Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 18
260
Views
1
CrossRef citations to date
0
Altmetric
Articles

Green and efficient three-component synthesis of novel isoniazid pyrazoles, molecular docking, antioxidant and antitubercular evaluation

, &
Pages 1506-1519 | Received 27 Apr 2023, Published online: 14 Jul 2023

References

  • Khan, S. R.; Manialawy, Y.; Siraki, A. G. Isoniazid and Host Immune System Interactions: A Proposal for a Novel Comprehensive Mode of Action. Br. J. Pharmacol. 2019, 176, 4599–4608. DOI: 10.1111/bph.14867.
  • Smith, I. Mycobacterium Tuberculosis Pathogenesis and Molecular Determinants of Virulence. Clin. Microbiol. Rev. 2003, 16, 463–496. DOI: 10.1128/CMR.16.3.463-496.2003.
  • Metre, T. V.; Joshi, S. D.; Kodasi, B.; Bayannavar, P. K.; Nesaragi, A. R.; Madar, S. F.; Mavazzan, A. R.; Kamble, R. R. L-Proline Catalyzed Ring Transformation of 5-Substituted Tetrazole to 1, 3, 4-Oxadiazoles as anti-Tubercular Agents. Synth. Commun. 2022, 52, 1500–1516. DOI: 10.1080/00397911.2022.2097874.
  • World Health Organization. Global Tuberculosis Report 2022; World Health Organization: Geneva, 2022.
  • Fernandes, G. F. D. S.; Salgado, H. R. N.; Santos, J. L. D. Isoniazid: A Review of Characteristics, Properties, and Analytical Methods. Crit. Rev. Anal. Chem. 2017, 47, 298–308. DOI: 10.1080/10408347.2017.1281098.
  • Bendre, A. D.; Peters, P. J.; Kumar, J. Tuberculosis: Past, Present and Future of the Treatment and Drug Discovery Research. Curr. Res. Pharmacol. Drug. Discov. 2021, 2, 100037. DOI: 10.1016/j.crphar.2021.100037.
  • de Faria, C. F.; Moreira, T.; Lopes, P.; Costa, H.; Krewall, J. R.; Barton, C. M.; Santos, S.; Goodwin, D.; Machado, D.; Viveiros, M.; et al. Designing New Antitubercular Isoniazid Derivatives with Improved Reactivity and Membrane Trafficking Abilities. Biomed. Pharmacother. 2021, 144, 112362. DOI: 10.1016/j.biopha.2021.112362.
  • Rawat, R.; Whitty, A.; Tonge, P. J. The Isoniazid-NAD Adduct is a Slow, Tight-Binding Inhibitor of InhA, the Mycobacterium Tuberculosis Enoyl Reductase: Adduct Affinity and Drug Resistance. Proc. Natl. Acad. Sci. U S A 2003, 100, 13881–13886. DOI: 10/pnas.2235848100.
  • Martins, F.; Santos, S.; Ventura, C.; Elvas-Leitao, R.; Santos, L.; Vitorino, S.; Reis, M.; Miranda, V.; Correia, H. F.; Aires-de-Sousa, J.; et al. Design, Synthesis, and Biological Evaluation of Novel Isoniazid Derivatives with Potent Antitubercular Activity. Eur. J. Med. Chem. 2014, 81, 119–138. DOI: 10.1016/j.ejmech.2014.04.077.
  • Ghiano, D. G.; Recio-Balsells, A.; Bortolotti, A.; Defelipe, L. A.; Turjanski, A.; Morbidoni, H. R.; Labadie, G. R. New One-Pot Synthesis of anti-Tuberculosis Compounds Inspired on Isoniazid. Eur. J. Med. Chem. 2020, 208, 112699. DOI: 10.1016/j.ejmech.2020.112699.
  • Jeong, I.; Park, J. S.; Cho, Y. J.; Yoon, H. I.; Song, J.; Lee, C. T.; Lee, J. H. Drug-Induced Hepatotoxicity of anti-Tuberculosis Drugs, and Their Serum Levels. J. Korean Med. Sci. 2015, 30, 167–172. DOI: 10.3346/jkms.2015.30.2.167.
  • Somasundaram, S.; Ram, A.; Sankaranarayanan, L. Isoniazid and Rifampicin as Therapeutic Regimen in the Current Era: A Review. JTR 2014, 02, 40–51. DOI: 10.4236/jtr.2014.21005.
  • Oliveira, P. F. M.; Guidetti, B.; Chamayou, A.; Andre-Barres, C.; Madacki, J.; Kordulakova, J.; Mori, G.; Orena, B. S.; Chiarelli, L. R.; Pasca, M. R.; et al. Mechanochemical Synthesis and Biological Evaluation of Novel Isoniazid Derivatives with Potent Antitubercular Activity. Molecules 2017, 22, 1457. DOI: 10.3390/molecules22091457.
  • Majumdar, P.; Pati, A.; Patra, M.; Behera, R. K.; Behera, A. K. Acid Hydrazides, Potent Reagents for Synthesis of Oxygen-, Nitrogen-, and/or Sulfur-Containing Heterocyclic Rings. Chem. Rev. 2014, 114, 2942–2977. DOI: 10.1021/cr300122t.
  • Desai, N. C.; Trivedi, A.; Somani, H.; Jadeja, K. A.; Vaja, D.; Nawale, L.; Khedkar, V. M.; Sarkar, D. Synthesis, Biological Evaluation, and Molecular Docking Study of Pyridine Clubbed 1, 3, 4-Oxadiazoles as Potential Antituberculars. Synth. Commun. 2018, 48, 524–540. DOI: 10.1080/00397911.2017.1410892.
  • Rathod, A. S.; Godipurge, S. S.; Biradar, J. S. Synthesis of Indole, Coumarinyl and Pyridinyl Derivatives of Isoniazid as Potent Antitubercular and Antimicrobial Agents and Their Molecular Docking Studies. Int. J. Pharm. Pharm. Sci. 2017, 9, 233–240. DOI: 10.22159/ijpps.2017v9i12.21970.
  • Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman, S. Biologically Active Pyrazole Derivatives. New J. Chem. 2017, 41, 16–41. DOI: 10.1039/C6NJ03181A.
  • Mohamed, A. H.; Ammar, Y. A.; Elhagali, G. A. M.; Eyada, H. S.; Aboul-Magd, D. S.; Ragab, A. In Vitro Antimicrobial Evaluation, Single-Point Resistance Study, and Radiosterilization of Novel Pyrazole Incorporating Thiazol-4-One/Thiophene Derivatives as Dual DNA Gyrase and DHFR Inhibitors against MDR Pathogens. ACS Omega 2022, 7, 4970–4990. DOI: 10.1021/acsomega.1c05801.
  • Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y. N.; Al-Aizari, F. A.; Ansar, M. H. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018, 23, 134. DOI: 10.3390/molecules23010134.
  • Aziz, H.; Zahoor, A. F.; Ahmad, S. Pyrazole Bearing Molecules as Bioactive Scaffolds: A Review. J. Chil. Chem. Soc. 2020, 65, 4746–4753. DOI: 10.4067/S0717-97072020000104746.
  • Bansal, S.; Bala, M.; Suthar, S. K.; Choudhary, S.; Bhattacharya, S.; Bhardwaj, V.; Singla, S.; Joseph, A. Design and Synthesis of Novel 2-Phenyl-5-(1, 3-Diphenyl-1H-Pyrazol-4-Yl)-1, 3, 4-Oxadiazoles as Selective COX-2 Inhibitors with Potent Anti-Inflammatory Activity. Eur. J. Med. Chem. 2014, 80, 167–174. DOI: 10.1016/j.ejmech.2014.04.045.
  • Marinescu, M.; Zalaru, C. M. Chapter 3. Synthesis, Antibacterial and anti-Tumor Activity of Pyrazole Derivatives. In Recent Trends in Biochemistry, MedDocs Publishers, 2021; Vol. 2, pp. 18–27.
  • Bhunia, S.; Sarkar, A.; Majumdar, P. Current Status of Pyrazole and It’s Biological Activities. Int. J. Prod. Econ. 2020, 8, 904–909. DOI: 10.4103/0975-7406.171694.
  • Poce, G.; Consalvi, S.; Venditti, G.; Alfonso, S.; Desideri, N.; Fernandez-Menendez, R.; Bates, R. H.; Ballell, L.; Barros Aguirre, D.; Rullas, J.; et al. Novel Pyrazole-Containing Compounds Active against Mycobacterium Tuberculosis. ACS Med. Chem. Lett. 2019, 10, 1423–1429. DOI: 10.1021/acsmedchemlett.9b00204.
  • Ganesan, S.; Sarangapani, M.; Doble, M. An Expedient, One-Pot, Stepwise Sequential Approach for the Regioselective Synthesis of Pyrazolines. J. Chem. Res. 2021, 45, 326–333. DOI: 10.1177/1747519820977165.
  • Ali, M. A.; Shaharyar, M.; Clercq, E. D. Synthesis of 5-(4-Hydroxy-3-Methylphenyl)-5-(Substituted Phenyl)-4, 5-Dihydro-1H-1-Pyrazolyl-4-Pyridylmethanone Derivatives with Anti-Viral Activity. J. Enzyme Inhib. Med. Chem. 2007, 22, 702–708. DOI: 10.1080/14756360701265832.
  • Khan, M. F.; Alam, M. M.; Verma, G.; Akhtar, W.; Akhter, M.; Shaquiquzzaman, M. The Therapeutic Voyage of Pyrazole and Its Analogs: A Review. Eur. J. Med. Chem. 2016, 120, 170–201. DOI: 10.1016/j.ejmech.2016.04.077.
  • Harikrishna, N.; Isloor, A. M.; Ananda, K.; Obaid, A.; Fun, H. K. Synthesis, and Antitubercular and Antimicrobial Activity of 1′-(4-Chlorophenyl) Pyrazole Containing 3, 5-Disubstituted Pyrazoline Derivatives. New J. Chem. 2016, 40, 73–76. DOI: 10.1039/C5NJ02237A.
  • Nagaraj, D.; Nagamallu, R.; Kariyappa, A. K. Design, Synthesis, Spectroscopic Characterization of New Pyrazole Carbothioamides as Antifungal and Antibacterial Candidates. Lett. Appl. NanoBioScience 2022, 11, 3689–3699. DOI: 10.33263/LIANBS113.36893699.
  • Beyzaei, H.; Motraghi, Z.; Aryan, R.; Zahedi, M. M.; Samzadeh-Kermani, A. Green One-Pot Synthesis of Novel Polysubstituted Pyrazole Derivatives as Potential Antimicrobial Agents. Acta. Chim. Slov. 2017, 64, 911–918. DOI: 10.17344/acsi.2017.3609.
  • Aragade, P.; Palkar, M.; Ronad, P.; Satyanarayana, D. Coumarinyl Pyrazole Derivatives of INH: promising Antimycobacterial Agents. Med. Chem. Res. 2013, 22, 2279–2283. DOI: 10.1007/s00044-012-0222-8.
  • Allison, D.; Delancey, E.; Ramey, H.; Williams, C.; Alsharif, Z. A.; Al-Khattabi, H.; Ontko, A.; Gilmore, D.; Alam, M. A. Synthesis and Antimicrobial Studies of Novel Derivatives of 4-(4-Formyl-3-Phenyl-1H-Pyrazol-1-Yl) Benzoic Acid as Potent anti-Acinetobacter Baumannii Agents. Bioorg. Med. Chem. Lett. 2017, 27, 387–392. DOI: 10.1016/j.bmcl.2016.12.068.
  • Narasimha Raju, P. V. S.; Rao Saketi, J. M.; Balaji, N. V.; Kurmarayuni, C. M.; Subbaraju, G. V.; Bollikolla, H. B. Synthesis of New Hispolon Derived Pyrazole Sulfonamides for Possible Antitubercular and Antimicrobial Agents. J. Mex. Chem. Soc. 2021, 65, 237–246. DOI: 10.29356/jmcs.v65i2.1458.
  • Arora, G., Behura, A., Gosain, T. P., Shaliwal, R. P., Kidwai, S., Singh, P., Kandi, S. K., Dhiman, R., Rawat, D. S., Singh, R., Gagandeep  . NSC 18725, a Pyrazole Derivative Inhibits Growth of Intracellular Mycobacterium Tuberculosis by Induction of Autophagy. Front Microbiol. 2019, 10, 3051. DOI: 10.3389/fmicb.2019.03051.
  • Palleapati, K.; Kancharlapalli, V. R.; Shaik, A. B. Synthesis, Characterization and Antitubercular Evaluation of Some New Isoxazole Appended 1-Carboxamido-4, 5-Dihydro-1H-Pyrazoles. JRP 2019, 23, 156–163. DOI: 10.12991/jrp.2019.120.
  • Carrasco, F.; Hernández, W.; Chupayo, O.; Sheen, P.; Zimic, M.; Coronel, J.; Álvarez, C. M.; Ferrero, S.; Oramas-Royo, S.; Spodine, E.; et al. Phenylisoxazole-3/5-Carbaldehyde Isonicotinylhydrazone Derivatives: Synthesis, Characterization, and Antitubercular Activity. J. Chem. 2021, 2021, 1–14. DOI: 10.1155/2021/6014093.
  • Tripathi, A.; Nadaf, Y. F.; Bilehal, D.; Nayak, S.; Gaonkar, S. L. A Review on Synthesis of Isoniazid Derivatives, and Their Biological Properties. Int. J. Pharm. Res. 2019, 11, 21–36.
  • Soni, H. I.; Patel, N. B. Pyrimidine Incorporated Schiff Base of Isoniazid with Their Synthesis, Characterization, and in Vitro Biological Evaluation. Asian J. Pharm. Clin. Res. 2017, 10, 209–214. DOI: 10.22159/ajpcr.2017.v10i10.19302.
  • Hearn, M. J.; Cynamon, M. H. Design and Synthesis of Antituberculars: Preparation and Evaluation against Mycobacterium Tuberculosis of an Isoniazid Schiff Base. J. Antimicrob. Chemother. 2004, 53, 185–191. DOI: 10.1093/jac/dkh041s.
  • Gaonkar, S. L.; Hakkimane, S. S.; Bharath, B. R.; Shenoy, V. P.; Vignesh, U. N.; Guru, B. R. Stable Isoniazid Derivatives: In Silico Studies, Synthesis and Biological Assessment against Mycobacterium Tuberculosis in Liquid Culture. RJC 2020, 13, 1853–1870. DOI: 10.31788/RJC.2020.1335667.
  • Marques, J. T.; De Faria, C. F.; Reis, M.; Machado, D.; Santos, S.; Santos, M. D. S.; Viveiros, M.; Martins, F.; De Almeida, R. F. In Vitro Evaluation of Isoniazid Derivatives as Potential Agents against Drug-Resistant Tuberculosis. Front. Pharmacol. 2022, 13, 1483. DOI: 10.3389/fphar.2022.868545.
  • Pahlavani, E.; Kargar, H.; Rad, N. S. A Study on Antitubercular and Antimicrobial Activity of Isoniazid Derivative. Zahedan J. Res. Med. Sci. 2015, 17, e1010. DOI: 10.17795/zjrms1010.
  • Eldehna, W. M.; Fares, M.; Abdel-Aziz, M. M.; Abdel-Aziz, H. A. Design, Synthesis and Antitubercular Activity of Certain Nicotinic Acid Hydrazides. Molecules 2015, 20, 8800–8815. DOI: 10.3390/molecules20058800.
  • Devi, N.; Kumar, A. Review Article Synthesis and Antimicrobial Activity of Isoniazid Based Pyrazole Derivatives. Int. Res. J. Mod. Eng. Technol. Sci., 2021, 513-530.
  • Elumalai, K.; Ali, M. A.; Elumalai, M.; Eluri, K.; Srinivasan, S. Novel Isoniazid Cyclocondensed 1, 2, 3, 4-Tetrahydropyrimidine Derivatives for Treating Infectious Disease: A Synthesis and in Vitro Biological Evaluation. J. Acute Dis. 2013, 2, 316–321. DOI: 10.1016/S2221-6189(13)60151-1.
  • Jorgensen, J. H. Turnidge. Susceptibility Test Methods: Dilution and Disk Diffusion Methods. In Manual of Clinical Microbiology; Murray, P. R., Baron, E. J., Jorgensen, J. H., Landry, M. L., Pfaller, M. A., Eds. ASM Press: Washington, 2007; Vol. 2, pp 1152–1173.
  • Pfaller, M. A. Susceptibility Test Methods: Yeasts and Filamentous Fungi. In Manual of Clinical Microbiology; Murray, P. R., Baron, E. J., Jorgensen, J. H., Landry, M. L., Pfaller, M. A., Eds. ASM Press: Washington, 2007; Vol. 2, pp 1972–1986.
  • Sheorain, J.; Mehra, M.; Thakur, R.; Grewal, S.; Kumari, S. In Vitro anti-Inflammatory and Antioxidant Potential of Thymol Loaded Bipolymeric (Tragacanth Gum/Chitosan) Nanocarrier. Int. J. Biol. Macromol. 2019, 125, 1069–1074. DOI: 10.1016/j.ijbiomac.2018.12.095.
  • Lu, Y.; Khoo, T. J.; Wiart, C. Antioxidant Activity Determination of Citronellal and Crude Extracts of Cymbopogon Citratus by 3 Different Methods. Pharmacol. Pharm. 2014, 05, 395–400. DOI: 10.4236/pp.2014.54047.
  • Cho, S.; Lee, H. S.; Franzblau, S. Microplate Alamar Blue Assay (MABA) and Low Oxygen Recovery Assay (LORA) for Mycobacterium Tuberculosis. Methods Mol. Biol. 2015, 1285, 281–292. DOI: 10.1007/978-1-4939-2450-9_17.
  • Dkhar, H. K.; Gopalsamy, A.; Loharch, S.; Kaur, A.; Bhutani, I.; Saminathan, K.; Bhagyaraj, E.; Chandra, V.; Swaminathan, K.; Agrawal, P.; et al. Discovery of Mycobacterium tuberculosis α-1,4-Glucan Branching Enzyme (GlgB) Inhibitors by Structure- and Ligand-Based Virtual Screening. J. Biol. Chem. 2015, 290, 76–89. DOI: 10.1074/jbc.M114.589200.
  • Pal, K.; Kumar, S.; Swaminathan, K. Crystal Structure of Glycogen Branching Enzyme Synonym: 1,4-alpha-D-Glucan:1,4-alpha-D-GLUCAN 6-Glucosyl-Transferase from mycobacterium tuberculosis H37RV. J. Biol. Chem. 2009, 285, 20897–20903. DOI: 10.2210/pdb3K1D/pdb.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.