by Cu-CNTs. J. Mol. Catal. A Chem. 2013, 371, 135–140. DOI: 10.1016/j.crci.2013.06.007. (d) Safari, J.; Ravandi, S. G. Silver Decorated Multi-Walled Carbon Nanotubes as a Heterogeneous Catalyst in the Sonication of 2-Aryl-2,3-Dihydroquinazolin-4(1H)-Ones. RSC Adv. 2014, 4, 11654–11660. DOI: 10.1039/C3RA47811D. (e) Santra, S.; Rahman, M.; Roy, A.; Majee, A.; Hajra, A. Nano-Indium Oxide: An Efficient Catalyst for One-Pot Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones with a Greener Prospect. Catal. Commun. 2014, 49, 52–57. DOI: 10.1016/j.catcom.2014.01.032. (f) Tarannum, S.; Ahmed, N.; Siddiqui, Z. N. Lacl3/Nano-Sio2: A Novel Nanocatalyst for Efficient Synthesis of Functionalized 2,3-Dihydroquinazolinones. Catal. Commun. 2015, 66, 60–66. DOI: 10.1016/j.catcom.2015.03.013.
  • Cheng, R.; Guo, T.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. One-Pot Synthesis of Quinazolinones from Anthranilamides and Aldehydes via p-Toluenesulfonic Acid Catalyzed Cyclocondensation and Phenyliodine Diacetate Mediated Oxidative Dehydrogenation. Synthesis 2013, 45, 2998–3006. DOI: 10.1055/s-0033-1338521.
  • Vns Murthy, P.; Rambabu, D.; Rama Krishna, G.; Malla Reddy, C.; Prasad, K. R. S.; Basaveswara Rao, M. V.; Pal, M. Amberlyst-15 Mediated Synthesis of 2-Substituted 2,3-Dihydroquinazolin-4(1H)-Ones and Their Crystal Structure Analysis. Tetrahedron Lett. 2012, 53, 863–867. DOI: 10.1016/j.tetlet.2011.12.023.
  • Salehi, P.; Dabiri, M.; Zolfigol, M. A.; Baghbanzadeh, M. A Novel Method for the One-Pot Three-Component Synthesis of 2, 3-Dihydroquinazolin-4 (1H)-Ones. Synlett 2005, 2005, 1155–1157. DOI: 10.1055/s-2005-865200.
  • Sharma, M.; Pandey, S.; Chauhan, K.; Sharma, D.; Kumar, B.; Chauhan, P. M. Cyanuric Chloride Catalyzed Mild Protocol for Synthesis of Biologically Active Dihydro/Spiro Quinazolinones and Quinazolinone-Glycoconjugates. J. Org. Chem. 2012, 77, 929–937. DOI: 10.1021/jo2020856.
  • Ramesh, K.; Karnakar, K.; Satish, G.; Anil Kumar, B. S. P.; Nageswar, Y. V. D. A Concise Aqueous Phase Supramolecular Synthesis of 2-Phenyl-2,3-Dihydroquinazolin-4(1H)-One Derivatives. Tetrahedron Lett. 2012, 53, 6936–6939. DOI: 10.1016/j.tetlet.2012.10.029.
  • Chen, J. X.; Wu, D. Z.; He, F.; Liu, M. C.; Wu, H. Y.; Ding, J. C.; Su, W. K. Gallium(III) Triflate-Catalyzed One-Pot Selective Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones and Quinazolin-4(3H)-Ones. Tetrahedron Lett. 2008, 49, 3814–3818. DOI: 10.1016/j.tetlet.2008.03.127.
  • Zhan, D.; Li, T.; Wei, H.; Weng, W.; Ghandi, K.; Zeng, Q. A Recyclable Cuo-Catalyzed Synthesis of 4(3H)-Quinazolinones. RSC Adv. 2013, 3, 9325–9329. DOI: 10.1039/c3ra41370e.
  • Chen, J. X.; Wu, H. Y.; Su, W. K. A Facile Synthesis of 2,3-Dihydro-2-Aryl-4(1H)-Quinazolinones Catalyzed by Scandium(III) Triflate. Chin. Chem. Lett. 2007, 18, 536–538. DOI: 10.1016/j.cclet.2007.03.037.
  • Abdel, R. J.; Voelter, W.; Saeed, M. A. A Novel Method for the Synthesis of 4(3H)-Quinazolinones. Tetrahedron Lett. 2004, 45, 3475–3476. DOI: 10.1016/j.tetlet.2004.03.003.
  • Cai, G. P.; Xu, X. L.; Li, Z. F.; Willam, P.; Weber, P.; Lu, J. A One‐Pot Synthesis of 2‐Aryl‐2,3‐Dihydro‐4(Lh)‐Quinazolinones by Use of Samarium Iodide. J. Heterocycl. Chem. 2002, 39, 1271–1272. DOI: 10.1002/JHET.5570390623.
  • Yoo, C. L.; Fettinger, J. C.; Kurth, M. J. Stannous Chloride in Alcohol: A One-Pot Conversion of 2-Nitro-N-Arylbenzamides to 2,3-Dihydro-1H-Quinazoline-4-Ones. J. Org. Chem. 2005, 70, 6941–6943. DOI: 10.1021/jo050450f.
  • Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J. Ruthenium-Catalysed Oxidative Synthesis of Heterocycles from Alcohols. Org. Biomol. Chem. 2012, 10, 240–243. DOI: 10.1039/C1OB06516E.
  • Safaei, H. R.; Shekouhy, M.; Khademi, S.; Rahmanian, V.; Safaei, M. Diversity-Oriented Synthesis of Quinazoline Derivatives Using Zirconium Tetrakis(Dodecylsulfate) [Zr(DS)4] as a Reusable Lewis Acid-Surfactant-Combined Catalyst in Tap Water. J. Ind. Eng. Chem. 2014, 20, 3019–3024. DOI: 10.1016/j.jiec.2013.11.037.
  • (a) Sharma, R.; Pandey, A. K.; Chauhan, P. M. S. A Greener Protocol for Accessing 2,3-Dihydro/Spiroquinazolin-4(1H)-Ones: Natural Acid-SDS Catalyzed Three-Component Reaction. Synlett 2012, 23, 2209–2214. DOI: 10.1055/s-0032-1317014. (b) Tamaddon, F.; Varnamkhasti, M. T. K. Self-Assembled Nanoliposomes of Phosphatidylcholine: Bridging the Gap between Organic and Aqueous Media for a Green Synthesis of Hydroquinazolinones. Synlett 2016, 27, 2510–2514. DOI: 10.1055/s-0035-1562604. (c) Zhang, Z.-H.; Lü, H.-Y.; Yang, S.-H.; Gao, J.-W. Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones by Three-Component Coupling of Isatoic Anhydride, Amines, and Aldehydes Catalyzed by Magnetic Fe3O4 Nanoparticles in Water. J. Comb. Chem. 2010, 12, 643–646. DOI: 10.1021/cc100047j. (d) Khatri, C. K.; Patil, M. S.; Chaturbhuj, G. U. Sulfated Polyborate: Mild, Efficient and Eco-Friendly Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones. J. Iran. Chem. Soc. 2017, 14, 1683–1689. DOI: 10.1007/s13738-017-1109-x. (e) Razavi, N.; Akhlaghinia, B. Hydroxyapatite Nanoparticles (HAP Nps): A Green and Efficient Heterogeneous Catalyst for Three-Component One-Pot Synthesis of 2,3-Dihydroquinazolin-4(1H)-One Derivatives in Aqueous Media. New J. Chem. 2016, 40, 447–457. DOI: 10.1039/C5NJ02123E. (f) Zhaleh, S.; Hazeri, N.; Maghsoodlou, M. T. Green Protocol for Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones: Lactic Acid as Catalyst under Solvent-Free Condition. Res. Chem. Intermed. 2016, 42, 6381–6390. DOI: 10.1007/s11164-016-2469-z. (g) Karhale, S.; Survase, D.; Bhat, R. A Practical and Green Protocol for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones Using Oxalic Acid as Organocatalyst. Res. Chem. Intermed. 2017, 43, 3915–3924. DOI: 10.1007/s11164-016-2855-6. (h) Sahu, A.; Mishra, S.; Sahu, P.; Gajbhiye, A.; Agrawal, R. K. Indium(III) Chloride: An Efficient Catalyst for One-Pot Multicomponent Synthesis of 2,3-Dihydroquinazoline-4(1H)-Ones. Curr. Organocatal. 2018, 5, 137–144. DOI: 10.2174/2213337205666180614112318. (i) Wu, S. J.; Zhao, Z. Q.; Gao, J. S. Efficient One-Pot Synthesis of 2,3-Dihydroquinazoline-4(1H)-Ones Promoted by Fecl3/Neutral Al2O3. Res. Chem. Intermed. 2019, 45, 2327–2339. DOI: 10.1007/s11164-018-03732-w. (j) Tamaddon, F.; Varnamkhasti, M. T. K. Self-Assembled Nanoliposomes of Phosphatidylcholine: Bridging the Gap between Organic and Aqueous Media for a Green Synthesis of Hydroquinazolinones. Synlett 2016, 27, 2510–2514. DOI: 10.1055/s-0035-1562604. (k) Yang, Y.; Fu, R.; Liu, Y.; Cai, J.; Zeng, X. Microwave-Promoted One-Pot Three-Component Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones Catalyzed by Heteropolyanion-Based Ionic Liquids under Solvent-Free Conditions. Tetrahedron 2020, 76, 131312. DOI: 10.1016/j.tet.2020.131312. (l) Wu, J.; Du, J.; Ma, X.; Zhang, Y.; Shi, Q.; Luo, L.; Song, B.; Yanga, S.; Hu, D. Preparation of 2,3-Dihydroquinazolin-4(1H)-One Derivatives in Aqueous Media with B-Cyclodextrin-SO3H as a Recyclable Catalyst. Green Chem. 2014, 16, 3210–3217. DOI: 10.1039/C3GC42400F. (m) Patil, D. R.; Ingole, P. G.; Singh, K.; Dalal, D. S. Inclusion Complex of Isatoic Anhydride with B-Cyclodextrin and Supramolecular One-Pot Synthesis of 2, 3-Dihydroquinazolin-4(1H)-Ones in Aqueous Media. J. Incl. Phenom. Macrocycl. Chem. 2013, 76, 327–332. DOI: 10.1007/s10847-012-0203-z.
  • Mitra, B.; Pariyar, G. C.; Ghosh, P. B-Cyclodextrin: A Supramolecular Catalyst for Metal-Free Approach towards the Synthesis of 2-Amino-4,6-Diphenylnicotinonitriles and 2,3-Dihydroquinazolin-4(1H)-One. RSC Adv. 2021, 11, 1271–1281. DOI: 10.1039/D0RA09562A
  • Gadkari, Y. U.; Jadhav, N. L.; Hatvate, N. T.; Telvekar, V. N. Concentrated Solar Radiation Aided Green Approach for Preparative Scale and Solvent-Free Synthesis of 3-Methyl-4-(Hetero)Arylmethylene Isoxazole-5(4H)-Ones. ChemistrySelect 2020, 5, 12320–12323. DOI: 10.1002/slct.202003348.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.