Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 18
256
Views
4
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

A decade of synthesis of N-heterocyclic derivatives via magnetically retrievable Fe3O4@SiO2@Cu(II) nanocatalysts: A review (2013-present)

, , , &
Pages 1469-1505 | Received 13 May 2023, Published online: 28 Jun 2023

References

  • Molnár, Á. Efficient, Selective, and Recyclable Palladium Catalysts in Carbon-Carbon Coupling Reactions. Chem. Rev. 2011, 111, 2251–2320. DOI: 10.1021/cr100355b.
  • Kumar, P.; Tomar, V.; Kumar, D.; Joshi, R. K.; Nemiwal, M. Magnetically Active Iron Oxide Nanoparticles for Catalysis of Organic Transformations: A Review. Tetrahedron. 2022, 106-107, 132641. DOI: 10.1016/j.tet.2022.132641.
  • Kumar, P.; Tomar, V.; Joshi, R. K.; Nemiwal, M. Nanocatalyzed Synthetic Approach for Quinazoline and Quinazolinone Derivatives: A Review (2015–Present). Synth. Commun. 2022, 52, 795–826. DOI: 10.1080/00397911.2022.2041667.
  • Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J. M. Magnetically Recoverable Nanocatalysts. Chem. Rev. 2011, 111, 3036–3075. DOI: 10.1021/cr100230z.
  • Akkoç, M.; Buğday, N.; Altın, S.; Özdemir, İ.; Yaşar, S. Highly Active Fe3O4@SBA-15@NHC-Pd Catalyst for Suzuki–Miyaura Cross-Coupling Reaction. Catal. Lett. 2022, 152, 1621–1638. DOI: 10.1007/s10562-021-03755-w.
  • Shylesh, S.; Schünemann, V.; Thiel, W. R. Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis. Angew Chem. Int. Ed. Engl. 2010, 49, 3428–3459. DOI: 10.1002/anie.200905684.
  • Abu-Dief, A. M.; Abdel-Fatah, S. M. Development and Functionalization of Magnetic Nanoparticles as Powerful and Green Catalysts for Organic Synthesis. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 55–67. DOI: 10.1016/j.bjbas.2017.05.008.
  • Mpungose, P. P.; Vundla, Z. P.; Maguire, G. E. M.; Friedrich, H. B. The Current Status of Heterogeneous Palladium Catalysed Heck and Suzuki Cross-Coupling Reactions. Molecules. 2018, 23, 1676. DOI: 10.3390/molecules23071676.
  • Baig, R. B. N.; Varma, R. S. A Highly Active and Magnetically Retrievable nanoferrite-DOPA-Copper Catalyst for the Coupling of Thiophenols with Aryl Halides. Chem. Commun. 2012, 48, 2582–2584. DOI: 10.1039/c2cc17283f.
  • Mirfakhraei, S.; Hekmati, M.; Eshbala, F. H.; Veisi, H. Fe3O4/PEG-SO3H as a Heterogeneous and Magnetically-Recyclable Nanocatalyst for the Oxidation of Sulfides to Sulfones or Sulfoxides. New J. Chem. 2018, 42, 1757–1761. DOI: 10.1039/C7NJ02513K.
  • Firouzabadi, H.; Iranpoor, N.; Gholinejad, M.; Hoseini, J. Magnetite (Fe3O4) Nanoparticles-Catalyzed Sonogashira- Hagihara Reactions in Ethylene Glycol under Ligand-Free Conditions. Adv. Synth. Catal. 2011, 353, 125–132. DOI: 10.1002/adsc.201000390.
  • Naeimi, H.; Nazifi, Z. S. A Highly Efficient nano-Fe3O4 Encapsulated-Silica Particles Bearing Sulfonic Acid Groups as a Solid Acid Catalyst for Synthesis of 1,8-Dioxo-Octahydroxanthene Derivatives. J. Nanopart. Res. 2013, 15, 2026. DOI: 10.1007/s11051-013-2026-2.
  • Ghorbani-Choghamarani, A.; Mohammadi, M.; Taherinia, Z. (ZrO)2Fe2O5 as an Efficient and Recoverable Nanocatalyst in C–C Bond Formation. J. Iran Chem. SOC. 2019, 16, 411–421. DOI: 10.1007/s13738-018-1522-9.
  • Nikseresht, A.; Bagherinia, R.; Mohammadi, M.; Mehravar, R. Phosphomolybdic Acid Hydrate Encapsulated in MIL-53 (Fe): A Novel Heterogeneous Heteropoly Acid Catalyst for Ultrasound-Assisted Regioselective Nitration of Phenols. RSC Adv. 2022, 13, 674–687. DOI: 10.1039/d2ra07077d.
  • Keypour, H.; Kouhdareh, J.; Alavinia, S.; Rabiei, K.; Mohammadi, M.; Maryamabadi, A.; Babaei, S. Post-Synthetic Modification of Dual-Porous UMCM-1-NH2 with Palladacycle Complex as an Effective Heterogeneous Catalyst in Suzuki and Heck Coupling Reactions. J. Organomet. Chem. 2023, 989, 122646. DOI: 10.1016/j.jorganchem.2023.122646.
  • Ruiz-Castillo, P.; Buchwald, S. L. Applications of Palladium-Catalyzed C–N Cross-Coupling Reactions. Chem. Rev. 2016, 116, 12564–12649. DOI: 10.1021/acs.chemrev.6b00512.
  • Tomar, V.; Sharma, C.; Nemiwal, M.; Joshi, R. K. Synthesis of Novel Ferrocenated Enynes via the Sonogashira Coupling of Ferrocenated Vinyllic Chlorides and Alkyne in the Catalytic Presence of Selenated NHC-Pd(II) Full Pincer Complex under Cu and Amine Free Aerobic Conditions. J. Organomet. Chem. 2021, 956, 122095. DOI: 10.1016/j.jorganchem.2021.122095.
  • Tomar, V.; Upadhyay, Y.; Srivastava, A. K.; Nemiwal, M.; Joshi, R. K.; Mathur, P. Selenated NHC-Pd(II) Catalyzed Suzuki-Miyaura Coupling of Ferrocene Substituted β-Chloro-Cinnamaldehydes, Acrylonitriles and Malononitriles for the Synthesis of Novel Ferrocene Derivatives and Their Solvatochromic Studies. J. Organomet. Chem. 2021, 940, 121752. DOI: 10.1016/j.jorganchem.2021.121752.
  • Fatahi, Y.; Ghaempanah, A.; Maˈmani, L.; Mahdavi, M.; Bahadorikhalili, S. Palladium Supported Aminobenzamide Modified Silica Coated Superparamagnetic Iron Oxide as an Applicable Nanocatalyst for Heck Cross-Coupling Reaction. J. Organomet. Chem. 2021, 936, 121711. DOI: 10.1016/j.jorganchem.2021.121711.
  • Veisi, H.; Ozturk, T.; Karmakar, B.; Tamoradi, T.; Hemmati, S. In Situ Decorated Pd NPs on Chitosan-Encapsulated Fe3O4/SiO2-NH2 as Magnetic Catalyst in Suzuki-Miyaura Coupling and 4-Nitrophenol Reduction. Carbohydr. Polym. 2020, 235, 115966. DOI: 10.1016/j.carbpol.2020.115966.
  • Snoussi, Y.; Bastide, S.; Abderrabba, M.; Chehimi, M. M. Sonochemical Synthesis of Fe3O4@NH2-Mesoporous Silica@Polypyrrole/Pd: A Core/Double Shell Nanocomposite for Catalytic Applications. Ultrason. Sonochem. 2018, 41, 551–561. DOI: 10.1016/j.ultsonch.2017.10.021.
  • Dindarloo Inaloo, I.; Majnooni, S.; Eslahi, H.; Esmaeilpour, M. Nickel(II) Nanoparticles Immobilized on EDTA-Modified Fe3O4@SiO2 Nanospheres as Efficient and Recyclable Catalysts for Ligand-Free Suzuki-Miyaura Coupling of Aryl Carbamates and Sulfamates. ACS Omega. 2020, 5, 7406–7417. DOI: 10.1021/acsomega.9b04450.
  • Gupta, R.; Yadav, M.; Gaur, R.; Arora, G.; Yadav, P.; Sharma, R. K. Magnetically Supported Ionic Liquids: A Sustainable Catalytic Route for Organic Transformations. Mater. Horiz. 2020, 7, 3097–3130. DOI: 10.1039/D0MH01088J.
  • Shahabi Nejad, M.; Seyedi, N.; Sheibani, H.; Behzadi, S. Synthesis and Characterization of Ni(II) Complex Functionalized Silica-Based Magnetic Nanocatalyst and Its Application in C–N and C–C Cross-Coupling Reactions. Mol. Divers. 2019, 23, 527–539. DOI: 10.1007/s11030-018-9888-2.
  • Sun, J.; Yu, G.; Liu, L.; Li, Z.; Kan, Q.; Huo, Q.; Guan, J. Core-Shell Structured Fe3O4@SiO2 Supported Cobalt(ii) or Copper(ii) Acetylacetonate Complexes: Magnetically Recoverable Nanocatalysts for Aerobic Epoxidation of Styrene. Catal. Sci. Technol. 2014, 4, 1246–1252. DOI: 10.1039/c4cy00017j.
  • Sarkheil, M.; Lashanizadegan, M.; Ghiasi, M. High Catalytic Activity of Magnetic Fe3O4@SiO2-Schiff base-Co(II) Nanocatalyst for Aerobic Oxidation of Alkenes and Alcohols and DFT Study. J. Mol. Struct. 2019, 1179, 278–288. DOI: 10.1016/j.molstruc.2018.11.016.
  • Kumar, P.; Tomar, V.; Joshi, R. K.; Nemiwal, M. Regioselective, Greener Protocol for the Synthesis of N‐Heterocyclic Compounds Catalyzed by Recyclable CuO NPs Coated with Ionic Liquid (CuO[HN222][Al2Cl7]. Asian J. Org. Chem. 2022, 11, e2022200563. DOI: 10.1002/ajoc.202200563.
  • Sharma, R. K.; Monga, Y.; Puri, A.; Gaba, G. Magnetite (Fe3O4) Silica Based Organic-Inorganic Hybrid Copper(ii) Nanocatalyst: A Platform for Aerobic N-Alkylation of Amines. Green Chem. 2013, 15, 2800–2809. DOI: 10.1039/c3gc40818c.
  • Sharma, R. K.; Monga, Y.; Puri, A. Magnetically Separable Silica@Fe3O4 Core-Shell Supported Nano-Structured Copper(II) Composites as a Versatile Catalyst for the Reduction of Nitroarenes in Aqueous Medium at Room Temperature. J. Mol. Catal. A Chem. 2014, 393, 84–95. DOI: 10.1016/j.molcata.2014.06.009.
  • Srivastava, A. K.; Sharma, C.; Joshi, R. K. Cp*Co(Iii) and Cu(OAc)2bimetallic Catalysis for Buchwald-Type C-N Cross Coupling of Aryl Chlorides and Amines under Base, Inert Gas & Solvent-Free Conditions. Green Chem. 2020, 22, 8248–8253. DOI: 10.1039/D0GC02819C.
  • Sharma, C.; Srivastava, A. K.; Sharma, D.; Joshi, R. K. Iron and Copper Based Bifunctional Catalysts for Base & Solvent Free C-N Coupling of Amines and Aryl/Benzyl Chlorides under Aerobic Conditions. New J. Chem. 2022, 46, 8551–8556. DOI: 10.1039/D2NJ00593J.
  • Sharma, D.; Tomar, V.; Sharma, C.; Nemiwal, M.; Joshi, R. K. Direct Amidation of Ferrocenyl/Phenyl β-Chlorocinnamaldehyde Assisted by Chalcogenide Metal Carbonyl Cluster. Tetrahedron. 2022, 124, 133014. DOI: 10.1016/j.tet.2022.133014.
  • Nemiwal, M.; Kumar, D. TiO2 and SiO2 Encapsulated Metal Nanoparticles: Synthetic Strategies, Properties, and Photocatalytic Applications. Inorg. Chem. Commun. 2021, 128, 108602. DOI: 10.1016/j.inoche.2021.108602.
  • Nemiwal, M.; Sillanpää, M.; Banat, F.; Kumar, D. CeO2-Encapsulated Metal Nanoparticles: Synthesis, Properties and Catalytic Applications. Inorg. Chem. Commun. 2022, 143, 109739. DOI: 10.1016/j.inoche.2022.109739.
  • Esmaeilpour, M.; Sardarian, A. R.; Firouzabadi, H. N-Heterocyclic carbene-Pd(II) Complex Based on Theophylline Supported on Fe3O4@SiO2 Nanoparticles: Highly Active, Durable and Magnetically Separable Catalyst for Green Suzuki-Miyaura and Sonogashira-Hagihara Coupling Reactions. J. Organomet. Chem. 2018, 873, 22–34. DOI: 10.1016/j.jorganchem.2018.08.002.
  • Ghorbani-Choghamarani, A.; Mohammadi, M.; Shiri, L.; Taherinia, Z. Synthesis and Characterization of Spinel FeAl2O4 (Hercynite) Magnetic Nanoparticles and Their Application in Multicomponent Reactions. Res. Chem. Intermed. 2019, 45, 5705–5723. DOI: 10.1007/s11164-019-03930-0.
  • Tamoradi, T.; Masoumeh Mousavi, S.; Mohammadi, M. C−C and C−S Coupling Catalyzed by Supported Cu(II) on Nano CoFe2O4. ChemistrySelect. 2020, 5, 5077–5081. DOI: 10.1002/slct.202000084.
  • Kazemi, M.; Mohammadi, M. Magnetically Recoverable Catalysts: Catalysis in Synthesis of Polyhydroquinolines. Appl. Organometal. Chem. 2020, 34, 42–48. DOI: 10.1002/aoc.5400.
  • Yavari, I.; Mobaraki, A.; Hosseinzadeh, Z.; Sakhaee, N. Copper-Catalyzed Mizoroki-Heck Coupling Reaction Using an Efficient and Magnetically Reusable Fe3O4@SiO2@PrNCu Catalyst. J. Organomet. Chem. 2019, 897, 236–246. DOI: 10.1016/j.jorganchem.2019.06.029.
  • Soni, A.; Kumar, P.; Tomar, V.; Joshi, R. K.; Nemiwal, M. Recent Advances in Copper Oxide Nanocatalyzed C-C Cross-Coupling Transformations. Results Chem. 2022, 4, 100513. DOI: 10.1016/j.rechem.2022.100513.
  • Abbas, Z.; Nemiwal, M.; Dhillon, A.; Kumar, D. Use of Biogenic NiONPs as Nanocatalyst in Kumada-Corriu Coupling Reaction. Inorg. Nano-Metal. Chem. 2022, 0, 1–8. DOI: 10.1080/24701556.2021.2025075.
  • Kumari, S.; Sharma, K. S.; Nemiwal, M.; Khan, S.; Kumar, D. Simultaneous Detection of Aqueous Aluminum(III) and Chromium(III) Using Persea Americana Reduced and Capped Silver Nanoparticles. Int. J. Phytoremediation. 2021, 24, 808–821. DOI: 10.1080/15226514.2021.1977911.
  • Joshi, P.; Nemiwal, M.; Al-Kahtani, A. A.; Ubaidullah, M.; Kumar, D. Biogenic AgNPs for the Non-Cross-Linking Detection of Aluminum in Aqueous Systems. J. King Saud Univ. Sci. 2021, 33, 101527. DOI: 10.1016/j.jksus.2021.101527.
  • Nemiwal, M.; Zhang, T. C.; Kumar, D. Pectin Modified Metal Nanoparticles and Their Application in Property Modification of Biosensors. Carbohydr. Polym. Technol. Appl. 2021, 2, 100164. DOI: 10.1016/j.carpta.2021.100164.
  • Jindal, H.; Kumar, D.; Sillanpaa, M.; Nemiwal, M. Current Progress in Polymeric Graphitic Carbon Nitride-Based Photocatalysts for Dye Degradation. Inorg. Chem. Commun. 2021, 131, 108786. DOI: 10.1016/j.inoche.2021.108786.
  • Roy, D.; Kumar, P.; Soni, A.; Nemiwal, M. A Versatile and Microporous Zn-Based MOFs as a Recyclable and Sustainable Heterogeneous Catalyst for Various Organic Transformations : A Review (2015-Present). Tetrahedron. 2023, 138, 133408. DOI: 10.1016/j.tet.2023.133408.
  • Singh, S.; Kumar, P.; Soni, A.; Nemiwal, M. An Exploration on Copper-Based Metal-Organic Frameworks as Propitious Heterogeneous Catalyst for Coupling Reactions, 202204279. ChemistrySelect. 2023, 8, e202204279. DOI: 10.1002/slct.202204279.
  • Ghorbani-Choghamarani, A.; Mohammadi, M.; Tamoradi, T.; Ghadermazi, M. Covalent Immobilization of Co Complex on the Surface of SBA-15: Green, Novel and Efficient Catalyst for the Oxidation of Sulfides and Synthesis of Polyhydroquinoline Derivatives in Green Condition. Polyhedron. 2019, 158, 25–35. DOI: 10.1016/j.poly.2018.10.054.
  • Sharma, J.; Kumar, P.; Sillanpää, M.; Kumar, D.; Nemiwal, M. Immobilized Ionic Liquids on Fe3o4 Nanoparticles: A Potential Catalyst for Organic Synthesis. SSRN Journal. 2022, 145, 110055. DOI: 10.2139/ssrn.4119246.
  • Sayed, F. N.; Polshettiwar, V. Facile and Sustainable Synthesis of Shaped Iron Oxide Nanoparticles: Effect of Iron Precursor Salts on the Shapes of Iron Oxides. Sci. Rep. 2015, 5, 9733. DOI: 10.1038/srep09733.
  • Teo, B. M.; Chen, F.; Hatton, T. A.; Grieser, F.; Ashokkumar, M. Novel One-Pot Synthesis of Magnetite Latex Nanoparticles by Ultrasound Irradiation. Langmuir. 2009, 25, 2593–2595. DOI: 10.1021/la804278w.
  • Togashi, T.; Takami, S.; Kawakami, K.; Yamamoto, H.; Naka, T.; Sato, K.; Abe, K.; Adschiri, T. Continuous Hydrothermal Synthesis of 3,4-Dihydroxyhydrocinnamic Acid-Modified Magnetite Nanoparticles with Stealth-Functionality against Immunological Response. J. Mater. Chem. 2012, 22, 9041–9045. DOI: 10.1039/c2jm30325f.
  • Kalyani, S.; Sangeetha, J.; Philip, J. Microwave Assisted Synthesis of Ferrite Nanoparticles: Effect of Reaction Temperature on Particle Size and Magnetic Properties. J. Nanosci. Nanotechnol. 2015, 15, 5768–5774. DOI: 10.1166/jnn.2015.10274.
  • Mahdavi, M.; Namvar, F.; Bin Ahmad, M.; Mohamad, R. Green Biosynthesis and Characterization of Magnetic Iron Oxide (Fe 3O4) Nanoparticles Using Seaweed (Sargassum Muticum) Aqueous Extract. Molecules. 2013, 18, 5954–5964. DOI: 10.3390/molecules18055954.
  • Esmaili, S.; Khazaei, A.; Ghorbani-Choghamarani, A.; Mohammadi, M. Silica Sulfuric Acid Coated on SnFe2O4 MNPs: Synthesis, Characterization and Catalytic Applications in the Synthesis of Polyhydroquinolines. RSC Adv. 2022, 12, 14397–14410. DOI: 10.1039/d2ra01202b.
  • Mohammadi, M.; Ghorbani-Choghamarani, A. Hercynite Silica Sulfuric Acid: A Novel Inorganic Sulfurous Solid Acid Catalyst for One-Pot Cascade Organic Transformations. RSC Adv. 2022, 12, 26023–26041. DOI: 10.1039/d2ra03481f.
  • Ghorbani-Choghamarani, A.; Mohammadi, M.; Hudson, R. H. E.; Tamoradi, T. Boehmite@tryptophan-Pd Nanoparticles: A New Catalyst for C–C Bond Formation. Appl. Organometal. Chem. 2019, 33, 1–11. DOI: 10.1002/aoc.4977.
  • Mohammadi, M.; Khodamorady, M.; Tahmasbi, B.; Bahrami, K.; Ghorbani-Choghamarani, A. Boehmite Nanoparticles as Versatile Support for Organic–Inorganic Hybrid Materials: Synthesis, Functionalization, and Applications in Eco-Friendly Catalysis. J. Ind. Eng. Chem. 2021, 97, 1–78. DOI: 10.1016/j.jiec.2021.02.001.
  • Ghorbani-Choghamarani, A.; Sahraei, R.; Taherinia, Z.; Mohammadi, M. Cu(I)@Isatin-Glycine-Boehmite Nanoparticles: As Novel Heterogeneous Catalyst for the Synthesis and Selective Oxidation of Sulfides. J. Iran Chem. Soc. 2021, 18, 827–838. DOI: 10.1007/s13738-020-02072-0.
  • Mohammadi, M.; Ghorbani-Choghamarani, A.; Hussain-Khil, N. L–Aspartic Acid Chelan–Cu (II) Complex Coted on ZrFe2O4 MNPs Catalyzed One–Pot Annulation and Cooperative Geminal-Vinylogous Anomeric–Based Oxidation Reactions. J. Phys. Chem. Solids. 2023, 177, 111300. DOI: 10.1016/j.jpcs.2023.111300.
  • Mohammadi, M.; Ghorbani-Choghamarani, A. Complexation of Guanidino Containing l-Arginine with Nickel on Silica-Modified Hercynite MNPs: A Novel Catalyst for the Hantzsch Synthesis of Polyhydroquinolines and 2,3-Dihydroquinazolin-4(1H)-Ones. Res. Chem. Intermed. 2022, 48, 2641–2663. DOI: 10.1007/s11164-022-04706-9.
  • Gupta, R.; Yadav, M.; Gaur, R.; Arora, G.; Rana, P.; Yadav, P.; Adholeya, A.; Sharma, R. K. Silica-Coated Magnetic-Nanoparticle-Supported DABCO-Derived Acidic Ionic Liquid for the Efficient Synthesis of Bioactive 3,3-Di(Indolyl)Indolin-2-Ones. ACS Omega. 2019, 4, 21529–21539. DOI: 10.1021/acsomega.9b03237.
  • Arora, P.; Kumar, P.; Tomar, V.; Joshi, R.; Nemiwal, M. C-N Cross-Coupling Organic Transformations Catalyzed via Copper Oxide Nanoparticles: A Review (2016-Present). Inorg. Chem. Commun. 2022, 145, 109982. DOI: 10.2139/ssrn.4127322.
  • Kaya, M.; Zahmakiran, M.; Özkar, S.; Volkan, M. Copper(0) Nanoparticles Supported on Silica-Coated Cobalt Ferrite Magnetic Particles: Cost Effective Catalyst in the Hydrolysis of Ammonia-Borane with an Exceptional Reusability Performance. ACS Appl. Mater. Interfaces. 2012, 4, 3866–3873. DOI: 10.1021/am3005994.
  • Gao, A.; Liu, H.; Hu, L.; Zhang, H.; Hou, A.; Xie, K. Synthesis of Fe3O4@SiO2-Au/Cu Magnetic Nanoparticles and Its Efficient Catalytic Performance for the Ullmann Coupling Reaction of Bromamine Acid. Chinese Chem. Lett. 2018, 29, 1301–1304. DOI: 10.1016/j.cclet.2017.11.040.
  • Rezaei, M.; Amani, K.; Darvishi, K. One–Pot Green Catalytic Synthesis of Primary Amides in Aqueous Medium by CuII–Immobilized Silica–Based Magnetic Retrievable Nanocatalyst. Catal. Commun. 2017, 91, 38–42. DOI: 10.1016/j.catcom.2016.12.004.
  • Ebrahimiasl, H.; Azarifar, D. Copper-Based Schiff Base Complex Immobilized on Core-Shell Fe3O4@SiO2 as a Magnetically Recyclable and Highly Efficient Nanocatalyst for Green Synthesis of 2-Amino-4H-Chromene Derivatives. Appl. Organometal. Chem. 2020, 34, 1–20. DOI: 10.1002/aoc.5359.
  • Mohaddesi, M.; Noroozi Pesyan, N. Fe3O4@SiO2 Nanoparticle-Immobilized Cu(II)-Benzoylthiourea Complex as a Magnetically Reusable Catalyst for the Synthesis of Benzo[d]Imidazo[2,1-b]Thiazole-1-Ium Hydroxide Derivatives in Water. J. Iran Chem. Soc. 2020, 17, 2105–2117. DOI: 10.1007/s13738-020-01915-0.
  • Sharma, R. K.; Dutta, S.; Sharma, S. Quinoline-2-Carboimine Copper Complex Immobilized on Amine Functionalized Silica Coated Magnetite Nanoparticles: A Novel and Magnetically Retrievable Catalyst for the Synthesis of Carbamates via C–H Activation of Formamides, Dalt. Trans. 2014, 44, 1303-1316. DOI: 10.1039/c4dt03236e.
  • Zahmatkesh, S.; Esmaeilpour, M.; Poli, A. M. Ligand Complex of Copper (II) Supported on Superparamagnetic Fe 3 O 4 @ SiO 2 Nanoparticles : An Efficient and Magnetically Separable Catalyst for N – Arylation of Nitrogen-Containing Heterocycles with Aryl Halides. Inorg. Nano-Metal. Chem. 2019, 0, 1–12. DOI: 10.1080/24701556.2019.1618326.
  • Rangraz, Y.; Nemati, F.; Elhampour, A. Design, Synthesis, and Characterization of a Novel Magnetically Recoverable Copper Nanocatalyst Containing Organoselenium Ligand and Its Application in the A3 Coupling Reaction. Ind. Eng. Chem. Res. 2019, 58, 17308–17318. DOI: 10.1021/acs.iecr.9b03843.
  • Jana, B.; Gautam, D.; Gahlaut, P. S.; Yadav, K. Functionalized Imidazolium Salt: An Efficient Catalyst for Buchwald-Hartwig Type C–N Cross-Coupling of (Hetero)Aryl Chlorides/Bromides with Amines under Solvent-, Inert Gas-, and Base-Free Ambience. New J. Chem. 2022, 46, 22841–22848. DOI: 10.1039/D2NJ04254A.
  • Sharma, C.; Srivastava, A. K.; Sharma, D.; Joshi, R. K. Unification of Ullmann and Kharasch Coupling: Acid Promoted CuI Catalysed C-N Coupling Protocols under Ligand, Base and Solvent Free Conditions. Org. Chem. Front. 2022, 9, 6252–6258. DOI: 10.1039/D2QO01080A.
  • Ranjan, A.; Varma, A.; Kumari, S.; Joshi, R. K. Cu/Mn-Catalyzed C-N Cross-Coupling Reaction of Aryl Chlorides and Amines Promoted by a Polyamidoamine Dendrimer. Synlett. 2022, 33, 1065–1070. DOI: 10.1055/a-1822-2832.
  • Sardarian, A. R.; Dindarloo Inaloo, I.; Zangiabadi, M. An Fe3O4@SiO2/Schiff Base/Cu(ii) Complex as an Efficient Recyclable Magnetic Nanocatalyst for Selective Mono: N-Arylation of Primary O-Alkyl Thiocarbamates and Primary O-Alkyl Carbamates with Aryl Halides and Arylboronic Acids. New J. Chem. 2019, 43, 8557–8565. DOI: 10.1039/C9NJ00028C.
  • Nasrollahzadeh, M.; Sajjadi, M.; Khonakdar, H. A. Synthesis and Characterization of Novel Cu(II) Complex Coated Fe3O4@SiO2 Nanoparticles for Catalytic Performance. J. Mol. Struct. 2018, 1161, 453–463. DOI: 10.1016/j.molstruc.2018.02.026.
  • Sharma, R.; Yadav, L.; Yadav, R. K.; Chaudhary, S. Oxidative Cross-Dehydrogenative Coupling (CDC)viaC(sp2)-H Bond Functionalization:tert-Butyl Peroxybenzoate (TBPB)-Promoted Regioselective Direct C-3 Acylation/Benzoylation of 2H-Indazoles with Aldehydes/Benzyl Alcohols/Styrenes. RSC Adv. 2021, 11, 14178–14192. DOI: 10.1039/d1ra02225c.
  • Sharma, R.; Yadav, R. K.; Jain, M.; Joshi, J.; Chaudhary, S. Oxidant-Switched Palladium-Catalyzed Regioselective Mono- Versus Bis-ortho-Aroylation of 1-Aryl-1H-Indazoles with Aldehydes via C–H Bond Activation. J. Org. Chem. 2022, 87, 2668–2685. DOI: 10.1021/acs.joc.1c02628.
  • Neto, J. S. S.; Zeni, G. A Decade of Advances in the Reaction of Nitrogen Sources and Alkynes for the Synthesis of Triazoles. Coord. Chem. Rev. 2020, 409, 213217. DOI: 10.1016/j.ccr.2020.213217.
  • Chu, X. M.; Wang, C.; Wang, W. L.; Liang, L. L.; Liu, W.; Gong, K. K.; Sun, K. L. Triazole Derivatives and Their Antiplasmodial and Antimalarial Activities. Eur. J. Med. Chem. 2019, 166, 206–223. DOI: 10.1016/j.ejmech.2019.01.047.
  • Benson, F. R. The Chemistry of the Tetrazoles. Chem. Rev. 1947, 41, 1–61. DOI: 10.1021/cr60128a001.
  • Yadav, R. K.; Sharma, R.; Gautam, D.; Joshi, J.; Chaudhary, S. Lewis Acid/Oxidant as Rapid Regioselective Halogenating Reagent System for Direct Halogenation of Fused Bi-/Tri-Cyclic Hetero-Aromatic Congeners via C(sp2) −H Bond Functionalization. Asian J. Org. Chem. 2021, 10, 1726–1741. DOI: 10.1002/ajoc.202100156.
  • Sharma, R.; Chaudhary, S. Regiodivergent Cu-Promoted, AcOH-Switchable Distal versus Proximal Direct Cyanation of 1-Aryl-1 H-Indazoles and 2-Aryl-2 H-Indazoles via Aerobic Oxidative C-H Bond Activation. J. Org. Chem. 2022, 87, 16188–16203. DOI: 10.1021/acs.joc.2c01603.
  • Mohammadi, M.; Ghorbani-Choghamarani, A. Synthesis and Characterization of Novel Hercynite@Sulfuric Acid and Its Catalytic Applications in the Synthesis of Polyhydroquinolines and 2{,}3-Dihydroquinazolin-4(1H)-Ones. RSC Adv. 2022, 12, 2770–2787. DOI: 10.1039/D1RA07381H.
  • Mohammadi, M.; Ghorbani-Choghamarani, A. A Novel Hercynite-Supported Tetradentate Schiff Base Complex of Manganese Catalyzed One-Pot Annulation Reactions. Appl. Organom. Chem. 2022, 36, e6905. DOI: 10.1002/aoc.6905.
  • Ghobakhloo, F.; Azarifar, D.; Mohammadi, M.; Ghaemi, M. γ-Fe2O3@Cu3Al-LDH/HEPES a Novel Heterogeneous Amphoteric Catalyst for Synthesis of Annulated Pyrazolo[3,4-d]Pyrimidines, Appl. Appl. Organom. Chem. 2022, 36, e6823. DOI: 10.1002/aoc.6823.
  • Ghobakhloo, F.; Azarifar, D.; Mohammadi, M.; Keypour, H.; Zeynali, H. Copper(II) Schiff-Base Complex Modified UiO-66-NH2(Zr) Metal-Organic Framework Catalysts for Knoevenagel Condensation-Michael Addition-Cyclization Reactions. Inorg. Chem. 2022, 61, 4825–4841. DOI: 10.1021/acs.inorgchem.1c03284.
  • Rajput, Y.; Kumar, P.; Zhang, T. C.; Kumar, D.; Nemiwal, M. Recent Advances in g-C3N4-Based Photocatalysts for Hydrogen Evolution Reactions. Int. J. Hydrogen Energy. 2022, 47, 38533–38555. DOI: 10.1016/j.ijhydene.2022.09.038.
  • Shaik, T. B.; Malik, M. S.; Routhu, S. R.; Seddigi, Z. S.; Althagafi, I. I.; Kamal, A. Evaluation of Anticancer and Anti-Mitotic Properties of Quinazoline and Quinazolino-Benzothiadiazine Derivatives. Anticancer Agents Med. Chem. 2020, 20, 599–611. DOI: 10.2174/1871520620666191224122204.
  • Sharma, R.; Rahaman T A, A.; Sen, J.; Mashevskaya, I. V.; Chaudhary, S. Discovering the Role of N-Heterocyclic Carbene as Hydrogen Borrowing Organocatalyst: Metal-Free, Direct N-Alkylation of Amines with Benzyl Alcohols. Org. Chem. Front. 2023, 10, 730–744. DOI: 10.1039/D2QO01522F.
  • Grover, G.; Nath, R.; Bhatia, R.; Akhtar, M. J. Synthetic and Therapeutic Perspectives of Nitrogen Containing Heterocycles as Anti-Convulsants. Bioorg. Med. Chem. 2020, 28, 115585. DOI: 10.1016/j.bmc.2020.115585.
  • Malik, S.; Khan, S. A. Design and Evaluation of New Hybrid Pharmacophore Quinazolino-Tetrazoles as Anticonvulsant Strategy. Med. Chem. Res. 2014, 23, 207–223. DOI: 10.1007/s00044-013-0630-4.
  • Manville, R. W.; Papanikolaou, M.; Abbott, G. W. Direct Neurotransmitter Activation of Voltage-Gated Potassium Channels. Nat. Commun. 2018, 9, 1847. DOI: 10.1038/s41467-018-04266-w.
  • Bepary, S.; Das, B. K.; Bachar, S. C.; Kundu, J. K.; Rouf, A. S. S.; Datta, B. K. Anti-Inflammatory Activity of Indanyltetrazole Derivatives. Pak. J. Pharm. Sci. 2008, 21, 295–298.
  • Zappavigna, S.; Cossu, A. M.; Grimaldi, A.; Bocchetti, M.; Ferraro, G. A.; Nicoletti, G. F.; Filosa, R.; Caraglia, M. Anti-Inflammatory Drugs as Anticancer Agents. IJMS. 2020, 21, 2605. DOI: 10.3390/ijms21072605.
  • Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-Steroidal anti-Inflammatory Drugs (NSAIDs) and Organ Damage: A Current Perspective. Biochem. Pharmacol. 2020, 180, 114147. DOI: 10.1016/j.bcp.2020.114147.
  • Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn, M. R.; Emmert, D. E.; Garmon, S. A.; Graber, D. R.; Grega, K. C.; Hester, J. B.; Hutchinson, D. K.; et al. Substituent Effects on the Antibacterial Activity of Nitrogen-Carbon-Linked (Azolylphenyl)Oxazolidinones with Expanded Activity Against the Fastidious Gram-Negative Organisms Haemophilus influenzae and Moraxella catarrhalis. J. Med. Chem. 2000, 43, 953–970. DOI: 10.1021/jm990373e.
  • Buckle, D. R.; Rockell, C. J.; Smith, H.; Spicer, B. A. Spicer, Studies on 1,2,3-Triazoles.113. (Piperazinylalkoxy)[l]Benzopyrano[2,3-d]-1,2,3-Triazol-9(lH)-Ones with Combined H1-Antihistamine and Mast Cell Stabilizing Properties. J. Med. Chem. 1986, 29, 2262–2267. DOI: 10.1021/jm00161a022.
  • Boiani, M.; Gonzalez, M. Imidazole and Benzimidazole Derivatives as Chemotherapeutic Agents. Mini Rev. Med. Chem. 2005, 5, 409–424. DOI: 10.2174/1389557053544047.
  • Alvarez, R.; Velázquez, S.; San-Felix, A.; Aquaro, S.; De Clercq, E.; Perno, C.-F.; Karlsson, A.; Balzarini, J.; Camarasa, M. J. HIV 1,2,3-Triazoles. J. Med. Chem. 1994, 37, 4185–4194. DOI: 10.1021/jm00050a015.
  • Karali, N.; İllhan, E.; Gürsoy, A.; Kiraz, M. New Cyclohexylidenehydrazide and 4-Aza-1-Thiaspiro[4.5] Decan-3-One Derivatives of 3-Phenyl-4 (3H)-Quinazolinones. Farmaco. 1998, 53, 346–349. DOI: 10.1016/S0014-827X(98)00032-9.
  • Lauder, K.; Toscani, A.; Scalacci, N.; Castagnolo, D. Synthesis and Reactivity of Propargylamines in Organic Chemistry. Chem. Rev. 2017, 117, 14091–14200. DOI: 10.1021/acs.chemrev.7b00343.
  • Cesur, N.; Cesur, Z.; Ergenç, N.; Uzun, M.; Kiraz, M.; Kasimoğlu, O.; Kaya, D. Synthesis and Antifungal Activity of Some 2-Aryl-3-Substituted 4-Thiazolidinones. Arch. Pharm. 1994, 327, 271–273. DOI: 10.1002/ardp.19943270414.
  • Franc, G.; Kakkar, A. Dendrimer Design Using CuI-Catalyzed Alkyne-Azide “Click-Chemistry.” Chem. Commun. 2008, 5267–5276. DOI: 10.1039/b809870k.
  • Li, H.; Aneja, R.; Chaiken, I. Click Chemistry in Peptide-Based Drug Design. Molecules. 2013, 18, 9797–9817. DOI: 10.3390/molecules18089797.
  • Alonso, F.; Moglie, Y.; Radivoy, G. Copper Nanoparticles in Click Chemistry. Acc. Chem. Res. 2015, 48, 2516–2528. DOI: 10.1021/acs.accounts.5b00293.
  • Zheng, Z. J.; Wang, D.; Xu, Z.; Xu, L. W. Synthesis of bi- and Bis-1,2,3-Triazoles by Copper-Catalyzed Huisgen Cycloaddition: A Family of Valuable Products by Click Chemistry. Beilstein J. Org. Chem. 2015, 11, 2557–2576. DOI: 10.3762/bjoc.11.276.
  • Efthymiou, T.; Gong, W.; Desaulniers, J. P. Chemical Architecture and Applications of Nucleic Acid Derivatives Containing 1,2,3-Triazole Functionalities Synthesized via Click Chemistry. Molecules. 2012, 17, 12665–12703. DOI: 10.3390/molecules171112665.
  • Mamidyala, S. K.; Finn, M. G. In Situ Click Chemistry: Probing the Binding Landscapes of Biological Molecules. Chem. Soc. Rev. 2010, 39, 1252–1261. DOI: 10.1039/b901969n.
  • Kappe, C. O.; Van Der Eycken, E. Click Chemistry under Non-Classical Reaction Conditions. Chem. Soc. Rev. 2010, 39, 1280–1290. DOI: 10.1039/b901973c.
  • Moses, J. E.; Moorhouse, A. D. The Growing Applications of Click Chemistry. Chem. Soc. Rev. 2007, 36, 1249–1262. DOI: 10.1039/b613014n.
  • Lau, Y. H.; Rutledge, P. J.; Watkinson, M.; Todd, M. H. Chemical Sensors That Incorporate Click-Derived Triazoles. Chem. Soc. Rev. 2011, 40, 2848–2866. DOI: 10.1039/c0cs00143k.
  • Périon, R.; Ferrières, V.; García-Moreno, M. I.; Mellet, C. O.; Duval, R.; García Fernández, J. M.; Plusquellec, D. 1,2,3-Triazoles and Related Glycoconjugates as New Glycosidase Inhibitors. Tetrahedron. 2005, 61, 9118–9128. DOI: 10.1016/j.tet.2005.07.033.
  • Hou, D. R.; Alam, S.; Kuan, T. C.; Ramanathan, M.; Lin, T. P.; Hung, M. S. 1,2,3-Triazole Derivatives as New Cannabinoid CB1 Receptor Antagonists, Bioorganic Med. Bioorg. Med. Chem. Lett. 2009, 19, 1022–1025. DOI: 10.1016/j.bmcl.2008.11.029.
  • Shen, J.; Woodward, R.; Kedenburg, J. P.; Liu, X.; Chen, M.; Fang, L.; Sun, D.; Wang, P. G. Histone Deacetylase Inhibitors through Click Chemistry. J. Med. Chem. 2008, 51, 7417–7427. DOI: 10.1021/jm8005355.
  • Bonde, C. G.; Gaikwad, N. J. Synthesis and Preliminary Evaluation of Some Pyrazine Containing Thiazolines and Thiazolidinones as Antimicrobial Agents, Bioorganic. Bioorg. Med. Chem. 2004, 12, 2151–2161. DOI: 10.1016/j.bmc.2004.02.024.
  • Küçükgüzel, S. G.; Oruç, E. E.; Rollas, S.; Sahin, F.; Ozbek, A. Synthesis, Characterisation and Biological Activity of Novel 4-Thiazolidinones, 1,3,4-Oxadiazoles and Some Related Compounds. Eur. J. Med. Chem. 2002, 37, 197–206. DOI: 10.1016/S0223-5234(01)01326-5.
  • Tiwari, M. K.; Coghi, P.; Agrawal, P.; Shyamlal, B. R. K.; Jun Yang, L.; Yadav, L.; Peng, Y.; Sharma, R.; Yadav, D. K.; Sahal, D.; et al. Design, Synthesis, Structure-Activity Relationship and Docking Studies of Novel Functionalized Arylvinyl-1,2,4-Trioxanes as Potent Antiplasmodial as Well as Anticancer Agents. ChemMedChem. 2020, 15, 1216–1228. DOI: 10.1002/cmdc.202000045.
  • Dehghani, F.; Sardarian, A. R.; Esmaeilpour, M. Salen Complex of Cu (II) Supported on Superparamagnetic Fe3O4 @ SiO2 Nanoparticles : An efficient and Recyclable Catalyst for Synthesis of 1- and 5-Substituted 1H-Tetrazoles. J. Organometal Chem. 2013, 743, 87–96. DOI: 10.1016/j.jorganchem.2013.06.019.
  • Salih, K. S. M.; Thiel, W. R. Palladium-Catalyzed Coupling Reactions with Magnetically Separable Nanocatalysts, Palladium-Catalyzed Coupling React. Pract. Asp. Futur. Dev. 2013, 57–78. DOI: 10.1002/9783527648283.ch3.
  • Wei, C. X.; Bian, M.; Gong, G. H. Current Research on Antiepileptic Compounds. Molecules. 2015, 20, 20741–20776. DOI: 10.3390/molecules201119714.
  • Lee, Y.; Puumala, E.; Robbins, N.; Cowen, L. E. Antifungal Drug Resistance: Molecular Mechanisms in Candida albicans and Beyond. Chem. Rev. 2021, 121, 3390–3411. DOI: 10.1021/acs.chemrev.0c00199.
  • Rezaei, F.; Amrollahi, M. A.; Khalifeh, R. Design and Synthesis of Fe 3 O 4 @ SiO 2/Aza-Crown ether- Cu (ІІ) as a Novel and Highly Efficient Magnetic Nanocomposite Catalyst for the Synthesis of 1, 2, 3-Triazoles, 1-Substituted 1 H-Tetrazoles and 5- Substituted 1 H -Tetrazoles in Green Solv. Inorganica Chim. Acta. 2019, 489, 8-18. DOI: 10.1016/j.ica.2019.01.039.
  • Yadav, P.; Shah, K. Quinolines, A Perpetual, Multipurpose Scaffold in Medicinal Chemistry. Bioorg. Chem. 2021, 109, 104639. DOI: 10.1016/j.bioorg.2021.104639.
  • Hu, Y. Q.; Gao, C.; Zhang, S.; Xu, L.; Xu, Z.; Feng, L. S.; Wu, X.; Zhao, F. Quinoline Hybrids and Their Antiplasmodial and Antimalarial Activities. Eur. J. Med. Chem. 2017, 139, 22–47. DOI: 10.1016/j.ejmech.2017.07.061.
  • Maračić, S.; Lapić, J.; Djaković, S.; Opačak-Bernardi, T.; Glavaš-Obrovac, L.; Vrček, V.; Raić-Malić, S. Quinoline and Ferrocene Conjugates: Synthesis, Computational Study and Biological Evaluations. Appl. Organometal. Chem. 2019, 33, e4628. DOI: 10.1002/aoc.4628.
  • Lotfi, S.; Nikseresht, A.; Rahimi, N. Synthesis of Fe3O4@Sio2/Isoniazid/Cu(II) Magnetic Nanocatalyst as a Recyclable Catalyst for a Highly Efficient Preparation of Quinolines in Moderate Conditions. Polyhedron. 2019, 173, 114148. DOI: 10.1016/j.poly.2019.114148.
  • Chen, Y.; Cheng, T.; Qin, A.; Tang, B. Z. Alkyne – Azide Click Polymerization Catalyzed by Magnetically Recyclable Fe3O4/SiO2/Cu2O Nanoparticles. Macromol. Chem. Phys. 2019, 220, 1900064. DOI: 10.1002/macp.201900064.
  • Papers, F. Fe3O4 @ SiO2/EP. EN. EG. Cu as a Highly Efficient and Recoverable Catalytic System for Synthesis of 1,4‐Disubstituted 1,2,3‐Triazole Derivatives via the Click Reaction. ChemistrySelect. 2019, 4, 7211–7218. DOI: 10.1002/slct.201901237.
  • Darroudi, M.; Ranjbar, S.; Esfandiar, M.; Khoshneviszadeh, M.; Hamzehloueian, M.; Khoshneviszadeh, M.; & Sarrafi, Y. Synthesis of Novel Triazole Incorporated Thiazolone Motifs Having Promising Antityrosinase Activity through Green Nanocatalyst CuI-Fe3O4@SiO2 (TMS-EDTA). Appl. Organometal. Chem. 2020, 34, 1–14. DOI: 10.1002/aoc.5962.
  • Asgari, M. S.; Sepehri, S.; Bahadorikhalili, S.; Ranjbar, P. R.; Rahimi, R.; Gholami, A.; Kazemi, A.; Khoshneviszadeh, M.; Larijani, B.; Mahdavi, M. Magnetic Silica Nanoparticle-Supported Copper Complex as an Efficient Catalyst for the Synthesis of Novel Triazolopyrazinylacetamides with Improved Antibacterial Activity. Chem. Heterocycl. Comp. 2020, 56, 488–494. DOI: 10.1007/s10593-020-02685-6.
  • Yielzoleh, F. M. Magnetized Inorganic – Bioorganic Nanohybrid [Nano Fe3O4 – SiO2 @ Glu-Cu (II)]: A Novel Nanostructure for the Efficient Solvent-Free Synthesis of Thiazolidin-2-Imines. Appl. Organometal. Chem. 2020, 35, 1–12. DOI: 10.1002/aoc.6043.
  • Ebrahimiasl, H.; Azarifar, D.; Mohammadi, M.; Keypour, H.; Mahmood Abadi, M. A Novel Efficient and Recyclable Magnetic Nanocatalyst. Res. Chem. Intermed. 2021, 47, 683–707. DOI: 10.1007/s11164-020-04293-7.
  • Nesarvand, M.; Azarifar, D.; Ebrahimiasl, H. One‐Pot and Green Synthesis 1H-Pyrazolo[1,2-b]Phthalazine-5,10-Dione and Dihydropyrano[3,2-c]Chromene Derivatives by Fe3O4@SiO2-Imine/Phenoxy-Cu(II) as an Efficient and Reusable Catalyst. Res. Chem. Intermed. 2021, 47, 3629–3644. DOI: 10.1007/s11164-021-04498-4.
  • Rajabi-Moghaddam, H.; Naimi-Jamal, M. R.; Tajbakhsh, M. Fabrication of Copper (II) ‑ Coated Magnetic Core – Shell Nanoparticles F and Investigation of Its Catalytic Application in the Synthesis. Sci. Rep. 2021, 11, 1–14. DOI: 10.1038/s41598-021-81632-7.
  • Eslahi, H.; Sardarian, R.; Esmaeilpour, M. Green Approach for Preparation of New Hybrids of 5-Substituted-1 H -Tetrazoles Using Novel Recyclable Nanocatalyst Based on Copper (II) Anchored onto Glucosamine Grafted to Fe3O4 @ SiO2. ChemistrySelect 2021, 6, 1984–1993. DOI: 10.1002/slct.202004539.
  • Esmaeilpour, M.; Sardarian, A. R.; Firouzabadi, H. Dendrimer ‐ Encapsulated Cu (Π) Nanoparticles Immobilized on Superparamagnetic Fe3O4@SiO2 Nanoparticles as a Novel Recyclable Catalyst for N – Arylation of Nitrogen Heterocycles and Green Synthesis of 5 – Substituted 1 H – Tetrazoles. Appl Organometal Chem 2018, 32, e4300. DOI: 10.1002/aoc.4300.
  • Ariannezhad, M.; Habibi, D.; Heydari, S. Copper Nanoparticles: A Capable and Versatile Catalyst for the Synthesis of Diverse 1-Phenyl-1 H -Tetrazoles from Amino Acids. Polyhedron. 2019, 160, 170–179. DOI: 10.1016/j.poly.2018.12.037.
  • Vibhute, S. P.; Mhaldar, P. M.; Korade, S. N.; Gaikwad, D. S.; Shejawal, R. V. Synthesis of magnetically separable catalyst Cu-ACP-Am-Fe3O4@SiO2 for Huisgen 1,3-dipolar cycloaddition Tetrahedron Lett. 2018, 59, 3643-3652. DOI: 10.1016/j.tetlet.2018.08.045.
  • Sardarian, A. R.; Mohammadi, F.; Esmaeilpour, M. Dendrimer-Encapsulated Copper(II) Immobilized on Fe3O4@SiO2 NPs: A Robust Recoverable Catalyst for Click Synthesis of 1,2,3-Triazole Derivatives in Water under Mild Conditions. Res. Chem. Intermed. 2019, 45, 1437–1456. DOI: 10.1007/s11164-018-3672-x.
  • Sardarian, A. R.; Eslahi, H.; Esmaeilpour, M. Copper (II) Complex Supported on Fe 3 O 4 @ SiO 2 Coated by Polyvinyl Alcohol as Reusable Nanocatalyst in N-Arylation of Amines and N (H) - Heterocycles and Green Synthesis of 1 H-Tetrazoles. ChemistrySelect. 2018, 3, 1499–1511. DOI: 10.1002/slct.201702452.
  • Rezayati, S.; Kalantari, F.; Ramazani, A.; Sajjadifar, S.; Aghahosseini, H.; Rezaei, A.; Rezayati, S.; Kalantari, F.; Ramazani, A.; Sajjadifar, S. Magnetic Silica-Coated Picolylamine Copper Complex [Fe3O4@SiO2@GP/Picolylamine-Cu(II)]-Catalyzed Biginelli Annulation Reaction. Inorganic Chemistry. 2022. 61, 992-1010. DOI: 10.1021/acs.inorgchem.1c03042.
  • Riadi, Y.; Kadhim, M. M.; Shoja, S. J.; Ali, M. H.; Mustafa, Y. F.; Sajjadi, A.; Riadi, Y.; Kadhim, M. M.; Shoja, S. J.; Hussein, M. Copper (II) Complex Supported on the Surface of Magnetic Nanoparticles Modified with S-Benzylisothiourea (Fe3O4 @ SiO2-SMTU-Cu): A New and Efficient Nanomagnetic Catalyst for the Synthesis of Quinazolines and Amides. Synth. Commun. 2022, 52, 875–887. DOI: 10.1080/00397911.2022.2056849.
  • Sharma, V.; Nemiwal, M.; Kumar, D. Catalytic Applications of Recent and Improved Covalent Organic Frameworks. MROC. 2022, 19, 815–825. DOI: 10.2174/1570193X19666220105144523.
  • Jangir, N.; Bagaria, S. K.; Jangid, D. K. Nanocatalysts: Applications for the Synthesis of N-Containing Five-Membered Heterocycles. RSC Adv. 2022, 12, 19640–19666. DOI: 10.1039/D2RA03122A.
  • Khorramabadi, V.; Habibi, D.; Heydari, S. Facile Synthesis of Tetrazoles Catalyzed by the New Copper Nano-Catalyst. Green Chem. Lett. Rev. 2020, 13, 50–59. DOI: 10.1080/17518253.2020.1726505.
  • Sardarian, A. R.; Esmaeilpour, M. Functionalization of Superparamagnetic Fe3O4@ SiO2 Nanoparticles with a Cu (II) Binuclear Schiff Base Complex as an Efficient and Reusable Nanomagnetic Catalyst for N-Arylation of α-Amino Acids and Nitrogen-Containing Heterocycles with Aryl Halides. Appl Organometal. Chem. 2020, 35, 1–20. DOI: 10.1002/aoc.6051.
  • Alavi G, S. A.; Nasseri, M. A.; Kazemnejadi, M.; Allahresani, A.; Hussainzadeh, M. NiFe2O4@SiO2@ZrO2/SO42-/Cu/Co Nanoparticles: A Novel, Efficient, Magnetically Recyclable and Bimetallic Catalyst for Pd-Free Suzuki, Heck and C-N Cross-Coupling Reactions in Aqueous Media. New J. Chem. 2021, 45, 7741–7757. DOI: 10.1039/D0NJ06208A.
  • Peiman, S.; Baharfar, R.; Hosseinzadeh, R. CuI NPs Immobilized on a Ternary Hybrid System of Magnetic Nanosilica. Res. Chem. Intermed. 2022, 48, 1365–1382. DOI: 10.1007/s11164-021-04654-w.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.