Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 18
141
Views
0
CrossRef citations to date
0
Altmetric
Articles

Facile synthesis of arylboronates via recyclable copper(I)-catalyzed cross-coupling of pinacolborane with aryl iodides under mild conditions

, , &
Pages 1529-1544 | Received 03 Apr 2023, Published online: 17 Jul 2023

References

  • (a) Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev. 1995, 95, 2457–2483. DOI: 10.1021/cr00039a007. (b) Miyaura, N. In Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; Meijere, A. D.; Diederich, F., Eds.; Wiley-VCH: Weinheim, Germany, 2004; vol. 1, p 41. (c) Miyaura, N. Top. Curr. Chem. 2002, 219, 11–59. (d) Kotha, S.; Lahiri, K.; Kashinath, D. Recent Applications of the Suzuki–Miyaura Cross-Coupling Reaction in Organic Synthesis. Tetrahedron. 2002, 58, 9633–9695. (e) Miyaura, N. Metal-Catalyzed Reactions of Organoboronic Acids and Esters. BCSJ. 2008, 81, 1535–1553. (f) Lennox, A. J.; Lloyd-Jones, G. C. Selection of Boron Reagents for Suzuki-Miyaura Coupling. Chem. Soc. Rev. 2014, 43, 412–443. (g) Xu, L.; Zhang, S.; Li, P. Boron-Selective Reactions as Powerful Tools for Modular Synthesis of Diverse Complex Molecules. Chem. Soc. Rev. 2015, 44, 8848–8858.
  • (a) Boronic Acids-Preparation and Applications in Organic Synthesis, Medicine and Materials, 2nd ed.; Hall, D. G. Ed.; Wiley-VCH; Weinheim, 2011. (b) Das, B. C.; Thapa, P.; Karki, R.; Schinke, C.; Das, S.; Kambhampati, S.; Banerjee, S. K.; Van Veldhuizen, P.; Verma, A.; Weiss, L. M.; Evans, T. Boron Chemicals in Diagnosis and Therapeutics. Future. Med. Chem. 2013, 5, 653–676. DOI: 10.4155/fmc.13.38. (c) Ban, H. S.; Nakamura, H. Boron-Based Drug Design. Chem. Rec. 2015, 15, 616–635. (d) Li, D.; Chen, Y.; Liu, Z. Boronate Affinity Materials for Separation and Molecular Recognition: Structure, Properties and Applications. Chem. Soc. Rev. 2015, 44, 8097–8123.
  • (a) Brown, H. C.; Cole, T. E. Organoboranes. 31. A Simple Preparation of Boronic Esters from Organolithium Reagents and Selected Trialkoxyboranes. Organometallics 1983, 2, 1316–1319. DOI: 10.1021/om50004a009. (b) Brown, H. C.; Srebnik, M.; Cole, T. E. Organoboranes. 48. Improved Procedures for the Preparation of Boronic and Borinic Esters. Organometallics. 1986, 5, 2300–2303. (c) Diorazio, L. J.; Widdowson, D. A.; Clough, J. M. A New Synthesis of Aryl Fluorides: The Reaction of Caesium Fluoroxysulfate with Arylboronic Acids and Derivatives. Tetrahedron. 1992, 48, 8073–8088. (d) Wong, K.-T.; Chien, Y.-Y.; Liao, Y.-L.; Lin, C.-C.; Chou, M.-Y.; Leung, M-k Efficient and Convenient Nonaqueous Workup Procedure for the Preparation of Arylboronic Esters. J. Org. Chem. 2002, 67, 1041–1044.
  • (a) Ishiyama, T.; Murata, M.; Miyaura, N. Palladium(0)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes: A Direct Procedure for Arylboronic Esters. J. Org. Chem 1995, 60, 7508–7510. DOI: 10.1021/jo00128a024. (b) Ishiyama, T.; Miyaura, N. Synthesis of Organoboron Compounds via the Transition Metal-Catalyzed Addition and Coupling Reaction of (Alkoxo)Diborons. J. Syn. Org. Chem. Jpn. 1999, 57, 503–511. (c) Ishiyama, T.; Miyaura, N. Chemistry of Group 13 Element-Transition Metal Linkage – The Platinum and Palladium-Catalyzed Reactions of (Alkoxo)Diborons. J. Organomet. Chem. 2000, 611, 392–402. (d) Zhu, L.; Duquette, J.; Zhang, M. An Improved Preparation of Arylboronates: Application in One-Pot Suzuki Biaryl Synthesis. J. Org. Chem. 2003, 68, 3729–3732. (e) Billingsley, K. L.; Barder, T. E.; Buchwald, S. L. Palladium-Catalyzed Borylation of Aryl Chlorides: Scope, Applications, and Computational Studies. Angew. Chem. Int. Ed. Engl. 2007, 46, 5359–5363. (f) Minami, H.; Otsuka, S.; Nogi, K.; Yorimitsu, H. Palladium-Catalyzed Borylation of Aryl Sulfoniums with Diborons. ACS. Catal. 2018, 8, 579–583. (g) Kuwano, R.; Lee, E.; Won, S. Economical and Readily Accessible Preparation of o,o-Disubstituted Arylboronates through Palladium-Catalyzed Borylation of Haloarenes. Org. Lett. 2021, 23, 9649–9653. (h) Tse, M. H.; Zhong, R.-L.; Kwong, F. Y. Palladium-Catalyzed Miyaura Borylation of Overly Crowded Aryl Chlorides Enabled by a Complementary Localized/Remote Steric Bulk of Ligand Chassis. ACS Catal. 2022, 12, 3507–3515.
  • (a) Murata, M.; Watanabe, S.; Masuda, Y. Novel Palladium(0)-Catalyzed Coupling Reaction of Dialkoxyborane with Aryl Halides: Convenient Synthetic Route to Arylboronates. J. Org. Chem. 1997, 62, 6458–6459. DOI: 10.1021/jo970963p. (b) Murata, M.; Oyama, T.; Watanabe, S.; Masuda, Y. Palladium-Catalyzed Borylation of Aryl Halides or Triflates with Dialkoxyborane: A Novel and Facile Synthetic Route to Arylboronates. J. Org. Chem. 2000, 65, 164–168. (c) Baudoin, O.; Guenard, D.; Gueritte, F. Palladium-Catalyzed Borylation of Ortho-Substituted Phenyl Halides and Application to the One-Pot Synthesis of 2,2′’-Disubstituted Biphenyls. J. Org. Chem. 2000, 65, 9268–9271. (d) Broutin, P.-E.; Cerna, I.; Campaniello, M.; Leroux, F.; Colobert, F. Palladium-Catalyzed Borylation of Phenyl Bromides and Application in One-Pot Suzuki-Miyaura Biphenyl Synthesis. Org. Lett. 2004, 6, 4419–4422. (e) Murata, M.; Sambommatsu, T.; Watanabe, S.; Masuda, Y. An Efficient Catalyst System for Palladium-Catalyzed Borylation of Aryl Halides with Pinacolborane. Synlett. 2006, 2006, 1867–1870.
  • (a) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. C-H Activation for the Construction of C-B Bonds. Chem. Rev. 2010, 110, 890–931. DOI: 10.1021/cr900206p. (b) Hartwig, J. F. Regioselectivity of the Borylation of Alkanes and Arenes. Chem. Soc. Rev. 2011, 40, 1992–2002. (c) Larsen, M. A.; Hartwig, J. F. Iridium-Catalyzed C-H Borylation of Heteroarenes: Scope, Regioselectivity, Application to Late-Stage Functionalization, and Mechanism. J. Am. Chem. Soc. 2014, 136, 4287–4299. (d) Neeve, E. C.; Geier, S. J.; Mkhalid, I. A. I.; Westcott, S. A.; Marder, T. B. Diboron(4) Compounds: From Structural Curiosity to Synthetic Workhorse. Chem. Rev. 2016, 116, 9091–9161.
  • (a) Yoshida, T.; Ilies, L.; Nakamura, E. Iron-Catalyzed Borylation of Aryl Chlorides in the Presence of Potassium t-Butoxide. ACS Catal. 2017, 7, 3199–3203. DOI: 10.1021/acscatal.7b00310. (b) Bedford, R. B.; Brenner, P. B.; Carter, E.; Gallagher, T.; Murphy, D. M.; Pye, D. R. Iron-Catalyzed Borylation of Alkyl, Allyl, and Aryl Halides: Isolation of an Iron(I) Boryl Complex. Organometallics. 2014, 33, 5940–5943.
  • (a) Verma, P. K.; Mandal, S.; Geetharani, K. Efficient Synthesis of Aryl Boronates via Cobalt-Catalyzed Borylation of Aryl Chlorides and Bromides. ACS Catal. 2018, 8, 4049–4054. DOI: 10.1021/acscatal.8b00536. (b) Yao, W. B.; Fang, H. Q.; Peng, S. H.; Wen, H.; Zhang, L.; Hu, A. G.; Huang, Z. Cobalt-Catalyzed Borylation of Aryl Halides and Pseudohalides. Organometallics. 2016, 35, 1559–1564. (c) Frank, R.; Howell, J.; Campos, J.; Tirfoin, R.; Phillips, N.; Zahn, S.; Mingos, D. M. P.; Aldridge, S. Cobalt Boryl Complexes: Enabling and Exploiting Migratory Insertion in Base-Metal-Mediated Borylation. Angew. Chem. Int. Ed. Engl. 2015, 54, 9586–9590.
  • (a) Rosen, B. M.; Huang, C.; Percec, V. Sequential Ni-Catalyzed Borylation and Cross-Coupling of Aryl Halides via in Situ Prepared Neopentylglycolborane. Org. Lett. 2008, 10, 2597–2600. DOI: 10.1021/ol800832n. (b) Wilson, D. A.; Wilson, C. J.; Moldoveanu, C.; Resmerita, A.-M.; Corcoran, P.; Hoang, L. M.; Rosen, B. M.; Percec, V. Neopentylglycolborylation of Aryl Mesylates and Tosylates Catalyzed by Ni-Based Mixed-Ligand Systems Activated with Zn. J. Am. Chem. Soc. 2010, 132, 1800–1801. (c) Yamamoto, T.; Morita, T.; Takagi, J.; Yamakawa, T. NiCl2(PMe3)(2)-Catalyzed Borylation of Aryl Chlorides. Org. Lett. 2011, 13, 5766–5769. (d) Huang, K.; Yu, D.-G.; Zheng, S.-F.; Wu, Z.-H.; Shi, Z.-J. Borylation of Aryl and Alkenyl Carbamates through Ni-Catalyzed C-O Activation. Chemistry. 2011, 17, 786–791. (e) Molander, G. A.; Cavalcanti, L. N.; Garcia-Garcia, C. Nickel-Catalyzed Borylation of Halides and Pseudohalides with Tetrahydroxydiboron [B2(OH)4]. J. Org. Chem. 2013, 78, 6427–6439. (f) Liu, X. W.; Echavarren, J.; Zarate, C.; Martin, R. Ni-Catalyzed Borylation of Aryl Fluorides via C-F Cleavage. J. Am. Chem. Soc. 2015, 137, 12470–12473. (g) Kuehn, L.; Jammal, D. G.; Lubitz, K.; Marder, T. B.; Radius, U. Stoichiometric and Catalytic Aryl-Cl Activation and Borylation Using NHC-Stabilized Nickel(0) Complexes. Chemistry. 2019, 25, 9514–9521. (h) Tian, Y. M.; Guo, X. N.; Krummenacher, I.; Wu, Z.; Nitsch, J.; Braunschweig, H.; Radius, U.; Marder, T. B. Visible-Light-Induced Ni-Catalyzed Radical Borylation of Chloroarenes. J. Am. Chem. Soc. 2020, 142, 18231–18242.
  • (a) Nagashima, Y.; Takita, R.; Yoshida, K.; Hirano, K.; Uchiyama, M. Design, Generation, and Synthetic Application of Borylzincate: Borylation of Aryl Halides and Borylzincation of Benzynes/Terminal Alkyne. J. Am. Chem. Soc. 2013, 135, 18730–18733. DOI: 10.1021/ja409748m. (b) Bose, S. K.; Marder, T. B. Efficient Synthesis of Aryl Boronates via Zinc-Catalyzed Cross-Coupling of Alkoxy Diboron Reagents with Aryl Halides at Room Temperature. Org. Lett. 2014, 16, 4562–4565. (c) Bose, S. K.; Deißenberger, A.; Eichhorn, A.; Steel, P. G.; Lin, Z.; Marder, T. B. Zinc-Catalyzed Dual C-X and C-H Borylation of Aryl Halides. Angew. Chem. Int. Ed. Engl. 2015, 54, 11843–11847. (d) Li, Y.; Dang, Y.; Li, D.; Pan, H.; Zhang, L.; Wang, L.; Cao, Z.; Li, Y. Zinc Complexes with an Ethylene-Bridged Bis(β-Diketiminate) Ligand: Syntheses, Structures, and Applications as Catalysts in the Borylation of Aryl Iodides. Organometallics. 2021, 40, 482–489.
  • (a) Yamamoto, E.; Izumi, K.; Horita, Y.; Ito, H. Anomalous Reactivity of Silylborane: Transition-Metal-Free Boryl Substitution of Aryl, Alkenyl, and Alkyl Halides with Silylborane/Alkoxy Base Systems. J. Am. Chem. Soc. 2012, 134, 19997–20000. DOI: 10.1021/ja309578k. (b) Yamamoto, E.; Ukigai, S.; Ito, H. Boryl Substitution of Functionalized Aryl-, Heteroaryl- and Alkenyl Halides with Silylborane and an Alkoxy Base: Expanded Scope and Mechanistic Studies. Chem. Sci. 2015, 6, 2943–2951. (c) Mo, F.; Jiang, Y.; Qiu, D.; Zhang, Y.; Wang, J. Direct Conversion of Arylamines to Pinacol Boronates: A Metal-Free Borylation Process. Angew. Chem. Int. Ed. Engl. 2010, 49, 1846–1849. (d) Zhu, C.; Yamane, M. Transition-Metal-Free Borylation of Aryltriazene Mediated by BF3·OEt2. Org. Lett. 2012, 14, 4560–4563. (e) Zhang, L.; Jiao, L. Pyridine-Catalyzed Radical Borylation of Aryl Halides. J. Am. Chem. Soc. 2017, 139, 607–610. (f) Légaré, M.-A.; Courtemanche, M.-A.; Rochette, É.; Fontaine, F.-G. BORON CATALYSIS. Metal-Free Catalytic C-H Bond Activation and Borylation of Heteroarenes. Science. 2015, 349, 513–516. (g) Liu, W.; Yang, X.; Gao, Y.; Li, C.-J. Simple and Efficient Generation of Aryl Radicals from Aryl Triflates: Synthesis of Aryl Boronates and Aryl Iodides at Room Temperature. J. Am. Chem. Soc. 2017, 139, 8621–8627.
  • (a) Chen, K.; Zhang, S.; He, P.; Li, P. Efficient Metal-Free Photochemical Borylation of Aryl Halides under Batch and Continuous-Flow Conditions. Chem. Sci. 2016, 7, 3676–3680. DOI: 10.1039/c5sc04521e. (b) Mfuh, A. M.; Doyle, J. D.; Chhetri, B.; Arman, H. D.; Larionov, O. V. Scalable, Metal and Additive-Free, Photoinduced Borylation of Haloarenes and Quaternary Arylammonium Salts. J. Am. Chem. Soc. 2016, 138, 2985–2988. (c) Mfuh, A. M.; Nguyen, V. T.; Chhetri, B.; Burch, J. E.; Doyle, J. D.; Nesterov, V. N.; Arman, H. D.; Larionov, O. V. Additive- and Metal-Free, Predictably 1,2- and 1,3-Regioselective, Photoinduced Dual C-H/C-X Borylation of Haloarenes. J. Am. Chem. Soc. 2016, 138, 8408–8411. (d) Cheng, Y.; Mück-Lichtenfeld, C.; Studer, A. Metal-Free Radical Borylation of Alkyl and Aryl Iodides. Angew. Chem. Int. Ed. Engl. 2018, 57, 16832–16836. (e) Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers, E. L.; Aggarwal, V. K. Photoinduced Decarboxylative Borylation of Carboxylic Acids. Science. 2017, 357, 283–286. (f) Candish, L.; Teders, M.; Glorius, F. Transition-Metal-Free, Visible-Light-Enabled Decarboxylative Borylation of Aryl N-Hydroxyphthalimide Esters. J. Am. Chem. Soc. 2017, 139, 7440–7443. (g) Jiang, M.; Yang, H.; Fu, H. Visible-Light Photoredox Borylation of Aryl Halides and Subsequent Aerobic Oxidative Hydroxylation. Org. Lett. 2016, 18, 5248–5251. (h) Qiao, Y.; Yang, Q.; Schelter, E. Photoinduced Miyaura Borylation by a Rare-Earth-Metal Photoreductant: The Hexachlorocerate(III) Anion. Angew. Chem. Int. Ed. Engl. 2018, 57, 10999–11003. (i) Zhang, L.; Jiao, L. Visible-Light-Induced Organocatalytic Borylation of Aryl Chlorides. J. Am. Chem. Soc. 2019, 141, 9124–9128.
  • (a) Zhu, W.; Ma, D. Formation of Arylboronates by a CuI-Catalyzed Coupling Reaction of Pinacolborane with Aryl Iodides at Room Temperature. Org. Lett. 2006, 8, 261–263. DOI: 10.1021/ol052633u. (b) Kleeberg, C.; Dang, L.; Lin, Z.; Marder, T. B. A Facile Route to Aryl Boronates: Room-Temperature, Copper-Catalyzed Borylation of Aryl Halides with Alkoxy Diboron Reagents. Angew. Chem. Int. Ed. Engl. 2009, 48, 5350–5354. (c) Grigg, R. D.; Van Hoveln, R.; Schomaker, J. M. Copper-Catalyzed Recycling of Halogen Activating Groups via 1,3-Halogen Migration. J. Am. Chem. Soc. 2012, 134, 16131–16134. (d) Labre, F.; Gimbert, Y.; Bannwarth, P.; Olivero, S.; Dunach, E.; Chavant, P. Y. Application of Cooperative Iron/Copper Catalysis to a Palladium-Free Borylation of Aryl Bromides with Pinacolborane. Org. Lett. 2014, 16, 2366–2369. (e) Ando, S.; Matsunaga, H.; Ishizuka, T. A Bicyclic N-Heterocyclic Carbene as a Bulky but Accessible Ligand: Application to the Copper-Catalyzed Borylations of Aryl Halides. J. Org. Chem. 2015, 80, 9671–9681. (f) Niwa, T.; Ochiai, H.; Watanabe, Y.; Hosoya, T. Ni/Cu-Catalyzed Defluoroborylation of Fluoroarenes for Diverse C-F Bond Functionalizations. J. Am. Chem. Soc. 2015, 137, 14313–14318. (g) Schmid, S. C.; Van Hoveln, R.; Rigoli, J. W.; Schomaker, J. M. Development of N-Heterocyclic Carbene–Copper Complexes for 1,3-Halogen Migration. Organometallics. 2015, 34, 4164–4173. (h) Yoshida, H.; Takemoto, Y.; Kamio, S.; Osaka, I.; Takaki, K. Copper-Catalyzed Direct Borylation of Alkyl, Alkenyl and Aryl Halides with B(Dan). Org. Chem. Front. 2017, 4, 1215–1219. (i) Kuehn, L.; Huang, M. M.; Radius, U.; Marder, T. B. Copper-Catalysed Borylation of Aryl Chlorides. Org. Biomol. Chem. 2019, 17, 6601–6606. (j) Nitelet, A.; Thevenet, D.; Schiavi, B.; Hardouin, C.; Fournier, J.; Tamion, R.; Pannecoucke, X.; Jubault, P.; Poisson, T. Copper-Photocatalyzed Borylation of Organic Halides under Batch and Continuous-Flow Conditions. Chemistry. 2019, 25, 3262–3266.
  • (a) Girard, C.; Onen, E.; Aufort, M.; Beauviere, S.; Samson, E.; Herscovici, J. Reusable Polymer-Supported Catalyst for the [3 + 2] Huisgen Cycloaddition in Automation Protocols. Org. Lett. 2006, 8, 1689–1692. DOI: 10.1021/ol060283l. (b) Chassaing, S.; Sido, A. S. S.; Alix, A.; Kumarraja, M.; Pale, P.; Sommer, J. Click Chemistry" in Zeolites: Copper(I) zeolites as New Heterogeneous and Ligand-Free Catalysts for the Huisgen [3 + 2] Cycloaddition. Chemistry. 2008, 14, 6713–6721. (c) Lipshutz, B. H.; Taft, B. R. Heterogeneous Copper-in-Charcoal-Catalyzed Click Chemistry. Angew. Chem. Int. Ed. Engl. 2006, 45, 8235–8238. (d) Wang, D.; Etienne, L.; Echeverria, M.; Moya, S.; Astruc, D. A Highly Active and Magnetically Recoverable Tris(Triazolyl)-Cu(I) catalyst for Alkyne-Azide Cycloaddition Reactions. Chemistry. 2014, 20, 4047–4054. (e) Yamada, Y. M. A.; S.; Sarkar, M.; Uozumi, Y. Amphiphilic Self-Assembled Polymeric Copper Catalyst to Parts per Million Levels: Click Chemistry. J. Am. Chem. Soc. 2012, 134, 9285–9290. (f) Kantam, M. L.; Reddy, C. V.; Srinivas, P.; Bhargava, S. In Topics in Organometallic Chemistry, Taillefer, M.; Ma, D., Eds.; Springer: Heidelberg, 2013, vol. 46, pp 119–171.
  • (a) Benyahya, S.; Monnier, F.; Taillefer, M.; Chi Man, M. W.; Bied, C.; Ouazzan, F. Efficient and Versatile Sol-Gel Immobilized Copper Catalyst for Ullmann Arylation of Phenols. Adv. Synth. Catal. 2008, 350, 2205–2208. DOI: 10.1002/adsc.200800360. (b) Benyahya, S.; Monnier, F.; Chi Man, M. W.; Bied, C.; Ouazzan, F.; Taillefer, M. Sol–Gel Immobilized and Reusable Copper-Catalyst for Arylation of Phenols from Aryl Bromides. Green Chem. 2009, 11, 1121–1123. (c) Phan, N. T. S.; Nguyen, T. T.; Nguyen, V. T.; Nguyen, K. D. Ligand-Free Copper-Catalyzed Coupling of Phenols with Nitroarenes by Using a Metal-Organic Framework as a Robust and Recoverable Catalyst. ChemCatChem. 2013, 5, 2374–2381. (d) Shen, C.; Xu, J.; Yu, W.; Zhang, P. A Highly Active and Easily Recoverable Chitosan@Copper Catalyst for the C–S Coupling and Its Application in the Synthesis of Zolimidine. Green Chem. 2014, 16, 3007–3012. (e) Zhao, H.; He, W.; Yao, R.; Cai, M. Heterogeneous Copper-Catalyzed Cascade Three-Component Reaction of Amines, Carbon Disulfide and 2-Iodoanilines Leading to 2-Aminobenzothiazoles. Adv. Synth. Catal. 2014, 356, 3092–3098. (f) Magne, V.; Garnier, T.; Danel, M.; Pale, P.; Chassaing, S. Cu(I)-USY as a Ligand-Free and Recyclable Catalytic System for the Ullmann-Type Diaryl Ether Synthesis. Org. Lett. 2015, 17, 4494–4497. (g) Zhao, H.; He, W.; Wei, L.; Cai, M. A Highly Efficient Heterogeneous Copper-Catalyzed Three-Component Coupling of Tetrahydroisoquinolines, Aldehydes and 1-Alkynes. Catal. Sci. Technol. 2016, 6, 1488–1495. (h) Pan, S.; Yan, S.; Osako, T.; Uozumi, Y. Batch and Continuous-Flow Huisgen 1,3-Dipolar Cycloadditions with an Amphiphilic Resin-Supported Triazine-Based Polyethyleneamine Dendrimer Copper Catalyst. ACS Sustainable Chem. Eng. 2017, 5, 10722–10734.
  • (a) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature. 1992, 359, 710–712. DOI: 10.1038/359710a0. (b) Corma, A. Top. Catal. 1997, 4, 249–260. (c) Martín-Aranda, R. M.; Čejka, J. Recent Advances in Catalysis over Mesoporous Molecular Sieves. Top. Catal. 2010, 53, 141–153.
  • Cai, M.; Ye, Q.; Huang, W.; Hao, W. Recyclable Copper-Catalyzed Cyclization of o-Haloanilides and Metal Sulfides: An Efficient and Practical Access to Substituted Benzothiazoles. Mol. Catal. 2022, 519, 112115. DOI: 10.1016/j.mcat.2022.112115.
  • Brenna, S.; Posset, T.; Furrer, J.; Blümel, J. (14)N NMR and Two-Dimensional Suspension (1)H and (13)C HRMAS NMR Spectroscopy of Ionic Liquids Immobilized on Silica. Chemistry. 2006, 12, 2880–2888. DOI: 10.1002/chem.200501193.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.