Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 18
123
Views
0
CrossRef citations to date
0
Altmetric
Articles

NaNO2-catalyzed reaction of cyclohexenone-MBH acetates: A convenient synthesis of 2-methylene-3-cyclohexenones

ORCID Icon, , , & ORCID Icon
Pages 1520-1528 | Received 22 May 2023, Published online: 14 Jul 2023

References

  • Yu, X.; Liu, F.; Zou, Y.; Tang, M.-C.; Leibniz, H.; K. N, H.; Tang, Y. Biosynthesis of Strained Piperazine Alkaloids: Uncovering the Concise Pathway of Herquline A. J Am Chem Soc 2016, 138, 13529–13532. DOI: 10.1021/jacs.6b09464.
  • McMorris, T. C.; Kelner, M. J.; Wang, W.; Estes, L. A.; Montoya, M. A.; Taetle, R. Structure-Activity Relationships of Illudins: Analogs with Improved Therapeutic Index. J. Org. Chem 1992, 57, 6876–6883. DOI: 10.1021/jo00051a037.
  • Coy B, E. D.; Cuca S, L. E.; Sefkow, M. The First Diastereoselective Synthesis of Cinerins a–C, PAF-Antagonistic Macrophyllin-Type Bicyclo[3.2.1]Octane Neolignans, Using a Novel Pd-Catalysed Oxyarylation. Org Biomol Chem 2010, 8, 2003–2005. DOI: 10.1039/b927558d.
  • Avendaño, C.; Menendez, J. C. Synthetic Studies on N-Methylwelwitindolinone C Isothiocyanate (Welwistatin) and Related Substructures. COS 2004, 1, 65–82. DOI: 10.2174/1570179043485439.
  • Murakami, M.; Itami, K.; Ubukata, M.; Tsuji, I.; Ito, Y. Iridium-Catalyzed [5 + 1] Cycloaddition: Allenylcyclopropane as a Five-Carbon Assembling Unit. J Org Chem 1998, 63, 4–5. DOI: 10.1021/jo9718859.
  • Shu, D.; Li, X.; Zhang, M.; Robichaux, P. J.; Tang, W. Synthesis of Highly Functionalized Cyclohexenone Rings: Rhodium-Catalyzed 1,3-Acyloxy Migration and Subsequent [5 + 1] Cycloaddition. Angew Chem Int Ed Engl 2011, 50, 1346–1349. DOI: 10.1002/anie.201006881.
  • Liu, C.-H.; Yu, Z.-X. Rh-Catalysed [5 + 1] Cycloaddition of Allenylcyclopropanes and CO: Reaction Development and Application to the Formal Synthesis of (−)-Galanthamine. Org Biomol Chem 2016, 14, 5945–5950. DOI: 10.1039/c6ob00660d.
  • ElDouhaibi, A. S.; Lozanov, M.; Montgomery, J. A Multicomponent Approach to Substituted Benzenes Involving Sequential Nickel–Catalyzed Reactions. Tetrahedron 2006, 62, 11460–11469. DOI: 10.1016/j.tet.2006.06.068.
  • Ramachary, D. B.; Ramakumar, K.; Bharanishashank, A.; Narayana, V. V. Sequential One-Pot Combination of Multireactions through Multicatalysis: A General Approach to Rapid Assembly of Functionalized Push–Pull Olefins, Phenols, and 2-Methyl-2H-Chromenes. J Comb Chem 2010, 12, 855–876. DOI: 10.1021/cc100104k.
  • Peña, J.; Antón, A. B.; Moro, R. F.; Marcos, I. S.; Garrido, N. M.; Díez, D. Tandem Catalysis for the Synthesis of 2-Alkylidene Cyclohexenones. Tetrahedron 2011, 67, 8331–8337. DOI: 10.1016/j.tet.2011.08.068.
  • Zhong, N.-J.; Wang, Y.-Z.; Cheng, L.; Wang, D.; Liu, L. Recent Advances in the Annulation of Morita–Baylis–Hillman Adducts. Org Biomol Chem 2018, 16, 5214–5227. DOI: 10.1039/c8ob00929e.
  • Xie, P.; Huang, Y. Morita–Baylis–Hillman Adduct Derivatives (MBHADs): Versatile Reactivity in Lewis Base-Promoted Annulation. Org Biomol Chem 2015, 13, 8578–8595. DOI: 10.1039/C5OB00865D.
  • Ren, H.-X.; Song, X.-J.; Wu, L.; Huang, Z.-C.; Zou, Y.; Li, X.; Chen, X.-W.; Tian, F.; Wang, L.-X. Substituted (E)-2-Methylene-3,4-Cyclohexenones through Direct and Convenient Synthesis from Cyclohexenone-MBH Alcohol in the Presence of DMAP. Eur. J. Org. Chem 2019, 2019, 715–719. DOI: 10.1002/ejoc.201801301.
  • Song, X.; Zhang, J.; Wu, Y.-X.; Ouyang, Q.; Du, W.; Chen, Y.-C. Asymmetric Formal Nucleophilic o-Cresolylation with Morita − Baylis − Hillman Carbonates of 2-Cyclohexenones via Palladium Catalysis. J Am Chem Soc 2022, 144, 9564–9569. DOI: 10.1021/jacs.2c04101.
  • Wang, F.; Li, S.; Qu, M.; Zhao, M.-X.; Liu, L.-J.; Shi, M. A Highly Efficient Kinetic Resolution of Morita–Baylis–Hillman Adducts Achieved by N–Ar Axially Chiral Pd-Complexes Catalyzed Asymmetric Allylation. Chem Commun (Camb) 2011, 47, 12813–12815. DOI: 10.1039/C1CC15543A.
  • Shafiq, Z.; Liu, L.; Liu, Z.; Wang, D.; Chen, Y.-J. A Highly α-Regioselective AgOTf-Catalyzed Nucleophilic Substitution of the Baylis–Hillman Acetates with Indoles. Org Lett 2007, 9, 2525–2528. DOI: 10.1021/ol070878w.
  • Mukhopadhyay, S.; Batra, S. Applications of Sodium Nitrite in Organic Synthesis. Eur. J. Org. Chem 2019, 2019, 6424–6451. DOI: 10.1002/ejoc.201900951.
  • Jiang, L.; Yu, L.-D.; Peng, P.-Y.; Li, H.-L.; Jiang, D.-B.; Wang, Y.-D.; Yuan, M.-L.; Yuan, M.-W. Stereoselective Allylic 1,3-Dienylation of Morita–Baylis–Hillman Carbonates via an Alkylation–Denitration Sequence. Synth. Commun 2021, 51, 419–427. DOI: 10.1080/00397911.2020.1832526.
  • Jiang, L.; Peng, P.; Yu, L.; Jiang, D.; Wang, Y.; Li, H.; Yuan, M.; Yuan, M. Regio- and Diastereoselective Synthesis of 3,4-Dihydro-2H-Benzo[4,5]Imidazo[2,1-b] [1,3]Thiazine Derivatives via DBU-Catalyzed [3 + 3] Annulation of MBH Carbonates with 2-Mercaptobenzimidazoles. Tetrahedron 2021, 98, 132430. DOI: 10.1016/j.tet.2021.132430.
  • In the presence of acetic acid that is released from MBH acetate, NaNO2 seems not stable enough and is likely to generate NO2 and NO radicals. This kind of active intermediates would further undergo certain transformations. Some of the reported transformations in the presence of NaNO2 and acetic acid can be found in Ref. 17. For these reasons, though we have not carried out a detailed study, we speculate that these competitive reaction pathways would be more remarkable in the condition of increasing the load of NaNO2, and the product yield would be ruined as a result.
  • We speculate that the obvious promoting effect of the DMF or DMSO may be due to the solvation of NaNO2. In this kind of solvent, the positive ion (e.g. Na+) is well-solvated. Nevertheless, the negative ion (eg. NO2-) could not get close to the partially positively charged moiety of the solvent molecules owing to the steric hindrance coursed by methyl groups. Hence, the NO2- remains almost exposed and the nucleophilicity is greatly enhanced.
  • Ji, S.-H.; Hong, W. P.; Ko, S. H.; Lee, K.-J. The Dipolar Route to Naphtho[2,1-c]Isoxazoles from the Baylis–Hillman Adducts of 2-Alkynylbenzaldehydes. J. Heterocyclic Chem 2006, 43, 799–801. DOI: 10.1002/jhet.5570430344.
  • Wang, R.; Fan, P.; Wang, C. Nickel/Photo-Cocatalyzed Asymmetric Acyl C − H Allylation of Aldehydes and Formamides. ACS Catal 2023, 13, 141–146. DOI: 10.1021/acscatal.2c05874.
  • Liu, Y.; Mao, D.; Qian, J.; Lou, S.; Xu, Z.; Zhang, Y. Efficient and Stereoselective Rearrangement of Baylis–Hillman Acetates Catalyzed by Gold(I) Chloride/Silver(I) Trifluoromethanesulfonate. Synthesis. 2009, 2009, 1170–1174. DOI: 10.1055/s-0028-1087971.
  • Iwamura, T.; Fujita, M.; Kawakita, T.; Kinoshita, S.; Watanabe, S.-I.; Kataoka, T. Dimethyl Sulfide-Boron Trihalide-Mediated Reactions of α,β-Unsaturated Ketones with Aldehydes: One-Pot Synthesis of Baylis-Hillman Adducts and α-Halomethyl Enones. Tetrahedron 2001, 57, 8455–8462. DOI: 10.1016/s0040-4020(01)00842-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.