Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 13
500
Views
1
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

β-Enaminones from cyclohexane-1,3-diones: Versatile precursors for nitrogen and oxygen-containing heterocycles synthesis

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 953-993 | Received 23 Jan 2023, Published online: 21 Apr 2023

References

  • Kantevari, S.; Patpi, S. R.; Addla, D.; Putapatri, S. R.; Sridhar, B.; Yogeeswari, P.; Sriram, D. Facile Diversity-Oriented Synthesis and Antitubercular Evaluation of Novel Aryl and Heteroaryl Tethered Pyridines and Dihydro-6H-Quinolin-5-Ones Derived via Variants of the Bohlmann-Rahtz Reaction. ACS Comb. Sci. 2011, 13, 427–435. DOI:10.1021/co2000604.
  • Bautista, R.; Montoya, P. A.; Rebollar, A.; Burgueño, E.; Tamariz, J. Palladium-Catalyzed Synthesis of Natural and Unnatural 2-, 5-, and 7-Oxygenated Carbazole Alkaloids from N-Arylcyclohexane Enaminones. Molecules 2013, 18, 10334–10351. DOI:10.3390/molecules180910334.
  • Edafiogho, I. O.; Phillips, O. A.; Udo, E. E.; Samuel, S.; Rethish, B. Synthesis, Antibacterial and Anticonvulsant Evaluations of Some Cyclic Enaminones. Eur. J. Med. Chem. 2009, 44, 967–975. DOI:10.1016/j.ejmech.2008.07.005.
  • Huang, K. H.; Veal, J. M.; Fadden, R. P.; Rice, J. W.; Eaves, J.; Strachan, J. P.; Barabasz, A. F.; Foley, B. E.; Barta, T. E.; Ma, W.; et al. Discovery of Novel 2-Aminobenzamide Inhibitors of Heat Shock Protein 90 as Potent, Selective and Orally Active Antitumor Agents. J. Med. Chem. 2009, 52, 4288–4305. DOI:10.1021/jm900230j.
  • Fu, L.; Feng, X.; Wang, J. J.; Xun, Z.; Hu, J. D.; Zhang, J. J.; Zhao, Y. W.; Huang, Z. B.; Shi, D. Q. Efficient Synthesis and Evaluation of Antitumor Activities of Novel Functionalized 1,8-Naphthyridine Derivatives. ACS Comb. Sci. 2015, 17, 24–31. DOI:10.1021/co500120b.
  • Amaye, I. J.; Haywood, R. D.; Mandzo, E. M.; Wirick, J. J.; Jackson-Ayotunde, P. L. Enaminones as Building Blocks in Drug Development: Recent Advances in Their Chemistry, Synthesis, and Biological Properties. Tetrahedron 2021, 83, 131984. DOI:10.1016/j.tet.2021.131984.
  • Zhao, Y.; Wang, H.; Kang, X.; Zhang, R.; Feng, N.; Su, Q. Controllable Methylenation with Ethylene Glycol as the Methylene Source: bridging Enaminones and Synthesis of Tetrahydropyrimidines. Org. Chem. Front. 2022, 9, 5935–5941. DOI:10.1039/D2QO01187E.
  • Matsui, D.; Tanimori, S. A Quick and Easy Access to a Series of Thiocyanated Enaminones and 2-Iminothiazolones Using PIDA under Mild Conditions. J. Heterocycl. Chem. 2022, 59, 1591–1603. DOI:10.1002/jhet.4492.
  • Govindh, B.; Diwakar, B. S.; Murthy, Y. L. N. A Brief Review on Synthesis & Applications of β-Enamino Carbonyl Compounds. Org. Commun. 2012, 5, 105–119.
  • Elassar, A. Z. A.; El-Khair, A. A. Recent Developments in the Chemistry of Enaminones. Tetrahedron 2003, 59, 8463–8480. DOI:10.1016/S0040-4020(03)01201-8.
  • Thumar, N. J.; Patel, M. P. Synthesis, Characterization and Biological Activity of Some New Carbostyril Bearing 1H-Pyrazole Moiety. Med. Chem. Res. 2012, 21, 1751–1761. DOI:10.1007/s00044-011-9693-2.
  • Thumar, N. J.; Patel, M. P. Synthesis, Characterization, and Antimicrobial Evaluation of Carbostyril Derivatives of 1H-Pyrazole. Saudi Pharm. J. 2011, 19, 75–83. DOI:10.1016/j.jsps.2011.01.005.
  • Jardosh, H. H.; Vala, N. D.; Patel, M. P. Library Design, Synthesis and Biological Exploration of Novel 3,4′-Bicarbostyril Derivatives as Potent Antimicrobial, Antitubercular and Antimalarial Agents. Med. Chem. Res. 2017, 26, 881–899. DOI:10.1007/s00044-017-1797-x.
  • Kovygin, Y. A.; Shikhaliev, K. S.; Krysin, M. Y.; Potapov, A. Y.; Ledenyova, I. V.; Kosheleva, Y. A.; Vandyshev, D. Y. Cascade Recyclization of N-Arylitaconimides as a New Approach to the Synthesis of Polyfunctional Octahydroquinolines. Chem. Heterocycl. Comp. 2019, 55, 748–754. DOI:10.1007/s10593-019-02530-5.
  • Jiang, B.; Liang, Y. B.; Kong, L. F.; Tu, X. J.; Hao, W. J.; Ye, Q.; Tu, S. J. Highly Diastereoselective Synthesis of Quinoline-2,5-Diones and Pyrazolo[3,4-b]Pyridin-6(7H)-Ones under Microwave Irradiation. RSC Adv. 2014, 4, 54480–54486. DOI:10.1039/C4RA10096D.
  • Zadsirjan, V.; Mahdizadeh, S. J.; Heravi, M. M.; Heydari, M. Synthesis of Novel N-Functionalized 4-Aryl-Tetrahydrobiquinoline-2,5-(1H,3H)-Diones via One-Pot Three-Component Reaction: A Joint Experimental and Computational Study. Can. J. Chem. 2018, 96, 1071–1078. DOI:10.1139/cjc-2017-0564.
  • Knapik-Kowalczuk, J.; Gündüz, M. G.; Chmiel, K.; Jurkiewicz, K.; Kurek, M.; Tajber, L.; Jachowicz, R.; Paluch, M. Molecular Dynamics, Viscoelastic Properties and Physical Stability Studies of a New Amorphous Dihydropyridine Derivative with T-Type Calcium Channel Blocking Activity. Eur. J. Pharm. Sci. 2020, 141, 105083. DOI:10.1016/j.ejps.2019.105083.
  • Kale, O. E.; Gündüz, M. G.; Ogunbiyi, B. T.; Ogundare, T. F.; Ekor, M.; Awodele, O. M3, a 1,4-Dihydropyridine Derivative and Mixed L-/T-Type Calcium Channel Blocker, Attenuates Isoproterenol-Induced Toxicity in Male Wistar Rats. Cardiovasc. Toxicol. 2020, 20, 627–640. DOI:10.1007/s12012-020-09587-1.
  • Aygün Cevher, H.; Schaller, D.; Gandini, M. A.; Kaplan, O.; Gambeta, E.; Zhang, F. X.; Çelebier, M.; Tahir, M. N.; Zamponi, G. W.; Wolber, G.; Gündüz, M. G. Discovery of Michael Acceptor Containing 1,4-Dihydropyridines as First Covalent Inhibitors of L-/T-Type Calcium Channels. Bioorg. Chem. 2019, 91, 103187. DOI:10.1016/j.bioorg.2019.103187.
  • Ranjbar, S.; Edraki, N.; Firuzi, O.; Khoshneviszadeh, M.; Miri, R. 5-Oxo-Hexahydroquinoline: An Attractive Scaffold with Diverse Biological Activities. Mol. Divers. 2019, 23, 471–508. DOI:10.1007/s11030-018-9886-4.
  • Gündüz, M. G.; Işli, F.; El-Khouly, A.; Yıldırım, S.; Öztürk Fincan, G. S.; Şimşek, R.; Şafak, C.; Sarıoğlu, Y.; Öztürk Yıldırım, S.; Butcher, R. J. Microwave-Assisted Synthesis and Myorelaxant Activity of 9-Indolyl-1,8-Acridinedione Derivatives. Eur. J. Med. Chem. 2014, 75, 258–266. DOI:10.1016/j.ejmech.2014.01.059.
  • Periyasami, G.; Antonisamy, P.; Perumal, K.; Stalin, A.; Rahaman, M.; Alothman, A. A. A Competent Synthesis and Efficient anti-Inflammatory Responses of Isatinimino Acridinedione Moiety via Suppression of In Vivo NF-κB, COX-2 and iNOS Signaling. Bioorg. Chem. 2019, 90, 103047. DOI:10.1016/j.bioorg.2019.103047.
  • Vazirimehr, S.; Davoodnia, A.; Nakhaei-Moghaddam, M.; Tavakoli-Hoseini, N. Ultrasonic Synthesis, Characterization, and Antibacterial Evaluation of Novel Heterocycles Containing Hexahydroquinoline and Pyrrole Moieties. Heterocycl. Commun. 2017, 23, 65–70. DOI:10.1515/hc-2016-0164.
  • Thumar, N. J.; Patel, M. P. Synthesis and Antimicrobial Activity of Some New N-Substituted Quinoline Derivatives of 1H-Pyrazole. Arch. Pharm. 2011, 344, 91–101. DOI:10.1002/ardp.201000010.
  • Kalaria, P. N.; Satasia, S. P.; Raval, D. K. Synthesis, Characterization and Pharmacological Screening of Some Novel 5-Imidazopyrazole Incorporated Polyhydroquinoline Derivatives. Eur. J. Med. Chem. 2014, 78, 207–216. DOI:10.1016/j.ejmech.2014.02.015.
  • Tu, S. J.; Jiang, B.; Jia, R. H.; Zhang, J. Y.; Zhang, Y.; Yao, C. S.; Shi, F. An Efficient One-Pot, Three-Component Synthesis of Indeno[1,2-b]Quinoline-9,11(6H,10H)-Dione, Acridine-1,8(2H,5H)-Dione and Quinoline-3-Carbonitrile Derivatives from Enaminones. Org. Biomol. Chem. 2006, 4, 3664–3668. DOI:10.1039/b607575d.
  • Abaszadeh, M.; Seifi, M.; Asadipour, A. Ultrasound Promotes One-Pot Synthesis of 1,4-Dihydropyridine and Imidazo[1,2-a]Quinoline Derivatives, Catalyzed by ZnO Nanoparticles. Res. Chem. Intermed. 2015, 41, 5229–5238. DOI:10.1007/s11164-014-1624-7.
  • Karad, S. C.; Purohit, V. B.; Raval, D. K.; Kalaria, P. N.; Avalani, J. R.; Thakor, P.; Thakkar, V. R. Green Synthesis and Pharmacological Screening of Polyhydroquinoline Derivatives Bearing a Fluorinated 5-Aryloxypyrazole Nucleus. RSC Adv. 2015, 5, 16000–16009. DOI:10.1039/C5RA00388A.
  • Han, W.; Inoue, C.; Onizawa, T.; Oriyama, T. Synthesis of N-Aryl-4-Arylhexahydroquinoline Derivatives by Reaction of Cyclic Enaminones with Arylidenemalononitriles in DMSO. Synthesis 2021, 53, 1495–1502. DOI:10.1055/s-0040-1705984.
  • Lotfi, S.; Rahmani, T.; Hatami, M.; Pouramiri, B.; Kermani, E. T.; Rezvannejad, E.; Mortazavi, M.; Fathi Hafshejani, S.; Askari, N.; Pourjamali, N.; Zahedifar, M. Design, Synthesis and Biological Assessment of Acridine Derivatives Containing 1,3,4-Thiadiazole Moiety as Novel Selective Acetylcholinesterase Inhibitors. Bioorg. Chem. 2020, 105, 104457. DOI:10.1016/j.bioorg.2020.104457.
  • El-Sabbagh, O. I.; Rady, H. M. Synthesis of New Acridines and Hydrazones Derived from Cyclic β-Diketone for Cytotoxic and Antiviral Evaluation. Eur. J. Med. Chem. 2009, 44, 3680–3686. DOI:10.1016/j.ejmech.2009.04.001.
  • Wang, G. W.; Miao, C. B. Environmentally Benign One-Pot Multi-Component Approaches to the Synthesis of Novel Unsymmetrical 4-Arylacridinediones. Green Chem. 2006, 8, 1080–1085. DOI:10.1039/b604064k.
  • Tiwari, K. N.; Uttam, M. R.; Kumari, P.; Vatsa, P.; Prabhakaran, S. M. Efficient Synthesis of Acridinediones in Aqueous Media. Synth. Commun. 2017, 47, 1013–1019. DOI:10.1080/00397911.2017.1304556.
  • To, Q. H.; Lee, Y. R.; Kim, S. H. Efficient One-Pot Synthesis of Acridinediones by Indium(III) Triflate-Catalyzed Reactions of β-Enaminones, Aldehydes, and Cyclic 1,3-Dicarbonyls. Bull. Korean Chem. Soc. 2012, 33, 1170–1176. DOI:10.5012/bkcs.2012.33.4.1170.
  • Bhardwaj, V. K.; Singh, R.; Das, P.; Purohit, R. Evaluation of Acridinedione Analogs as Potential SARS-CoV-2 Main Protease Inhibitors and Their Comparison with Repurposed Anti-Viral Drugs. Comput. Biol. Med. 2021, 128, 104117. DOI:10.1016/j.compbiomed.2020.104117.
  • Sharma, D.; Reddy, C. B.; Kumar, S.; Shil, A. K.; Guha, N. R.; Das, P.; Bandna  . Microwave Assisted Solvent and Catalyst Free Method for Novel Classes of β-Enaminoester and Acridinedione Synthesis. RSC Adv. 2013, 3, 10335–10340. DOI:10.1039/c3ra23484c.
  • Jiang, B.; Yi, M. S.; Shi, F.; Tu, S. J.; Pindi, S.; Mc Dowell, P.; Li, G. A Multi-Component Domino Reaction for the Direct Access to Polyfunctionalized Indoles via Intermolecular Allylic Esterification and Indolation. Chem. Commun. 2012, 48, 808–810. DOI:10.1039/c1cc15913e.
  • Jiang, B.; Li, Y.; Tu, M. S.; Wang, S. L.; Tu, S. J.; Li, G. Allylic Amination and N-Arylation-Based Domino Reactions Providing Rapid Three-Component Strategies to Fused Pyrroles with Different Substituted Patterns. J. Org. Chem. 2012, 77, 7497–7505. DOI:10.1021/jo301323r.
  • Maity, S.; Pathak, S.; Pramanik, A. Synthesis of 1,2-Diaryl-1H-Indol-4-Ols and 1,2-Diaryl-7-Ethoxy-1,5,6,7-Tetrahydroindol-4-Ones from Arylglyoxals and Enamines through Domino Reactions. Eur. J. Org. Chem. 2013, 2013, 2479–2485. DOI:10.1002/ejoc.201201616.
  • To, Q. H.; Lee, Y. R.; Kim, S. H. One-Step Synthesis of Tetrahydroindoles by Ceric(IV) Ammonium Nitrate-Promoted Oxidative Cycloaddition of Enaminones and Vinyl Ethers. Tetrahedron 2014, 70, 8108–8113. DOI:10.1016/j.tet.2014.08.011.
  • Li, W.; Usman, M.; Wu, L. Y.; Liu, W. B. Synthesis of 2,3-Ring Fused Pyrroles via Cu-Catalyzed 5-Exo-Dig Annulation of Alkyne-Tethered Enaminones. J. Org. Chem. 2019, 84, 15754–15763. DOI:10.1021/acs.joc.9b02672.
  • Pramanik, S.; Maity, S.; Ghosh, P.; Mukhopadhyay, C. Acid-Promoted Multicomponent Allylic Amidation towards 7-Acetamido Tetrahydroindole Derivatives. Tetrahedron Lett. 2019, 60, 435–438. DOI:10.1016/j.tetlet.2018.12.068.
  • Zhang, G. N.; Yuan, X.; Niu, W.; Zhu, M.; Wang, J.; Wang, Y. An Efficient Synthesis of Acenaphtho[1,2-b]Indole Derivatives via Domino Reaction. Molecules 2018, 23, 3045–3054. DOI:10.3390/molecules23113045.
  • Zhao, J. J.; Zhang, Y. C.; Xu, M. M.; Tang, M.; Shi, F. Catalytic Chemo-, E/Z-, and Enantioselective Cyclizations of o-Hydroxybenzyl Alcohols with Dimedone-Derived Enaminones. J. Org. Chem. 2015, 80, 10016–10024. DOI:10.1021/acs.joc.5b01613.
  • Tang, M.; Zhao, J. J.; Wu, Q.; Tu, M. S.; Shi, F. Organocatalytic Generation of o-Quinone Methides from Commonly Used o-Hydroxystyrenes at High Temperature for Enantioselective Cyclization. Synthesis 2017, 49, 2035–2044. DOI:10.1055/s-0036-1588935.
  • Meena, K.; Kumari, S.; Khurana, J. M.; Malik, A. Efficient Syntheses of Novel Indeno[1,2-b]Chromenone Derivatives via hetero-Diels-Alder Reactions of 2-(Arylmethylene)-1H-Indene-1,3(2H)-Diones with Enaminones. Tetrahedron Lett. 2018, 59, 1493–1496. DOI:10.1016/j.tetlet.2018.03.014.
  • Mondal, A.; Brown, M.; Mukhopadhyay, C. Multicomponent, One-Pot and Expeditious Synthesis of Highly Substituted New Spiro[Indolo-3,10′-Indeno[1,2-b]Quinolin]-2,4,11′-Triones under Micellar Catalytic Effect of CTAB in Water. RSC Adv. 2014, 4, 36890–36895. DOI:10.1039/C4RA04918G.
  • Ghozlan, S. A. S.; Ramadan, M. A.; Abdelmoniem, A. M.; Abdelhamid, I. A. Synthesis and Antimicrobial Evaluations of Novel Spiro Cyclic 2-Oxindole Derivatives of N-(1H-Pyrazol-5-yl) Hexahydroquinoline Derivatives. Heterocycles 2016, 92, 1075–1084. DOI:10.3987/COM-16-13451.
  • Gu, Z. Y.; Zhu, T. H.; Cao, J. J.; Xu, X. P.; Wang, S. Y.; Ji, S. J. Palladium-Catalyzed Cascade Reactions of Isocyanides with Enaminones: Synthesis of 4-Aminoquinoline Derivatives. ACS Catal. 2014, 4, 49–52. DOI:10.1021/cs400904t.
  • Chithanna, S.; Yang, D. Y. Multicomponent Synthesis of 1,3-Diketone-Linked N-Substituted Pyrroles, Pyrrolo[1,2-a]Pyrazines, Pyrrolo[1,4]Diazepines, and Pyrrolo[1,4]Diazocines. J. Org. Chem. 2019, 84, 1339–1347. DOI:10.1021/acs.joc.8b02819.
  • Thakur, V.; Sharma, D.; Das, P. Ethyl 3-(2,4-Dioxocyclohexyl)Propanoate as a Novel Precursor for N-Substituted 4,4a,5,6-Tetrahydroquinoline-2,7(1H,3H)-Diones and Their Corresponding 3,4-Dihydro-7-Hydroxyquinolin-2(1H)-Ones and 7-Hydroxyquinolin-2(1H)-Ones Synthesis. Mol. Divers. 2016, 20, 29–40. DOI:10.1007/s11030-015-9643-x.
  • Sharma, D.; Reddy, C. B.; Shil, A. K.; Saroach, R. P.; Das, P. Cyclohexyl Iodide Promoted Approach for Coumarin Analog Synthesis Using Small Scaffold. Mol. Divers. 2013, 17, 651–659. DOI:10.1007/s11030-013-9461-y.
  • Bhattacherjee, D.; Kumar, A.; Sharma, A.; Purohit, R.; Das, P.; Shaifali  . Iodine(III) Promoted Ring-Rearrangement Reaction of 1-Arylamino-2-Oxocyclopentane-1-Carbonitriles to Synthesize: N-Aryl-δ-Valerolactams. Org. Biomol. Chem. 2020, 18, 745–749. DOI:10.1039/c9ob02598g.
  • Bhattacherjee, D.; Ram, S.; Chauhan, A. S.; Yamini, S; Das, P. Hypervalent Iodine(III)-Mediated Counteranion Controlled Intramolecular Annulation of Exocyclic β-Enaminone to Carbazolone and Imidazo[1,2-a]Pyridine Synthesis. Chemistry 2019, 25, 5934–5939. DOI:10.1002/chem.201806299.
  • Bhattacherjee, D.; Thakur, V.; Sharma, S.; Kumar, S.; Bharti, R.; Reddy, C. B.; Das, P. Iodine(III)-Promoted Ring Contractive Cyanation of Exocyclic β-Enaminones for the Synthesis of Cyanocyclopentanones. Adv. Synth. Catal. 2017, 359, 2209–2214. DOI:10.1002/adsc.201601208.
  • Das, P.; Sharma, D.; Singh, B. Substituted Cyclohexane-l, 3-Dione Compounds, Process for Preparation Thereof and Its Applications. United States Pat, US 8,916,723 B2, 2014.
  • Sharma, D.; Shil, A. K.; Singh, B.; Das, P. Consecutive Michael-Claisen Process for Cyclohexane-1,3-Dione Derivative (CDD) Synthesis from Unsubstituted and Substituted Acetone. Synlett 2012, 23, 1199–1204. DOI:10.1055/s-0031-1290900.
  • Das, P.; Sharma, D.; Singh, B. Substituted cyclohexane-l, 3-dione compounds, process for preparation thereof and its applications. WO/2011/117881, 2011.
  • Sharma, D.; Kumar, M.; Das, P. Application of Cyclohexane-1,3-Diones for Six-Membered Oxygen-Containing Heterocycles Synthesis. Bioorg. Chem. 2021, 107, 104559. DOI:10.1016/j.bioorg.2020.104559.
  • Sharma, D.; Kumar, M.; Das, P. Synthetic Approaches for Cyclohexane-1,3-Diones: A Versatile Precursor for Bioactive Molecules. Synth. Commun. 2021, 51, 2553–2573. DOI:10.1080/00397911.2021.1946824.
  • Sharma, D.; Kumar, M.; Kumar, S.; Basu, A.; Bhattacherjee, D.; Chaudhary, A.; Das, P. Application of Cyclohexane-1,3-Diones in the Synthesis of Six-Membered Nitrogen-Containing Heterocycles. ChemistrySelect 2022, 7, 1–19. DOI:10.1002/slct.202200622.
  • Kumar, R.; Saha, N.; Purohit, P.; Garg, S. K.; Seth, K.; Meena, V. S.; Dubey, S.; Dave, K.; Goyal, R.; Sharma, S. S.; et al. Cyclic Enaminone as New Chemotype for Selective Cyclooxygenase-2 Inhibitory, Anti-Inflammatory, and Analgesic Activities. Eur. J. Med. Chem. 2019, 182, 111601. DOI:10.1016/j.ejmech.2019.111601.
  • Apraku, J.; Okoro, C. O. Design, Synthesis and Anticonvulsant Evaluation of Fluorinated Benzyl Amino Enaminones. Bioorg. Med. Chem. 2019, 27, 161–166. DOI:10.1016/j.bmc.2018.11.033.
  • Epifano, F.; Genovese, S.; Curini, M. Ytterbium Triflate Catalyzed Synthesis of β-Enaminones. Tetrahedron Lett. 2007, 48, 2717–2720. DOI:10.1016/j.tetlet.2007.02.064.
  • Zhang, Z. H.; Ma, Z. C.; Mo, L. P. Enamination of 1,3-Dicarbonyl Compounds Catalyzed by Tin Tetrachloride. Indian J. Chem. B 2007, 38, 535–539. DOI:10.1002/chin.200728049.
  • Rafiee, E.; Joshaghani, M.; Eavani, S.; Rashidzadeh, S. A Revision for the Synthesis of β-Enaminones in Solvent Free Conditions: Efficacy of Different Supported Heteropoly Acids as Active and Reusable Catalysts. Green Chem. 2008, 10, 982–998. DOI:10.1039/b803249a.
  • Rafiee, E.; Mahdavi, H.; Eavani, S.; Joshaghani, M.; Shiri, F. Catalytic Activity of Tungstophosphoric Acid Supported on Carriers of Diverse Acidity in the Synthesis of Enaminones. Appl. Catal. A Gen. 2009, 352, 202–207. DOI:10.1016/j.apcata.2008.10.010.
  • Nagaiah, K.; Purnima, K. V.; Sreenu, D.; Jhansi, S.; Rao, R. S.; Yadav, J. S. Phosphomolybdic Acid (PMA) Catalyzed Highly Efficient and Rapid Synthesis of ß-Enaminones. Synth. Commun. 2012, 42, 461–468. DOI:10.1080/00397911.2010.524339.
  • Nisar, M.; Ali, I.; Shah, M. R.; Qayum, M.; Zia-Ul-Haq, M.; Rashid, U.; Islam, M. S. Efficient PPA-SiO2-Catalyzed Synthesis of β-Enaminones under Solvent-Free Conditions. Molecules 2013, 18, 15182–15192. DOI:10.3390/molecules181215182.
  • Datta, B.; Reddy, M. B. M.; Pasha, M. A. Molecular Iodine-Catalyzed Mild and Effective Synthesis of β-Enaminones at Room Temperature. Synth. Commun. 2011, 41, 2331–2336. DOI:10.1080/00397911.2010.502997.
  • Siddiqui, Z. N.; Khan, K.; Ahmed, N. Nano Fibrous Silica Sulphuric Acid as an Efficient Catalyst for the Synthesis of β-Enaminone. Catal. Lett. 2014, 144, 623–632. DOI:10.1007/s10562-013-1190-4.
  • Shashikanth, J.; Shashank, M.; Sumedha, H. N.; Alharthi, F. A.; Nizam, A.; Reddy, M.; Nagaraju, G. Tamarindus indica Mediated Combustion Synthesis of BiOCl: Photocatalytic Degradation of Dyes and Synthesis of β-Enaminones. J. Electron. Mater. 2021, 50, 4650–4662. DOI:10.1007/s11664-021-08994-6.
  • Gomaa, M. A. M.; Manolikakes, G.; Sun, Y.; Hassan, D. K. Catalyst-Free Direct Synthesis of β-Enaminones through Reaction of Benzohydrazonamides with Cyclic 1,3-Diketones: Access to Exocyclic β-Enaminones. Synth. Commun. 2019, 49, 3161–3168. DOI:10.1080/00397911.2019.1658785.
  • Chen, L.; Liang, W. Phase-Transfer Catalyzed Michael/Ammonolysis Cascade Reactions of Enaminones and Olefinic Azlactones: A New Approach to Structurally Diverse Quinoline-2,5-Diones. Org. Biomol. Chem. 2022, 20, 3201–3210. DOI:10.1039/d2ob00096b.
  • Hosseini, F. S.; Bayat, M. A Simple Method for the Rapid Synthesis of 2-Amino-7,7-Dimethyl-5-Oxo-1,4-Diaryl-Hexahydroquinoline-3-Carboxamide Derivatives. J. Iran. Chem. Soc. 2020, 17, 2267–2274. DOI:10.1007/s13738-020-01920-3.
  • Ebrahimipour, S. Y.; Abaszadeh, M.; Castro, J.; Seifi, M. Synthesis, X-Ray Crystal Structure, DFT Calculation and Catalytic Activity of Two New Oxido-Vanadium(V) complexes Containing ONO Tridentate Schiff Bases. Polyhedron 2014, 79, 138–150. DOI:10.1016/j.poly.2014.04.069.
  • Rajesh, R.; Suresh, M.; Selvam, R.; Raghunathan, R. Synthesis of Acridinedione Derived Mono Spiro-Pyrrolidine/Pyrrolizidine derivatives – A Facile Approach via Intermolecular [3 + 2] Cycloaddition Reaction. Tetrahedron Lett. 2014, 55, 4047–4053. DOI:10.1016/j.tetlet.2014.05.133.
  • Kaur, N. Polycyclic Six-Membered N-Heterocycles: Microwave-Assisted Synthesis. Synth. Commun. 2015, 45, 35–69. DOI:10.1080/00397911.2013.813549.
  • Yang, X. H.; Zhang, P. H.; Hu, L. H.; Zhang, M.; Liu, C. G.; Liu, H. J.; Zhou, Y. H. Synthesis and Bioactivity Evaluation of Lignin Related High-Added-Value 1,4-Dihydropyridines and Polyhydroacridines. Ind. Crops Prod. 2012, 38, 14–20. DOI:10.1016/j.indcrop.2011.12.035.
  • Abdelhamid, A. A.; Mohamed, S. K.; Maharramov, A. M.; Khalilov, A. N.; Allahverdiev, M. A. Facile and Efficient Synthesis of Acridinediones from Primary Amino Alcohols via Three-Component Condensation Reactions Assisted by Microwave Irradiation. J. Saudi Chem. Soc. 2014, 18, 474–478. DOI:10.1016/j.jscs.2011.10.005.
  • Schaller, D.; Gündüz, M. G.; Zhang, F. X.; Zamponi, G. W.; Wolber, G. Binding Mechanism Investigations Guiding the Synthesis of Novel Condensed 1,4-Dihydropyridine Derivatives with L-/T-Type Calcium Channel Blocking Activity. Eur. J. Med. Chem. 2018, 155, 1–12. DOI:10.1016/j.ejmech.2018.05.032.
  • Wang, X. H.; Hao, W. J.; Tu, S. J.; Zhang, X. H.; Cao, X. D.; Yan, S.; Wu, S. S.; Han, Z. G.; Shi, F. Microwave-Assisted Multicomponent Reaction for the Synthesis of New and Significative Bisfunctional Compounds Containing Two Furo[3,4-b]Quinoline and Acridinedione Skeletons. J. Heterocycl. Chem. 2009, 46, 742–747. DOI:10.1002/jhet.
  • Honnanayakanavar, J. M.; Behera, P. C.; Suresh, S. Tandem Copper(I)-Catalyzed N-Arylation–1,4-Conjugate Addition to Access Tetrahydroacridinones. Adv. Synth. Catal. 2022, 364, 4043–4048. DOI:10.1002/adsc.202200877.
  • Das, P.; Sharma, D.; Kumar, M.; Singh, B. Copper Promoted C-N and C-O Type Cross-Coupling Reactions. COC 2010, 14, 754–783. DOI:10.2174/138527210791111830.
  • Zhao, Y.; Niu, X.; Yang, H.; Yang, J.; Wang, Z.; Wang, Q. Substrate-Directed Divergent Synthesis of Fused Indole Polycycles through Rh(ii)-Catalyzed Cascade Reactions of Bis(Diazo)Indolin-2-Ones. Chem. Commun. 2022, 58, 8576–8579. DOI:10.1039/d2cc02686d.
  • Ge, D.; Sun, L. W.; Yu, Z. L.; Luo, X. L.; Xu, P.; Shen, Z. L. Regioselective Synthesis of 6-Nitroindole Derivatives from Enaminones and Nitroaromatic Compounds: Via Transition Metal-Free C-C and C-N Bond Formation. Org. Biomol. Chem. 2022, 20, 1493–1499. DOI:10.1039/d1ob02443d.
  • Kvaskoff, D.; Lüerssen, H.; Bednarek, P.; Wentrup, C. Phenylnitrene, Phenylcarbene, and Pyridylcarbenes. Rearrangements to Cyanocyclopentadiene and Fulvenallene. J. Am. Chem. Soc. 2014, 136, 15203–15214. DOI:10.1021/ja506151p.
  • Wentrup, C. Flash Vacuum Pyrolysis of Azides, Triazoles, and Tetrazoles. Chem. Rev. 2017, 117, 4562–4623. DOI:10.1021/acs.chemrev.6b00738.
  • Hu, B.; Dimagno, S. G. Reactivities of Vinyl Azides and Their Recent Applications in Nitrogen Heterocycle Synthesis. Org. Biomol. Chem. 2015, 13, 3844–3855. DOI:10.1039/c5ob00099h.
  • Moore, H. W.; Hernandez, L.; Kunert, D. M.; Mercer, F.; Sing, A. A New Synthetic Route to 2-Azetidinones. Ring Contraction of 4-Azido-2-Pyrrolinones to 3-Cyano-2-Azetidinones. J. Am. Chem. Soc. 1981, 103, 1769–1777. DOI:10.1021/ja00397a031.
  • Moore, H. W. Zwittazido Cleavage. Acc. Chem. Res. 1979, 12, 125–132. DOI:10.1021/ar50136a003.
  • Papoutsisa, I.; Spyroudisa, S.; Varvoglisa, A.; Raptopouloub, C. P.; The, I. Aryliodonium Derivatives of 2-Amino-1,4-Quinones: Preparation and Reactivity. Tetrahedron 1997, 53, 6097–6112. DOI:10.1016/S0040-4020(97)00270-6.
  • Mousavi, S. H.; Mohammadizadeh, M. R.; Arimitsu, S.; Saberi, D.; Poorsadeghi, S.; Genta, K. Metal-Free Syntheses of New Azocines via Addition Reactions of Enaminones with Acenaphthoquinone Followed by Oxidative Cleavages of the Corresponding Vicinal Diols. RSC Adv. 2020, 10, 20552–20557. DOI:10.1039/d0ra02852e.
  • Chen, X. B.; Huang, S. T.; Li, J.; Yang, Q.; Yang, L.; Yu, F. Highly Regioselective and Chemoselective [3 + 3] Annulation of Enaminones with Ortho-Fluoronitrobenzenenes: Divergent Synthesis of Aposafranones and Their N-Oxides. Org. Lett. 2021, 23, 3032–3037. DOI:10.1021/acs.orglett.1c00710.
  • Zhang, B.; Liu, D.; Sun, Y.; Zhang, Y.; Feng, J.; Yu, F. Preparation of Thiazole-2-Thiones through TBPB-Promoted Oxidative Cascade Cyclization of Enaminones with Elemental Sulfur. Org. Lett. 2021, 23, 3076–3082. DOI:10.1021/acs.orglett.1c00751.
  • Bhattacherjee, D.; Thakur, V.; Shil, A. K.; Das, P. Hypervalent Iodine-Promoted Aromatization of Exocyclic β-Enaminones for the Synthesis of meta-N,N-Diarylaminophenols. Adv. Synth. Catal. 2017, 359, 2202–2208. DOI:10.1002/adsc.201700004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.